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A random subset of ℤ/Nℤ with density α has ≈α3 fraction of all 3-APs

There exists 𝐴 ⊂ ℤ/Nℤ with 𝐴 ≥ 𝛼𝑁 and whose #3-AP is ≤ 𝛼! "#$ ⁄& ' 𝑁( much 
less than 𝛼)𝑁( (a blow-up of Behrend construction)

Nonetheless, can find “popular common difference” that is at roughly as least as 
popular as random:

Roth’s theorem. Fix 𝛼 > 0. For all sufficiently large N, every subset of
𝑁 ≔ {1,2, … ,𝑁} with ≥ 𝛼𝑁 elements contains a 3-AP

Roth’s theorem with popular difference (Green ’05). ∀ ϵ > 0 ∃ 𝑁* 𝜖 so that for all 
𝑁 ≥ 𝑁* 𝜖 and 𝐴 ⊂ [N] with 𝐴 ≥ 𝛼𝑁, ∃ d ≠ 0 such that 
the number of 3-APs in A with common difference d is ≥ 𝛼) − 𝜖 𝑁

Proved via an arithmetic analog of Szemerédi’s graph regularity lemma



How large does 𝑁* 𝜖 need to be? 

Arithmetic regularity lemma needed tower 𝜖+, & = 2(!
!⋰
!

(height 𝜖+, & ), 
tight for the regularity lemma [Gowers, Green, Hosseini––Lovett–Moshkovitz–Shapira]

(Extends earlier results of Fox—Pham for finite field setting 𝔽-.)
First application of regularity method where tower-type bounds are necessary

What about patterns other than 3-APs?
Multidimensional patterns in ℤd?

Theorem (Fox—Pham—Z.). The optimal 𝑁* 𝜖 is tower Θ log ⁄1 𝜖

Roth’s theorem with popular difference (Green ’05). ∀ ϵ > 0 ∃ 𝑁* 𝜖 so that for all 
𝑁 ≥ 𝑁* 𝜖 and 𝐴 ⊂ [N] with 𝐴 ≥ 𝛼𝑁, ∃ d ≠ 0 such that 
the number of 3-APs in A with common difference d is ≥ 𝛼) − 𝜖 𝑁



Proof uses quadratic Fourier analysis

What about other patterns? 
Whereas 4-APs are dilation of {0,1,2,3}, what about dilations of {0,1,2,4}? 
Patterns in ℤd? (Pattern = dilation of a fixed set)
(Note: no applicable higher order Fourier analysis for multidimensional Szemerédi
theorem)

Szemerédi’s 4-AP theorem with popular difference (Green–Tao ’10). ∀ ϵ > 0 
∃ 𝑁* 𝜖 so that for all 𝑁 ≥ 𝑁* 𝜖 and 𝐴 ⊂ [N] with 𝐴 ≥ 𝛼𝑁, ∃ d ≠ 0 such that 
the number of 4-APs in A with common difference d is ≥ 𝛼/ − 𝜖 𝑁

Theorem (Bergelson–Host–Kra–Ruzsa 2005). False for k-AP for k ≥ 5

“corner”



Patterns with popular difference property

Green: all 3-point patterns
Green–Tao: 4-APs. More generally, 4-point patterns of the form {0, a, b, a + b}

Question. Which finite sets P ⊆ ℤr (with ≥ 3 points) have the following property: 
∀ A ⊆ [N]r ∃ d ≠ 0 : A contains 𝛼 0 − 𝑜 1 𝑁1 translates of 𝑑 ⋅ 𝑃 = 𝑑𝑝 ∶ 𝑝 ∈ 𝑃 ,
where α = |A|/Nr ?

Theorem (Sah–Sawhney–Z.). No other patterns have the popular diff. property

Question. For each given pattern, what “popular difference density” can you 
guarantee?



Green’s proof of Roth with popular difference
Illustrated here for 𝔽!" (more generally, use Bohr sets instead of subspaces)
Let 𝐴 ⊂ 𝔽!" and f = 1A

Regularity lemma. ∃subspace H with codim tower 𝜖#$ % so that
fH approximates f really well

(Here fH is obtained by averaging f along each H-coset; i.e., fH = f ∗ μH)
Denote the density of 3-APs with common difference in H by

Λ& 𝑓 ≔ 𝔼'∈𝔽!", +∈&𝑓 𝑥 𝑓 𝑥 + 𝑦 𝑓(𝑥 + 2𝑦)
Counting lemma. Λ& 𝑓 ≥ Λ& 𝑓& − 𝜖 = 𝔼 𝑓&! − 𝜖 ≥ 𝔼𝑓 ! − 𝜖
Thus, provided H not too small, one can find a popular common difference. 
Proof works provided 𝑛 ≥ tower 𝜖#,

𝑓! 𝑥 = 𝑓! 𝑥 + 𝑦
= 𝑓! 𝑥 + 2𝑦 ∀𝑦 ∈ 𝐻



A more efficient “cubic energy” increment 
(Fox—Pham, Fox—Pham—Z.) Use “cubic energy” 𝔼[𝑓,-]

Regularity lemma. ∃ subspaces 𝑊 ≤ 𝑈 ≤ 𝔽-. with codim tower 𝑂 log ⁄1 𝜖 such that

𝑓 − 𝑓/ ∧
1 ≤ 2

3!
and     2 𝑓3 -

- − 𝑓/ -
- ≥ 𝔼𝑓 - − 𝜖

Energy roughly doubles at each iteration of the regularity proof; 𝑂 log ⁄1 𝜖 iterations 

Schur’s inequality. 𝑎- + 𝑏- + 𝑐- + 3𝑎𝑏𝑐 ≥ 𝑎4𝑏 + 𝑎𝑏4 + 𝑎4𝑐 + 𝑎𝑐4 + 𝑏4𝑐 + 𝑏𝑐4 ∀a, b, c ≥ 0

Deduce that ∀ subspaces W ≤ U,         Λ3 𝑓/ ≥ 2 𝑓3 -
- − 𝑓/ -

-

Counting lemma. With W ≤ U produced by the regularity lemma,
Λ3 𝑓 ≥ 𝛼- − 𝑂(𝜖)

Thus if U is not too small, then it contains a nonzero popular common difference. 
Proof works provided 𝑛 ≥ tower 𝑐 log ⁄1 𝜖



Ideas of lower bound constructions
[Gowers ’97] Tower-type bounds are necessary for Szemerédi’s regularity lemma. 

Iterative construction.

[Fox—Pham—Z.] Construction of  f: ℤ/Nℤ → [0,1] without 3-AP popular difference

Let 𝐻2 = ℤ/𝑝2ℤ, with primes 𝑝& ≪ 𝑝( ≪ ⋯ ≪ 𝑝3. Construct weighted functions 
iteratively

𝑓&: 𝐻& → 0,1 𝑓(: 𝐻&×𝐻( → 0,1 …                   𝑓3: 𝐻&×⋯×𝐻3 → 0,1

Each fi is obtained from the previous by extending + random modification, 

Maintain the property that each fi has the 3-AP popular difference

Finish by a “Behrend-twist”



Popular difference result for corners?

Matei Mandache: No! Construction with < α3.13N2 corners for every common difference

On the other hand, can find d with ≥ (α4 - o(1))N2 corners 
(Mandache proved it for 𝔽!"; extended to abelian groups and intervals by Aaron Berger)

Reduces the problem to a certain variational problem

• Upper bound (probabilistic construction)

• Lower bound (arithmetic regularity for corners; Fourier for corners due to Shkredov)

Question. Given A ⊂ [N]2 with |A| ≥ α N2, is there always some nonzero d ≠ 0 such that there are 
≥ (α3 - o(1))N2 corners with common difference d, i.e., (x,y), (x + d, y), (x, y + d) ∈ A?

“corner”

d
d

Theorem (Fox—Sah—Sawhney—Stoner—Z.). The optimal popular difference density that can be 
guaranteed for corners is ≥ 𝜔 𝛼# and ≤ 𝛼#$% &

Note: everything applies to patterns of 3 non-collinear points in ℤ2





Triforce and corners
Mandache/Berger reduce the popular difference problem for corners to

Lower bound: triangle removal lemma

Upper bound: Behrend construction

More generally, the maximum k-force density in a k-uniform hypergraph 
with edge density α is ≥ 𝜔 𝛼56& and ≤ 𝛼56&+7(&)

C.f. (Tao blog) Minimum diamond density in a graph with triangle-density 𝛽
is ≥ 𝜔 𝛽( and ≤ 𝛽(+7 &

Problem. Find the minimum triforce density g(α) in 3-uniform a hypergraph with triple density α

Theorem (Fox—Sah—Sawhney—Stoner—Z.). 𝜔 𝛼/ ≤ 𝑔 𝛼 ≤ 𝛼/+7 &

The triforce

a diamond



Higher dimensional corners?
No popular difference for 3-dimensional corners!

Stacking Behrend (simpler construction given in Sah—Sawhney—Z.)

Take a set B ⊂ (ℤ/Nℤ)2 with few corners, and layer dilates of B

More general patterns: if a pattern contains has 3 points that do not
affine span the whole space, then there is a construction 
with popular difference density ≤ αc log(1/α)

Theorem (Fox—Sah—Sawhney—Stoner—Z.). ∀ 0 < α < 1/2 ∃ A ⊂ [N]3 :
𝐴 ≥ 𝛼𝑁) but the number of 3-dim corners with common difference d

is ≤ αc log(1/α) N3 for every nonzero d

density of 3-dim corners in the stack with fixed common difference
≤ density of 2-dim corners in the stack with a fixed common difference
= density of 2-dim corners in B (without restriction on common difference)

B

2⋅B

3⋅B

(N – 1)⋅B

⋮



5-point patterns in 1-dim

Extended to all 5-point patterns [Fox—Sah—Sawhney—Stoner—Z.]

Recall Behrend constructed a 3-AP-free subset of [L] of size 𝐿𝑒$' ()* + , obtained as the image of a 
projection of a set of lattice points of some higher dimensional sphere

Why 5? 

Related to: a quadratic curve intersects a sphere in ≤ 4 points

“Quadratic Behrend”: there exists a subset of [L] of size 𝐿𝑒$' ()* + that does not contain any 
pattern of the form (P(0), P(1), P(2), P(3), P(4)) for any nonconstant quadratic polynomial P

Theorem (Bergelson–Host–Kra–Ruzsa ’05). No popular common difference property for 5-AP

Theorem. ∀ 0 < α < 1/2 ∃ A ⊂ [N] with |A| ≥ αN such that for every d ≠ 0, the number of 5-APs in A
with common difference d is ≤ αc log(1/α) N



4-point patterns in 1-dim
Green–Tao’s popular difference for 4-APs: quadratic Fourier analysis + “positivity”: 

symmetric coefficients in
𝑥! + 3 𝑥 + 2𝑦 ! = 𝑥 + 3𝑦 ! + 3 𝑥 + 𝑦 !

Same argument apply to any 4-term pattern of the form {0, 𝑎, 𝑏, 𝑎 + 𝑏}

What about other 4-point patterns? E.g., {0, 1, 2, 4}?

Question. Is it true that every A ⊂ [N] with 𝐴 ≥ 𝛼𝑁 has some y ≠ 0 such that
# 𝑥 ∶ 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦, 𝑥 + 4𝑦 ∈ 𝐴 ≥ 𝛼# − 𝑜 1 𝑁

Theorem (Sah–Sawhney–Z.). For every 0 < 𝑎& < 𝑎! < 𝑎, with 𝑎, ≠ 𝑎& + 𝑎!, and 0 < 𝛼 < ⁄1 2, 
∃ A ⊂ [N] with 𝐴 ≥ 𝛼𝑁 such that for all y ≠ 0

# 𝑥 ∶ 𝑥, 𝑥 + 𝑎&𝑦, 𝑥 + 𝑎!𝑦, 𝑥 + 𝑎,𝑦 ∈ 𝐴 ≤ 1 − 𝑐 𝛼#𝑁
where c > 0 is some absolute constant (and N assumed sufficiently large).



No popular difference for (0,1,2,5) pattern
Goal. Construction function 𝑓: ⁄ℤ 𝑁ℤ → [0,1] with 𝔼𝑓 ≥ 𝛼 and for every y ≠ 0,  

𝔼"𝑓 𝑥 𝑓 𝑥 + 𝑦 𝑓 𝑥 + 2𝑦 𝑓 𝑥 + 5𝑦 < 0.999𝛼#

Construction. Let ω = N-th root of unity. Let
𝑓 𝑥
𝛼

= 1 + 𝛾$ ⋅ (𝜔%"
! +𝜔&%"!) + 𝛾' ⋅ (𝜔$("

! +𝜔&$("!) + 𝛾) ⋅ (𝜔$*"
! +𝜔&$*"!) + 𝛾# ⋅ (𝜔"! +𝜔&"!)

After Gauss sum cancelations
𝔼𝑓 = 𝛼 + 𝑜(1)

and
𝔼"𝑓 𝑥 𝑓 𝑥 + 𝑦 𝑓 𝑥 + 2𝑦 𝑓 𝑥 + 5𝑦 = 𝛼#(1 + 2𝛾$𝛾'𝛾)𝛾# + 𝑜(1))

as the only possible nontrivial relation among the quadratic exponentials is 
6𝑥' − 15 𝑥 + 𝑦 ' + 10 𝑥 + 2𝑦 ' − 𝑥 + 5𝑦 ' = 0

Conclude by picking a small negative 𝛾$ and small positive 𝛾', 𝛾), 𝛾#

Expectation 
not taken over y



No popular difference for (0,1,2,4) pattern
Goal. construction function 𝑓: ⁄ℤ 𝑁ℤ → [0,1] with 𝔼𝑓 ≥ 𝛼 and for every nonzero y, 

𝔼"𝑓 𝑥 𝑓 𝑥 + 𝑦 𝑓 𝑥 + 2𝑦 𝑓 𝑥 + 4𝑦 < 0.999𝛼#

Construction. Let ω = N-th root of unity. Let

𝑓 𝑥
𝛼 = 1 + 𝛾$ ⋅ (𝜔)"

! +𝜔&)"!) + 𝛾' ⋅ (𝜔+"
! +𝜔&+"!) + 𝛾) ⋅ (𝜔%"

! +𝜔&%"!) + 𝛾# ⋅ (𝜔"! +𝜔&"!)

But now
𝔼"𝑓 𝑥 𝑓 𝑥 + 𝑦 𝑓 𝑥 + 2𝑦 𝑓 𝑥 + 5𝑦
= 𝛼#(1 + 2𝛾$𝛾'𝛾)𝛾# + 𝛾$'𝛾)' 𝜔)*,! + 𝜔&)*,! + 𝛾$'𝛾)(𝜔'#,! + 𝜔%,! + 𝜔&%,! + 𝜔&'#,!) + 𝑜(1))

Extra terms due to additional linear relations among the quadratic exponentials, e.g., 
6𝑥' − 6 𝑥 + 𝑦 ' − 3 𝑥 + 2𝑦 ' + 3 𝑥 + 4𝑦 ' = 30𝑦'

Fortunately, in this case, we can still conclude by picking a small negative 𝛾$ and small positive 𝛾', 𝛾), 𝛾#

In general, rule out/handle all such linear relations (computer assisted; rational points on hyperelliptic curves)

Expectation 
not taken over y



4-point patterns in 1-dim

Also for certain patterns we can do much better: 
for every C > 0, there exist 4-pt patterns where the RHS can be replaced by < 𝛼5𝑁

Related to open problem of the type: max size of subset of [N] 
avoiding x + 3y = 2z + 2w (known: between 𝑁 and o(N))

No Behrend–type constructions

Theorem (Sah–Sawhney–Z.). For every 0 < 𝑎& < 𝑎( < 𝑎) with 𝑎) ≠ 𝑎& + 𝑎(, and 
0 < 𝛼 < ⁄1 2, 
∃ A ⊂ [N] with 𝐴 ≥ 𝛼𝑁 such that for all y ≠ 0

# 𝑥 ∶ 𝑥, 𝑥 + 𝑎&𝑦, 𝑥 + 𝑎(𝑦, 𝑥 + 𝑎)𝑦 ∈ 𝐴 ≤ 1 − 𝑐 𝛼/𝑁
where c > 0 is some absolute constant (and N assumed sufficiently large).



A question of Gowers
Basic idea of Fourier analytic proof of Roth’s theorem: a Fourier uniform subset of ⁄ℤ 𝑁ℤ
with density 𝛼 has 3-AP density = 𝛼- − 𝑜 1
False for 4-APs

The standard example {𝑥: 𝑥4 mod 𝑁 < 𝛼𝑁} has more 4-APs than expected (≈ 𝐶𝛼- ≥ 𝛼6), 
so not an obstruction to the density increment argument

Question. Can a Fourier uniform set have 4-AP density much less than 𝛼6?

Gowers constructed a example with 4-AP density < 𝛼678

Question (Gowers). Must a Fourier-uniform set of density α have 4-AP density ≥ 𝛼9:::?

We don’t know. But the result on the previous slide implies that “4-AP” cannot be replaced 
by an “arbitrary 4-point pattern” (if one is not allowed to change the “1000”)



4-point patterns: 2-dim

Theorem (Sah–Sawhney–Z.). For every 4-
point pattern P in ℤ2, and fixed 0 < 𝛼 < ⁄1 2, 
∃ A ⊂ [N]2 so that ∀ y ≠ 0, the number of 
translates of y ⋅ P in A is ≤ 𝛼E𝑒F GHI( ⁄K L)𝑁N

For every nonconvex 4-point pattern, result 
can be improved to ≤ 𝛼O GHI( ⁄K L)𝑁N



Theorem (Fox—Pham—Z.). The optimal 𝑁* 𝜖 is tower Θ log ⁄1 𝜖

[Green ’05]

[Green–Tao ’10]

[Sah–Sawhney–Z.]

[Mandache/Berger/
Fox—Sah—Sawhney—Stoner—Z.]

[Sah–Sawhney–Z.]

[Bergelson–Host–Kra–Ruzsa /
Fox—Sah—Sawhney—Stoner—Z.]

[Fox—Sah—Sawhney—Stoner—Z.]

Roth’s theorem with popular difference (Green ’05). ∀ ϵ > 0 ∃ 𝑁* 𝜖 so that for all 
𝑁 ≥ 𝑁* 𝜖 and 𝐴 ⊂ [N] with 𝐴 ≥ 𝛼𝑁, ∃ d ≠ 0 such that 
the number of 3-APs in A with common difference d is ≥ 𝛼) − 𝜖 𝑁(


