A reverse Sidorenko inequality Independent sets, colorings, and graph homomorphisms

Yufei Zhao (MIT)

Joint work with

Ashwin Sah (MIT)

Mehtaab Sawhney (MIT)

David Stoner (Harvard)

Question 1

Fix *d*. Which *d*-regular graph *G* maximizes $i(G)^{1/\nu(G)}$?

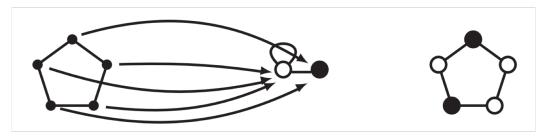
```
i(G) = the number of independent sets
```

Question 2

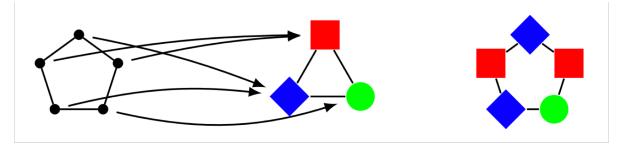
Fix *d* and *q*. Which *d*-regular graph *G* maximizes $c_q(G)^{1/v(G)}$? # proper *q*-colorings

Question 3

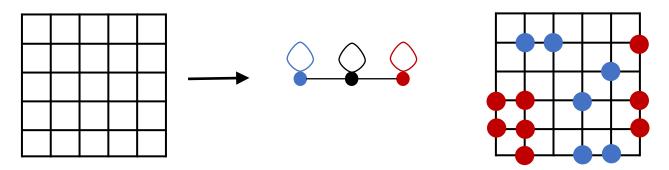
Fix *d* and *H*. Which *d*-regular graph *G* maximizes $hom(G, H)^{1/v(G)}$? # graph homomorphisms Independent sets: i(G) = hom(G,)



Colorings: $c_q(G) = \hom(G, K_q)$



Widom–Rowlinson model: hom($G, \bigcirc \bigcirc \bigcirc$)



Independent sets

Question 1. Fix *d*. Which *d*-regular graph *G* maximizes $i(G)^{1/\nu(G)}$?

Asked by Granville in 1988 at Banff in an effort to resolve the Cameron–Erdős conjecture on the number of sum-free subsets of {1, ..., n}

Conjectured maximizer: K_{d,d}

Alon (1991) proved an asymptotic version ($d \rightarrow \infty$)

Kahn (2001) proved the conjecture for bipartite *G* via entropy method

Z. (2010) removed the bipartite hypothesis via "bipartite swapping trick" $i(G)^2 \le i(G \times K_2)$

Theorem (Kahn + Z.). Let G be an *n*-vertex d-regular graph. Then $i(G) \le i(K_{d,d})^{n/(2d)} = (2^{d+1} - 1)^{n/(2d)}$

Davies, Jenssen, Perkins & Roberts (2017) gave a new proof using a novel occupancy method, which found applications in sphere packing and spherical codes [Jenssen, Joos, Perkins 2018]

Graph homomorphisms

Question 3. Fix *d* and *H*. Which *d*-regular graph *G* maximizes $hom(G, H)^{1/\nu(G)}$?

[Galvin, Tetali 2004] Among bipartite graphs, $G = K_{d,d}$ is the maximizer (extending [Kahn '01])

Q. Can the bipartite hypothesis be dropped?

[Z. 2011] Yes for certain families of *H*, such as threshold graphs (generalizing independent sets).

 $H = K_q$ (q-colorings) remained open

The bipartite hypothesis **cannot** always be dropped. E.g., $H = \bigcirc$, maximizer is K_{d+1} , not $K_{d,d}$. [Cohen, Perkins, Tetali 2017] Widom–Rowlinson model ($H = \bigcirc$): $G = K_{d+1}$ is the maximizer [Sernau 2017] $\exists H$: maximizer is neither $K_{d,d}$ nor K_{d+1}

Open: Among 3-regular graphs, is there a finite set of possible maximizers G for $hom(G, H)^{1/\nu(G)}$? (We only know that this set is bigger than $\{K_{3,3}, K_4\}$)

Graph homomorphisms

Question 3. Fix *d* and *H*. Which *d*-regular graph *G* maximizes $hom(G, H)^{1/\nu(G)}$?

Wide open in general (see my survey Extremal regular graphs)

Conjecture (Davies, Jenssen, Perkins, Roberts 2017). For all fixed *H*, among triangle-free *G*, $G = K_{d,d}$ is always the maximizer (true for bipartite *G* [Galvin, Tetali 2004])

Independent sets in irregular graphs

 d_u = degree of u in G

Degree-degree distribution: probab. distribution of (d_u, d_v) for uniformly random edge uv

Question 1'. Given the degree-degree distribution, which G maximizes $i(G)^{1/\nu(G)}$?

e.g., 20% edges have endpoint degrees (3,4), 30% edges ...

Conjecture (Kahn '01). Maximizer is a disjoint union of complete bipartite graphs We prove this conjecture

Theorem (Sah, Sawhney, Stoner, Z., '18+). Let G be a graph without isolated vertices. Then

$$i(G) \leq \prod_{uv \in E(G)} i(K_{d_u, d_v})^{1/(d_u d_v)}$$

Independent sets are **biclique-maximizing**

Conjecture (Galvin '06). An analogous inequality for hom(*G*, *H*) (False; which *G* and *H*?)

Proper colorings

Question 2. Fix d and q. Which d-regular graph G maximizes $c_q(G)^{1/\nu(G)}$?

Conjectured answer: $K_{d,d}$

[Galvin, Tetali '04] True for bipartite G

[Davies, Jenssen, Perkins, Roberts '18] True for *d* = 3 & [Davies] *d* = 4 (computer-assisted)

We prove the conjecture

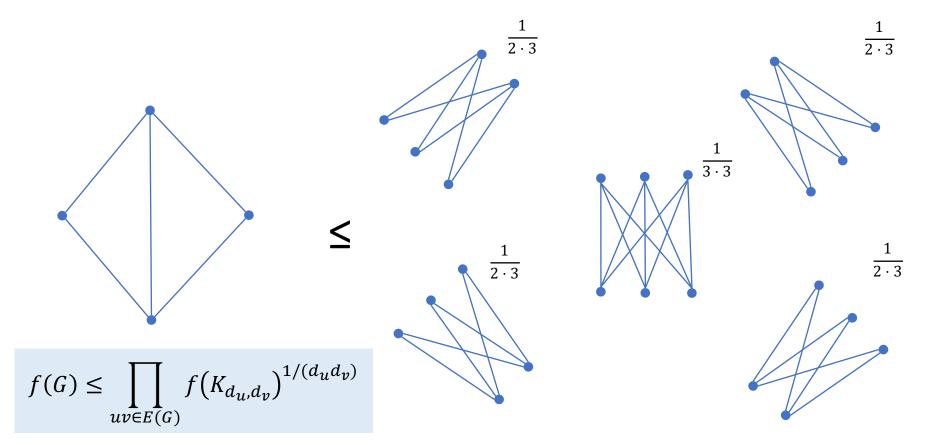
Theorem (Sah, Sawhney, Stoner, Z. '18++). Let $q \in \mathbb{N}$ and G an n-vertex d-regular graph. Then $c_q(G) \leq c_q(K_{d,d})^{n/(2d)}$

Theorem (Sah, Sawhney, Stoner, Z.). Let $q \in \mathbb{N}$ and G a graph without isolated vertices. Then

$$c_q(G) \le \prod_{uv \in E(G)} c_q \left(K_{d_u, d_v} \right)^{1/(d_u d_v)}$$

Proper colorings are **biclique-maximizing**

The number of independent sets and proper *q*-colorings satisfies



f counts independent sets or proper q-colorings

Graph homomorphisms

Question 3. Fix *d* and *H*. Which *d*-regular graph *G* maximizes $hom(G, H)^{1/\nu(G)}$?

Conjecture (Davies, Jenssen, Perkins, Roberts '17). Among triangle-free G, $G = K_{d,d}$ is always the maximizer (already known for bipartite G [Galvin, Tetali '04])

We prove this conjecture

Theorem (Sah, Sawhney, Stoner, Z.). Let G be a triangle-free *n*-vertex d-regular graph. Then $hom(G, H) \le hom(K_{d,d}, H)^{n/(2d)}$

Theorem (SSSZ). Let G be a triangle-free graph without isolated vertices. Then

$$\hom(G,H) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v},H)^{1/(d_ud_v)}$$

Always biclique-maximizing among triangle-free graphs $1 + \varepsilon + \varepsilon$ False for every G with a triangle! Counterexample: $H = \begin{pmatrix} 1 + \varepsilon & 1 \\ 1 & 1 + \varepsilon \end{pmatrix}$ as $\varepsilon \to 0$ $1 + \varepsilon + \varepsilon$

Reverse Sidorenko inequality

Sidorenko's conjecture: for bipartite G, all H

$$t(G,H) \ge t(K_2,H)^{e(G)} \qquad t(G,H) = \hom(G)$$

 $(G,H) / v(H)^{v(G)}$

[Hatami] [Conlon, Fox, Sudakov] [Li, Szegedy] [Kim, Lee, Lee] [Conlon, Kim, Lee, Lee] [Szegedy] [Conlon, Lee] Open for $G = K_{5.5} \setminus C_{10}$ (Möbius strip)

Our result: for triangle-free *d*-regular *G*

$$t(G,H) \le t(K_{d,d},H)^{e(G)/d^2}$$

 $\|\cdot\|_G \coloneqq t(G, \cdot)^{1/e(G)}$ (Hatami's graph "norm"; [Conlon, Lee]). For graphon $W: [0,1]^2 \rightarrow [0,1]$, $\|W\|_{K_2} \le \|W\|_G \le \|W\|_{K_{d,d}}$ bipartite G (Sidorenko's conjecture)

Theorem (Sah, Sawhney, Stoner, Z.). Let G be a triangle-free graph and $W: [0,1]^2 \rightarrow [0,1]$. Then

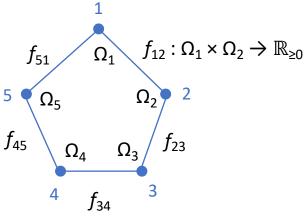
$$t(G,W) \leq \prod_{uv \in E(G)} \|W\|_{K_{d_u,d_v}}$$

Reverse Sidorenko inequality Given $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$, e.g., $||f||_{K_{2,3}} = \int_{\Omega_1^2 \times \Omega_2^3} f(x_1, y_1) f(x_1, y_2) f(x_1, y_3) f(x_2, y_1) f(x_2, y_2) f(x_2, y_3) dx_1 dx_2 dy_1 dy_2 dy_3 \Big|^{1/6}$

Theorem (Sah, Sawhney, Stoner, Z.). Triangle-free graph G = (V, E) without isolated vertices, $f_{uv} \ge 0$, $\int \prod_{uv \in E} f_{uv}(x_u, x_v) dx_V \le \prod_{uv \in E} ||f_{uv}||_{K_{dv,du}} ||f_{dv,du}| \le \frac{1}{f_{51}} + \frac{1}{f_{12} : \Omega_1 \times \Omega_2 \rightarrow \mathbb{R}_{\ge 0}}$

Reverse Sidorenko inequality

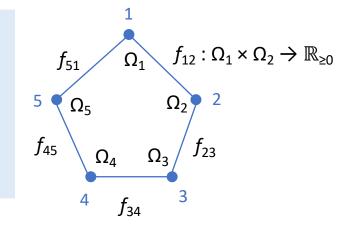
Theorem (Sah, Sawhney, Stoner, Z.). Triangle-free graph G = (V, E) without isolated vertices, $f_{uv} \ge 0$, $\int \prod_{uv \in E} f_{uv}(x_u, x_v) dx_V \le \prod_{uv \in E} ||f_{uv}||_{K_{dv,du}} ||f_{45}||_{G_4}$



Reverse Sidorenko inequality

Theorem (Sah, Sawhney, Stoner, Z.). Triangle-free graph G = (V, E) without isolated vertices, $f_{uv} \ge 0$,

$$\int \prod_{uv \in E} f_{uv}(x_u, x_v) \, d\mathbf{x}_V \leq \prod_{uv \in E} \|f_{uv}\|_{K_{dv,du}}$$



Graphical analogs of Brascamp—Lieb type inequalities:

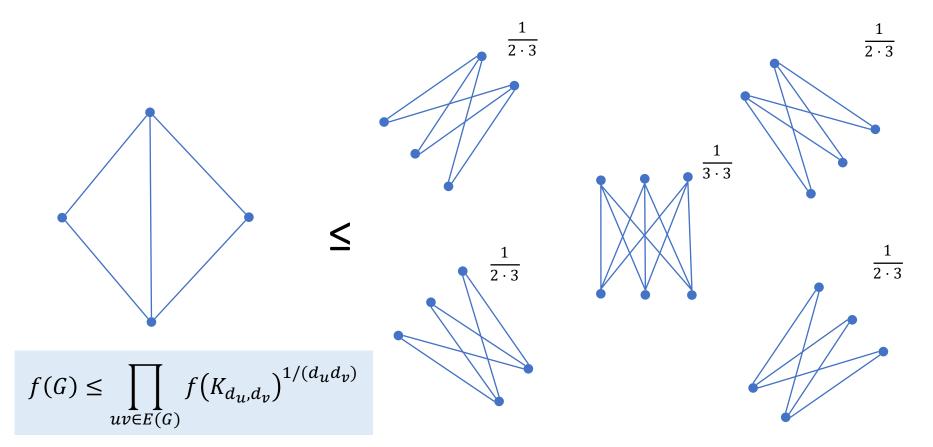
 $\int f_1(\dots) \dots f_k(\dots) \leq \|f_1\|_{L^{p_1}} \dots \|f_k\|_{L^{p_k}}$

Note that (by Hölder)

$$\|f\|_{K_{a,b}} \le \|f\|_{L^{ab}}$$

Future direction: extensions to simplicial complexes

The number of independent sets and proper *q*-colorings



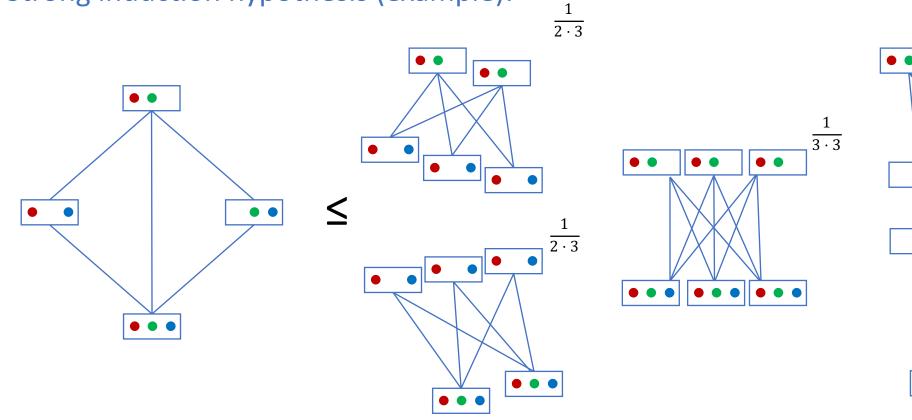
f counts independent sets or proper q-colorings

The number of proper list colorings

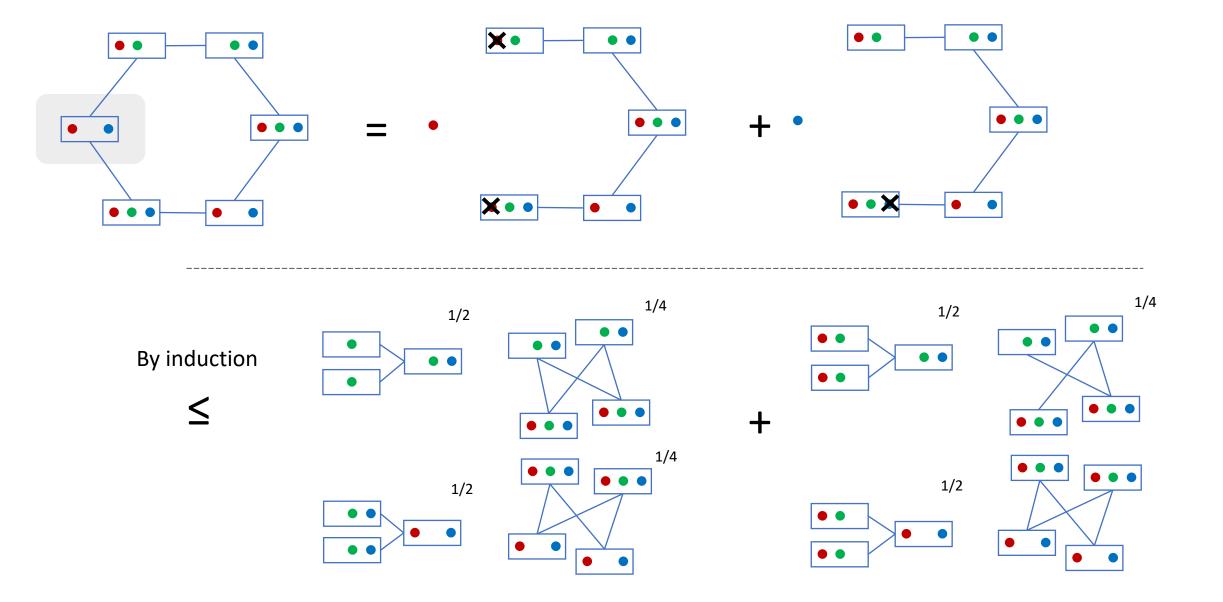
 $\frac{1}{2\cdot 3}$

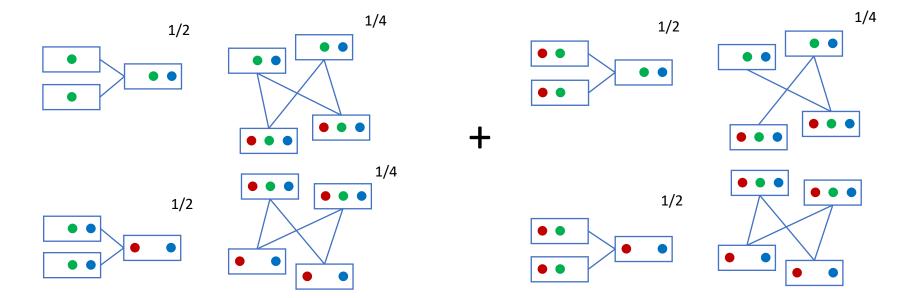
 $\frac{1}{2\cdot 3}$

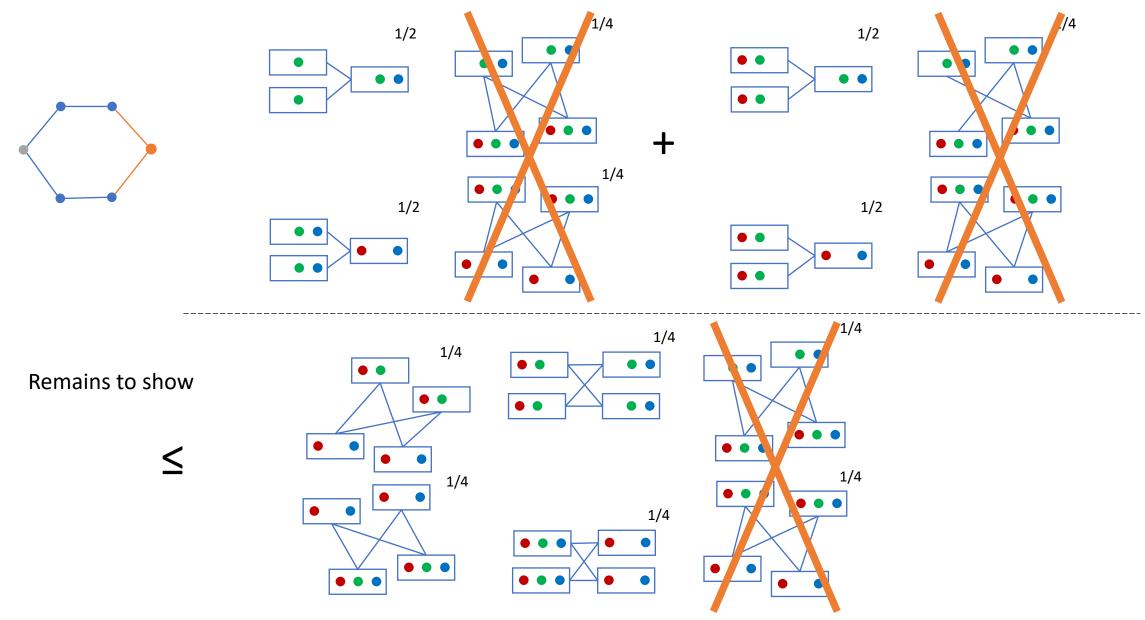
Strong induction hypothesis (example):

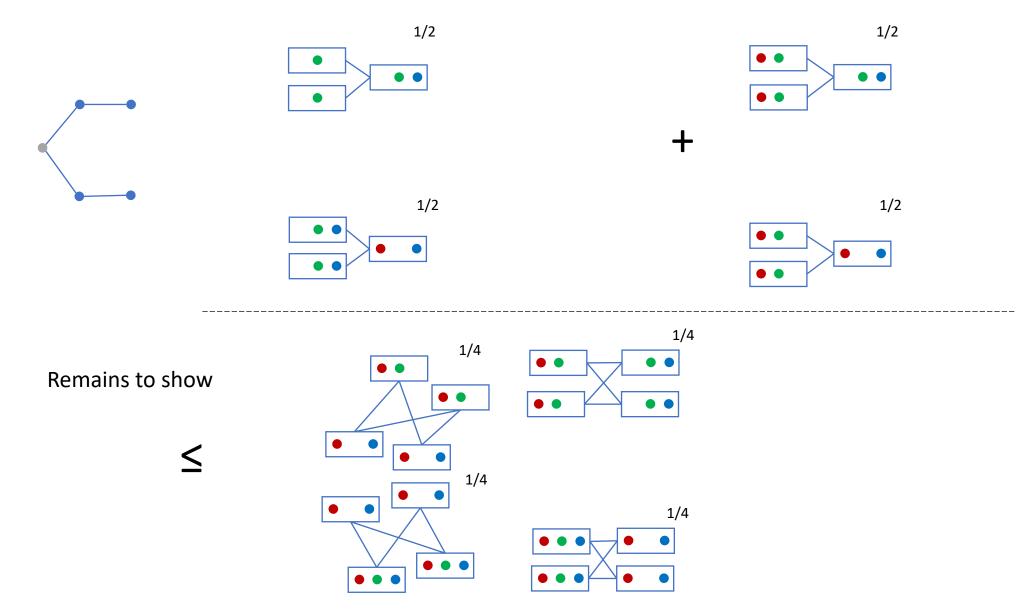


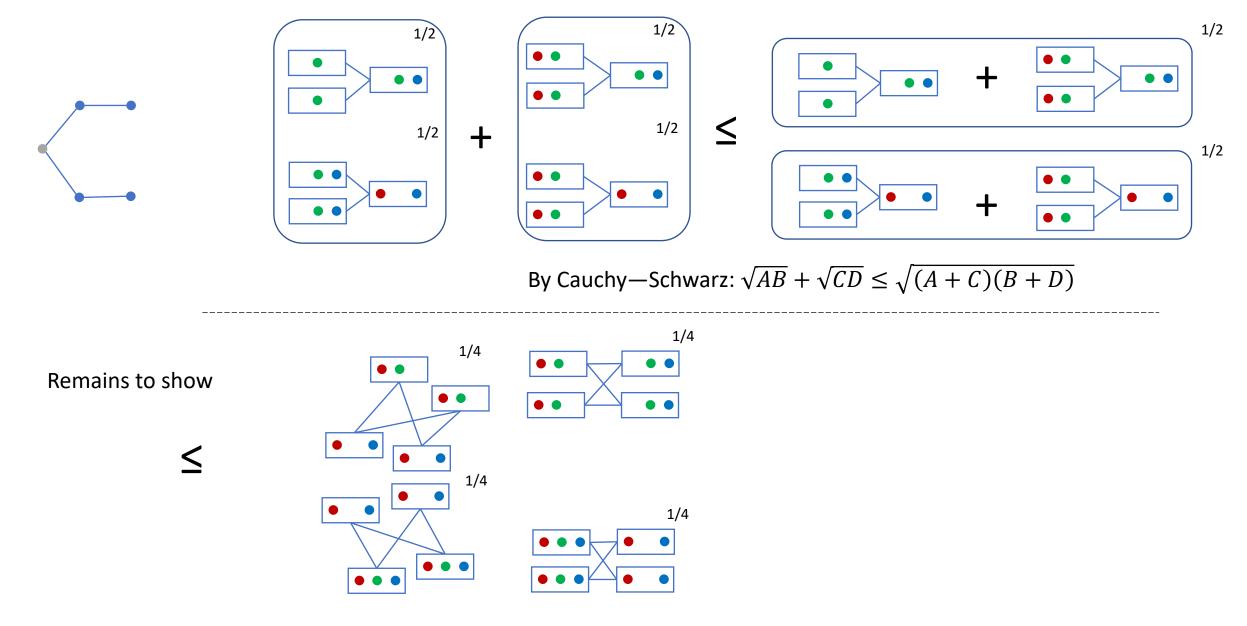
Proof strategy: Induction

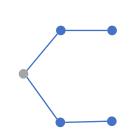


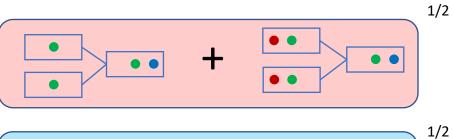






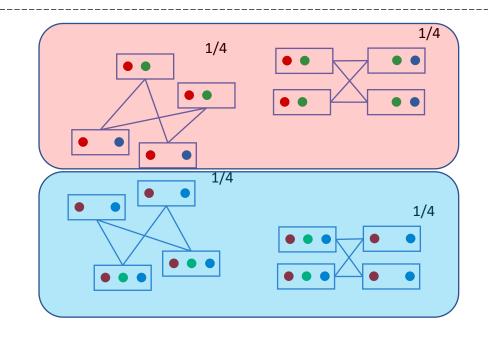






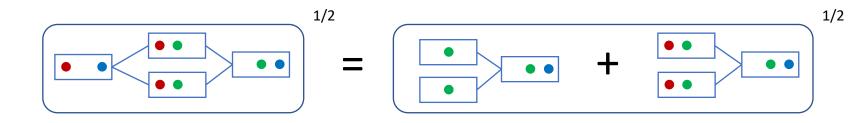
Remains to show

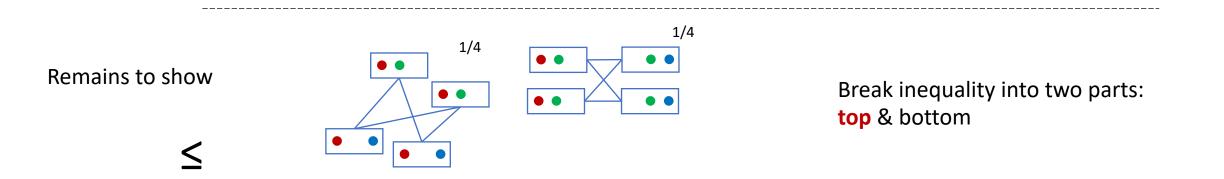
 \leq



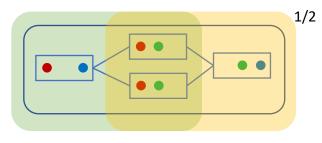
Break inequality into two parts: top & bottom

Proof strategy: Local inequality

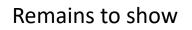


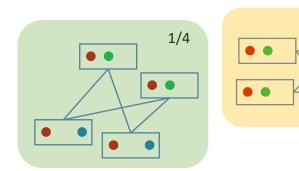


Proof strategy: Local inequality



1/4





In this case, follows from Cauchy—Schwarz

Much more difficult if *G* has triangles (not always true for other models!)

A useful matrix inequality

Define the mixed $\ell^{p,q}$ norm of matrix $A = (a_{ij})$ by first taking ℓ^p norm of each row, and then taking ℓ^q norm of the results, i.e.

$$\|A\|_{p,q} \coloneqq \left(\sum_{i} \left(\sum_{j} |a_{ij}|^p\right)^{q/p}\right)^{1/q}$$

Lemma. For positive semidefinite (PSD) matrix A with nonneg entries, and $q \ge 1$, $\|A\|_{1,q}^2 \le \|A\|_{1,1} \|A\|_{q,q}$

Question. Is it true that for all $1 \le p \le q$,

 $||A||_{p,q}^2 \le ||A||_{p,p} ||A||_{q,q} ?$

Graph homomorphisms

Question 3. Fix *d* and *H*. Which *d*-regular graph *G* maximizes $hom(G, H)^{1/\nu(G)}$?

Let *H* be a nonneg weighted graph (model)

hom(G, H) = partition function of some stat. phys. model, e.g., hard-core, Ising, Potts. Say:

• *H* is biclique-maximizing if Z(G): = hom(*G*, *H*) satisfies

$$Z(G) \leq \prod_{uv \in E(G)} Z(K_{d_u, d_v})^{1/(d_u d_v)}$$

i.e., conditioned on degree-degree distribution

• *H* is clique-maximizing if Z(G): = hom(*G*, *H*) satisfies

$$Z(G) \le \prod_{v \in V(G)} Z(K_{d_v+1})^{1/(d_v+1)}$$

i.e., conditioned on degree distribution

Our results: H = 4 (indep sets) and K_q (proper colorings) are both biclique-maximizing

More generally, every partially looped K_q (semiproper colorings) is biclique-maximizing

Ferromagnetism and anti-ferromangnetism

Given a nonneg weighted graph/model *H*, we say that

- *H* is ferromagnetic if its edge-weight matrix is positive semidefinite, i.e., all eigenvalues are nonnegative: $0 \le \dots \le \lambda_3 \le \lambda_2 \le \lambda_1$ (e.g., $H = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$)
- *H* is antiferromagnetic if its edge-weight matrix has at most one positive eigenvalue: $\cdots \le \lambda_3 \le \lambda_2 \le 0 \le \lambda_1$ (e.g., indep sets and colorings)

Theorem (Sah, Sawhney, Stoner, Z.). Every ferromagnetic model is clique-maximizing

Conjecture 1. Every clique-maximizing model is ferromagnetic

Conjecture 2. Every antiferromagnetic model is biclique-maximizing

Our results verify Conj. 2 for independent sets and colorings. Open for Potts model

Widom—Rowlingson model is clique-maximizing among *d*-regular *G* [Cohen, Perkins, Tetali] but not for irregular *G*, and it is not ferromagnetic.

Two-spin systems

• An Ising model with nonneg edge-weight matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is ferromagnetic if $ac \ge b^2$ and antiferromagnetic if $ac \le b^2$ E.g., independent set $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ is antiferromagnetic

Corollary (Sah, Sawhney, Stoner, Z.). A 2-spin model is

- Biclique-maximizing if antiferromagnetic, and
- Clique-maximizing if ferromagnetic

This generalizes the result for independent sets

A similar classification for 3-spin systems is open

Summary of main results

- Independent sets and proper colorings are biclique-maximizing
- Every ferromagnetic model is clique-maximizing
- Every model is biclique-maximizing when restricted to triangle-free graphs

Reverse Sidorenko inequality (Sah, Sawhney, Stoner, Z.). Triangle-free graph G = (V, E) without isolated vertices, $f_{uv} \ge 0$,

$$\int \prod_{uv\in E} f_{uv}(x_u, x_v) \, d\mathbf{x}_V \leq \prod_{uv\in E} \|f_{uv}\|_{K_{d_v, d_u}}$$

Corollary. For triangle-free G without isolated vertices, $\forall H$

$$\hom(G,H) \le \prod_{uv \in E(G)} \hom(K_{d_u,d_v},H)^{1/(d_ud_v)}$$

Conjecture. Every antiferromagnetic model is biclique-maximizing (e.g., Potts).