# Blog

Back to main | List of entries |

## Ashwin Sah and Mehtaab Sawhney win the Morgan Prize

October 29, 2020

Congratulations to Ashwin Sah and Mehtaab Sawhney for winning the 2021 AMS-MAA-SIAM Frank and Brennie Morgan Prize for Outstanding Research in Mathematics by an Undergraduate Student! This is the most prestigious prize in the US for undergraduate mathematics research (though I must say that their work far surpasses that of “undergraduate research”). It is also the first time in the history of the Morgan Prize for it to be jointly awarded to more than one recipient.

From the prize citation:

The award recognizes the duo’s innovative results across a broad range of topics in combinatorics, discrete geometry, and probability.

The prize committee notes, “Working alongside one another, Sah and Sawhney settled longstanding conjectures and improved results by established mathematicians. The research of Sah and Sawhney is both deep and broad, tackling questions at the very forefront of current research, yet extending across the entire gamut of modern combinatorics, with significant contributions to extremal graph theory, graph limits, additive combinatorics, Ramsey theory, algebraic combinatorics, combinatorial geometry, random graphs and random matrix theory. They have demonstrated a significant amount of ingenuity, originality and technical ability, resulting in a research record, which is extremely rare for undergraduate students.”

Combined, Sah and Sawhney have authored 30 papers (11 together), and published in top journals, including

Inventiones Mathematicae,Advances in Mathematics,Mathematical Proceedings of the Cambridge Philosophical Society, theJournal of Combinatorial Theory Series B, andCombinatorica.

(The paper count in the award citation was taken from earlier this year and is now already quite a bit out of date.)

I got to know both Ashwin and Mehtaab as students in my Putnam Seminar and graduate combinatorics class during their very first undergraduate semester at MIT. Since then, they have led an intensively productive and ongoing collaboration, producing an incredible amount of fantastic research results across a wide spectrum of topics in combinatorics, probability, number theory, and algorithms. It was a great pleasure for me to be working with Ashwin and Mehtaab on many of these projects. Some of their work were previously featured on this blog:

- The number of independents in an irregular graph
- A reverse Sidorenko inequality
- New upper bounds on diagonal Ramsey numbers
- Singularity of discrete random matrices

Ashwin and Mehtaab are now both first-year PhD students at MIT. I’m sure that we will see a lot more coming from them.

Back to main | List of entries |

More posts:

- Schildkraut: Equiangular lines and large multiplicity of fixed second eigenvalue 3/6/2023
- Nearly all k-SAT functions are unate 9/19/2022
- Kwan–Sah–Sawhney–Simkin: High-girth Steiner triple systems 1/13/2022
- Graphs with high second eigenvalue multiplicity 9/28/2021
- Enumerating k-SAT functions 7/21/2021
- Mathematical tools for large graphs 7/12/2021
- How I manage my BibTeX references, and why I prefer not initializing first names 7/4/2021
- The cylindrical width of transitive sets 1/28/2021
- Ashwin Sah and Mehtaab Sawhney win the Morgan Prize 10/29/2020
- Jain–Sah–Sawhney: Singularity of discrete random matrices 10/13/2020
- Gunby: Upper tails for random regular graphs 10/5/2020
- Joints of varieties 9/12/2020
- Ashwin Sah's new diagonal Ramsey number upper bound 5/20/2020
- Joints tightened 11/21/2019
- Equiangular lines with a fixed angle 7/30/2019
- Impartial digraphs 6/27/2019
- A reverse Sidorenko inequality 9/26/2018
- The number of independent sets in an irregular graph 5/12/2018