A reverse Sidorenko inequality

Independent sets, colorings, and graph homomorphisms

Yufei Zhao (MIT)

Joint work with

Ashwin Sah
(MIT)

Mehtaab Sawhney (MIT)

David Stoner (Harvard)

Question 1

Fix d. Which d-regular graph G maximizes $i(G)^{1 / v(G)}$?

$$
i(G)=\text { the number of independent sets }
$$

Question 2

Fix d and q. Which d-regular graph G maximizes $c_{q}(G)^{1 / v(G)}$?

Question 3

Fix d and H. Which d-regular graph G maximizes hom $(G, H)^{1 / v(G)}$?

Independent sets: $i(G)=\operatorname{hom}(G, 8 \cdot)$

Colorings: $c_{q}(G)=\operatorname{hom}\left(G, K_{q}\right)$

Widom-Rowlinson model: $\operatorname{hom}(G, 888)$

Independent sets

Question 1. Fix d. Which d-regular graph G maximizes $i(G)^{1 / v(G)}$?
Asked by Granville in 1988 at Banff in an effort to resolve the Cameron-Erdős conjecture on the number of sum-free subsets of $\{1, \ldots, n\}$

Conjectured maximizer: $K_{d, d}$
Alon (1991) proved an asymptotic version ($d \rightarrow \infty$)
Kahn (2001) proved the conjecture for bipartite G via entropy method

Z. (2010) removed the bipartite hypothesis via "bipartite swapping trick" $i(G)^{2} \leq i\left(G \times K_{2}\right)$

Theorem (Kahn + Z.). Let G be an n-vertex d-regular graph. Then

$$
i(G) \leq i\left(K_{d, d}\right)^{n /(2 d)}=\left(2^{d+1}-1\right)^{n /(2 d)}
$$

Davies, Jenssen, Perkins \& Roberts (2017) gave a new proof using a novel occupancy method, which found applications in sphere packing and spherical codes [Jenssen, Joos, Perkins 2018]

Graph homomorphisms

Question 3. Fix d and H. Which d-regular graph G maximizes hom $(G, H)^{1 / v(G)}$?
[Galvin, Tetali 2004] Among bipartite graphs, $G=K_{d, d}$ is the maximizer (extending [Kahn '01])
Q. Can the bipartite hypothesis be dropped?
[Z. 2011] Yes for certain families of H, such as threshold graphs (generalizing independent sets).

$$
H=K_{q}(q \text {-colorings) remained open }
$$

The bipartite hypothesis cannot always be dropped. E.g., $H=88$, maximizer is K_{d+1}, not $K_{d, d}$.
[Cohen, Perkins, Tetali 2017] Widom-Rowlinson model ($H=8$ \&) : $G=K_{d+1}$ is the maximizer
[Sernau 2017] $\exists H$: maximizer is neither $K_{d, d}$ nor K_{d+1}
Open: Among 3-regular graphs, is there a finite set of possible maximizers G for hom $(G, H)^{1 / v(G)}$? (We only know that this set is bigger than $\left\{K_{3,3}, K_{4}\right\}$)

Graph homomorphisms

Question 3. Fix d and H. Which d-regular graph G maximizes hom $(G, H)^{1 / v(G)}$? Wide open in general (see my survey Extremal regular graphs)

Conjecture (Davies, Jenssen, Perkins, Roberts 2017).
For all fixed H, among triangle-free $G, G=K_{d, d}$ is always the maximizer (true for bipartite G [Galvin, Tetali 2004])

Independent sets in irregular graphs

$$
d_{u}=\text { degree of } u \text { in G }
$$

Degree-degree distribution: probab. distribution of $\left(d_{u}, d_{v}\right)$ for uniformly random edge $u v$
Question 1'. Given the degree-degree distribution, which G maximizes $i(G)^{1 / v(G)}$? e.g., 20% edges have endpoint degrees $(3,4), 30 \%$ edges ...

Conjecture (Kahn '01). Maximizer is a disjoint union of complete bipartite graphs
We prove this conjecture
Theorem (Sah, Sawhney, Stoner, Z., '18+). Let G be a graph without isolated vertices. Then

$$
i(G) \leq \prod_{u v \in E(G)} i\left(K_{d_{u}, d_{v}}\right)^{1 /\left(d_{u} d_{v}\right)}
$$

Independent sets are biclique-maximizing

Conjecture (Galvin '06). An analogous inequality for hom (G, H) (False; which G and H ?)

Proper colorings

Question 2. Fix d and q. Which d-regular graph G maximizes $c_{q}(G)^{1 / v(G)}$?
Conjectured answer: $K_{d, d}$
[Galvin, Tetali '04] True for bipartite G
[Davies, Jenssen, Perkins, Roberts '18] True for $d=3$ \& [Davies] $d=4$ (computer-assisted)
We prove the conjecture
Theorem (Sah, Sawhney, Stoner, Z. '18++). Let $q \in \mathbb{N}$ and G an n-vertex d-regular graph. Then

$$
c_{q}(G) \leq c_{q}\left(K_{d, d}\right)^{n /(2 d)}
$$

Theorem (Sah, Sawhney, Stoner, Z.). Let $q \in \mathbb{N}$ and G a graph without isolated vertices. Then

$$
c_{q}(G) \leq \prod_{u v \in E(G)} c_{q}\left(K_{d_{u}, d_{v}}\right)^{1 /\left(d_{u} d_{v}\right)}
$$

The number of independent sets and proper q-colorings satisfies

f counts independent sets or proper q-colorings

Graph homomorphisms

Question 3. Fix d and H. Which d-regular graph G maximizes hom $(G, H)^{1 / v(G)}$?
Conjecture (Davies, Jenssen, Perkins, Roberts '17). Among triangle-free $G, G=K_{d, d}$ is always the maximizer (already known for bipartite G [Galvin, Tetali '04])

We prove this conjecture
Theorem (Sah, Sawhney, Stoner, Z.). Let G be a triangle-free n-vertex d-regular graph. Then

$$
\operatorname{hom}(G, H) \leq \operatorname{hom}\left(K_{d, d}, H\right)^{n /(2 d)}
$$

Theorem (SSSZ). Let G be a triangle-free graph without isolated vertices. Then

$$
\operatorname{hom}(G, H) \leq \prod_{u v \in E(G)} \operatorname{hom}\left(K_{d_{u}, d_{v}}, H\right)^{1 /\left(d_{u} d_{v}\right)}
$$

Always biclique-maximizing among triangle-free graphs
False for every G with a triangle! Counterexample: $H=\left(\begin{array}{cc}1+\varepsilon & 1 \\ 1 & 1+\varepsilon\end{array}\right)$ as $\varepsilon \rightarrow 0$

Reverse Sidorenko inequality

Sidorenko's conjecture: for bipartite G, all H

$$
t(G, H) \geq t\left(K_{2}, H\right)^{e(G)} \quad t(G, H)=\operatorname{hom}(G, H) / v(H)^{v(G)}
$$

[Hatami] [Conlon, Fox, Sudakov] [Li, Szegedy] [Kim, Lee, Lee] [Conlon, Kim, Lee, Lee] [Szegedy] [Conlon, Lee]
Open for $G=K_{5,5} \backslash C_{10}$ (Möbius strip)
Our result: for triangle-free d-regular G

$$
t(G, H) \leq t\left(K_{d, d}, H\right)^{e(G) / d^{2}}
$$

$\|\cdot\|_{G}:=t(G, \cdot)^{1 / e(G)}$ (Hatami's graph "norm"; [Conlon, Lee]). For graphon $W:[0,1]^{2} \rightarrow[0,1]$, $\|W\|_{K_{2}} \leq\|W\|_{G} \leq\|W\|_{K_{d, d}}$
bipartite G (Sidorenko's conjecture)

Theorem (Sah, Sawhney, Stoner, Z.). Let G be a triangle-free graph and $W:[0,1]^{2} \rightarrow[0,1]$. Then

$$
t(G, W) \leq \prod_{u v \in E(G)}\|W\|_{K_{d_{u}, d_{v}}}
$$

Reverse Sidorenko inequality

Given $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$, e.g., $\|f\|_{K_{2,3}}=$

$$
\left|\int_{\Omega_{1}^{2} \times \Omega_{2}^{3}} f\left(x_{1}, y_{1}\right) f\left(x_{1}, y_{2}\right) f\left(x_{1}, y_{3}\right) f\left(x_{2}, y_{1}\right) f\left(x_{2}, y_{2}\right) f\left(x_{2}, y_{3}\right) d x_{1} d x_{2} d y_{1} d y_{2} d y_{3}\right|^{1 / 6}
$$

Theorem (Sah, Sawhney, Stoner, Z.).
Triangle-free graph $G=(V, E)$ without isolated vertices, $f_{u v} \geq 0$,

$$
\int \prod_{u v \in E} f_{u v}\left(x_{u}, x_{v}\right) d \boldsymbol{x}_{V} \leq \prod_{u v \in E}\left\|f_{u v}\right\|_{K_{d_{v}, d_{u}}}
$$

Reverse Sidorenko inequality

Theorem (Sah, Sawhney, Stoner, Z.).
Triangle-free graph $G=(V, E)$ without isolated vertices, $f_{u v} \geq 0$,

$$
\int \prod_{u v \in E} f_{u v}\left(x_{u}, x_{v}\right) d \boldsymbol{x}_{V} \leq \prod_{u v \in E}\left\|f_{u v}\right\|_{K_{d_{v}, d_{u}}}
$$

Reverse Sidorenko inequality

Theorem (Sah, Sawhney, Stoner, Z.).
Triangle-free graph $G=(V, E)$ without isolated vertices, $f_{u v} \geq 0$,

$$
\int \prod_{u v \in E} f_{u v}\left(x_{u}, x_{v}\right) d x_{V} \leq \prod_{u v \in E}\left\|f_{u v}\right\|_{K_{d_{v}, d_{u}}}
$$

Graphical analogs of Brascamp-Lieb type inequalities:

$$
\int f_{1}(\ldots) \ldots f_{k}(\ldots) \lesssim\left\|f_{1}\right\|_{L^{p_{1}} \ldots}\left\|f_{k}\right\|_{L^{p_{k}}}
$$

Note that (by Hölder)

$$
\|f\|_{K_{a, b}} \leq\|f\|_{L^{a b}}
$$

Future direction: extensions to simplicial complexes

The number of independent sets and proper q-colorings

f counts independent sets or proper q-colorings

The number of proper list colorings

Strong induction hypothesis (example):

Proof strategy: Induction

Proof strategy: Reduction to local inequality

Proof strategy: Reduction to local inequality

Proof strategy: Reduction to local inequality

Proof strategy: Reduction to local inequality

Remains to show

Break inequality into two parts: top \& bottom

Proof strategy: Local inequality

Remains to show
\leq

Break inequality into two parts: top \& bottom

Proof strategy: Local inequality

This is a minimal instance of the inequality
\leq

In this case, follows from Cauchy-Schwarz

Much more difficult if G has triangles (not always true for other models!)

A useful matrix inequality

Define the mixed $\ell^{p, q}$ norm of matrix $A=\left(a_{i j}\right)$ by first taking ℓ^{p} norm of each row, and then taking ℓ^{q} norm of the results, i.e.

$$
\|A\|_{p, q}:=\left(\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{p}\right)^{q / p}\right)^{1 / q}
$$

Lemma. For positive semidefinite (PSD) matrix A with nonneg entries, and $q \geq 1$,

$$
\|A\|_{1, q}^{2} \leq\|A\|_{1,1}\|A\|_{q, q}
$$

Question. Is it true that for all $1 \leq p \leq q$,

$$
\|A\|_{p, q}^{2} \leq\|A\|_{p, p}\|A\|_{q, q} ?
$$

Graph homomorphisms

Question 3. Fix d and H. Which d-regular graph G maximizes hom $(G, H)^{1 / v(G)}$?
Let H be a nonneg weighted graph (model)
hom $(G, H)=$ partition function of some stat. phys. model, e.g., hard-core, Ising, Potts. Say:

- H is biclique-maximizing if $Z(G)$: $=\operatorname{hom}(G, H)$ satisfies

$$
Z(G) \leq \prod_{u v \in E(G)} Z\left(K_{d_{u}, d_{v}}\right)^{1 /\left(d_{u} d_{v}\right)} \quad \begin{aligned}
& \text { i.e., conditioned on } \\
& \text { degree-degree distribution }
\end{aligned}
$$

- H is clique-maximizing if $Z(G):=\operatorname{hom}(G, H)$ satisfies

$$
Z(G) \leq \prod_{v \in V(G)} Z\left(K_{d_{v}+1}\right)^{1 /\left(d_{v}+1\right)} \quad \begin{array}{ll}
\text { i.e., conditioned on } \\
\text { degree distribution }
\end{array}
$$

Our results: $H=8$ - (indep sets) and K_{q} (proper colorings) are both biclique-maximizing More generally, every partially looped K_{q} (semiproper colorings) is biclique-maximizing

Ferromagnetism and anti-ferromangnetism

Given a nonneg weighted graph/model H, we say that

- H is ferromagnetic if its edge-weight matrix is positive semidefinite, i.e., all eigenvalues are nonnegative: $0 \leq \cdots \leq \lambda_{3} \leq \lambda_{2} \leq \lambda_{1} \quad$ (e.g., $H=88$ 8)
- H is antiferromagnetic if its edge-weight matrix has at most one positive eigenvalue: $\cdots \leq \lambda_{3} \leq \lambda_{2} \leq 0 \leq \lambda_{1} \quad$ (e.g., indep sets and colorings)

Theorem (Sah, Sawhney, Stoner, Z.). Every ferromagnetic model is clique-maximizing
Conjecture 1. Every clique-maximizing model is ferromagnetic
Conjecture 2. Every antiferromagnetic model is biclique-maximizing
Widom-Rowlingson model is clique-maximizing among d-regular G [Cohen,
Perkins, Tetali] but not for irregular G, and it is not Our results verify Conj. 2 for independent sets and colorings. Open for Potts model

Two-spin systems

- An Ising model with nonneg edge-weight matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ is ferromagnetic if $a c \geq b^{2}$ and antiferromagnetic if $a c \leq b^{2}$
E.g., independent set $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ is antiferromagnetic

Corollary (Sah, Sawhney, Stoner, Z.). A 2-spin model is

- Biclique-maximizing if antiferromagnetic, and
- Clique-maximizing if ferromagnetic

This generalizes the result for independent sets
A similar classification for 3 -spin systems is open

Summary of main results

- Independent sets and proper colorings are biclique-maximizing
- Every ferromagnetic model is clique-maximizing
- Every model is biclique-maximizing when restricted to triangle-free graphs

Reverse Sidorenko inequality (Sah, Sawhney, Stoner, Z.).
Triangle-free graph $G=(V, E)$ without isolated vertices, $f_{u v} \geq 0$,

$$
\int \prod_{u v \in E} f_{u v}\left(x_{u}, x_{v}\right) d \boldsymbol{x}_{V} \leq \prod_{u v \in E}\left\|f_{u v}\right\|_{K_{d_{v}, d_{u}}}
$$

Corollary. For triangle-free G without isolated vertices, $\forall H$

$$
\operatorname{hom}(G, H) \leq \prod_{u v \in E(G)} \operatorname{hom}\left(K_{d_{u}, d_{v}}, H\right)^{1 /\left(d_{u} d_{v}\right)}
$$

Conjecture. Every antiferromagnetic model is biclique-maximizing (e.g., Potts).

