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Roth’s theorem. Fix @ > 0. For all sufficiently large N, every subset of
IN] :=={1,2, ..., N} with = aN elements contains a 3-AP

A random subset of Z/NZ with density a has =a3 fraction of all 3-APs

There exists A © Z/NZ with |A| = aN and whose #3-AP is < a¢108(1/®) N2 mych
less than a3N? (a blow-up of Behrend construction)

Nonetheless, can find “popular common difference” that is at roughly as least as
popular as random:

Roth’s theorem with popular difference .V €>03 Ny(e) so that for all
N = Ny(e) and A c [N] with |[A] = aN, 3 d # 0 such that
the number of 3-APs in A with common difference d is > (a3 — €)N

Proved via an arithmetic analog of Szemerédi’s graph regularity lemma



Roth’s theorem with popular difference .V €>03 Ny(e) so that for all
N = Ny(e) and A c [N] with |[A] = aN, 3 d # 0 such that
the number of 3-APs in A with common difference d is > (a3 — €)N

How large does Ny(€) need to be?

2

(height e ~0(1)),

2
Arithmetic regularity lemma needed tower (e 9(1)) = 22°

tight for the regularity lemma
Theorem . The optimal Ny(¢€) is tower(@(log 1/6))

(Extends earlier results of for finite field setting IFS)
First application of regularity method where tower-type bounds are necessary

What about patterns other than 3-APs?
Multidimensional patterns in Z9?



Szemerédi’s 4-AP theorem with popular difference .Ve>0
3 Ny(€) so that for all N = Ny(e) and A < [N] with |A| = aN, 3 d # 0 such that
the number of 4-APs in A with common difference d is > (a* — €)N

Proof uses quadratic Fourier analysis

Theorem . False for k-AP for k> 5

What about other patterns?
Whereas 4-APs are dilation of {0,1,2,3}, what about dilations of {0,1,2,4}?
Patterns in Z4? (Pattern = dilation of a fixed set)

(Note: no applicable higher order Fourier analysis for multidimensional Szemerédi
* theorem)

[ ) [ )
“corner”



Patterns with popular difference property

Question. Which finite sets P € Z" (with > 3 points) have the following property:
VAC[N]" 3d=0:Acontains (a|P| — 0(1)) N7 translatesof d - P = {dp : p € P},
where a = |A|/N"?

: all 3-point patterns
: 4-APs. More generally, 4-point patterns of the form {0, a, b, a + b}

Theorem . No other patterns have the popular diff. property

Question. For each given pattern, what “popular difference density” can you
guarantee?



Green’s proof of Roth with popular difference

lllustrated here for [, (more generally, use Bohr sets instead of subspaces)
Let and

Regularity lemma. Jsubspace H with codim so that

really well
(Here f, is obtained by averaging f along each H-coset; i.e., f, = f * uy)

Denote the density of 3-APs with common difference in H by
Au(f) = Exengl,yEHf(X)f(x +y)f(x + 2y)
() = fu(x +y)
Counting lemma. = E[fg3] —€ = (Ef)3 —¢ ifH(x+f2y)J\;yyeH

Thus, provided H not too small, one can find a popular common difference.
Proof works provided n > tower(e~¢)



A more efficient “cubic energy” increment

Use

Regularity lemma. 3 subspaces W < U < F§ with codim such that

I = )l < |U—i| and  2|Ifyll — llfwll3 = (Ef)° —€

Energy roughly doubles at each iteration of the regularity proof; O(log 1/¢€) iterations
Schur’s inequality. a3 + b3 + ¢ + 3abc = a®b + ab? + a®c + ac? + b?c + bc? va,b,c20
Deduce that V subspaces W< U,

Counting lemma. With W < U produced by the regularity lemma,
Ay(f) =2 a®> —0(e)

Thus if U is not too small, then it contains a nonzero popular common difference.
Proof works provided n > tower(clog1/¢)



ldeas of lower bound constructions

Tower-type bounds are necessary for Szemerédi’s regularity lemma.
Iterative construction.

Construction of f: Z/NZ - [0,1] without 3-AP popular difference

Let H; = Z/p;Z, with primes p; K p, K -+ K p,. Construct weighted functions
iteratively

fl:Hl - [0,1] fZ:H]_XHz - [0,1] fg:Hlx “'XHS — [0,1]
Each f; is obtained from the previous by extending + random modification,
Maintain the property that each f; has the 3-AP popular difference

Finish by a “Behrend-twist”



Popular difference result for corners? ¢ e

“corner”

Question. Given A c [N]? with |A| > a N?, is there always some nonzero d # 0 such that there are
> (o - o(1))N? corners with common difference d, i.e., (x,y), (x+d, y), (x, y + d) € A?

Construction with < a313N? corners for every common difference

On the other hand, can find d with 2 (a* - o(1))N? corners
( proved it for [F}; extended to abelian groups and intervals by )

Reduces the problem to a certain

* Upper bound (prababilistic construction)

* Lower bound (arithmetic regularity for corners; Fourier for corners due to Shkredov)

Theorem . The optimal popular difference density that can be
guaranteed for corners is and

Note: everything applies to patterns of 3 non-collinear points in Z?2






reduce the popular difference problem for corners to

Problem. Find the minimum triforce density g(a) in 3-uniform a hypergraph with triple density a

Theorem cw(a?) < gla) < a*°W

Lower bound: triangle removal lemma
Upper bound: Behrend construction

More generally, the maximum k-force density in a k-uniform hypergraph
with edge density ais > w(a**1) and < a**+170()

a diamond

C.f. Minimum diamond density in a graph with triangle-density
is > w(B?) and < 2o



Higher dimensional corners?

No popular difference for 3-dimensional corners! .

Theorem .VO<a<1/2 FAC[N]3:
|A| > aN3 but the number of 3-dim corners with common difference d

is < acloe(l/a) N3 for every nonzero d

Stacking Behrend (simpler construction given in )

Take a set with few corners, and layer dilates of

density of 3-dim corners in the stack with fixed common difference
< density of 2-dim corners in the stack with a fixed common difference
= density of 2-dim corners in B (without restriction on common difference)

@
More general patterns: if a pattern contains has 3 points that do not /
affine span the whole space, then there is a construction

with popular difference density < a¢logll/a)



5-point patterns in 1-dim

Theorem . No popular common difference property for 5-AP

Extended to all 5-point patterns

Theorem.V 0<a<1/23 A c [N] with |A| =2 aN such that for every d # 0, the number of 5-APs in A
with common difference d is < o€ 'os(t/a)

Recall constructed a 3-AP-free subset of [L] of size Le~®(V198L) obtained as the image of a
projection of a set of lattice points of some higher dimensional sphere

Related to: a quadratic curve intersects a sphere in £ 4 points

“Quadratic Behrend”: there exists a subset of [L] of size Le~0(/1081L) that does not contain any
pattern of the form (P(0), P(1), P(2), P(3), P(4)) for any nonconstant quadratic polynomial P



4-point patterns in 1-dim

’s popular difference for 4-APs: quadratic Fourier analysis + “positivity”:
symmetric coefficients in

x2+3(x +2y)? = (x +3y)? + 3(x + y)?
Same argument apply to any 4-term pattern of the form
What about other 4-point patterns? E.g., ?

Question. Is it true that every A c [N] with |4| = aN has some y # 0 such that
#H{x:x,x+y,x+2y,x+4y € A} > (cx4 — 0(1))N

Theorem .Forevery0 < a; <a, <azwithas; #a; +a,,and0 <a <1/2,
3 A c [N] with |4]| = aN such that forally #0

#{x:x,x+ay,x+ay,x+azy €A} < (1 —c)a*N
where ¢ > 0 is some absolute constant (and N assumed sufficiently large).



No popular difference for (0,1,2,5) pattern

Goal. Construction function f: Z/NZ — [0,1] with Ef > a and for every y # 0,
E,.fC)f(x+y)f(x+2y)f(x+ 5y) < 0.999a*

Construction. Let w = N-th root of unity. Let

X
% =147y, (0% +0 ) + 7, - (W 40 15 + 3, - (019" +07 1% 4y, - (0*° +07*")

After Gauss sum cancelations
Ef =a+0(1)

and
E, f(x)f(x +y)f(x +2y)f(x + 5y) = a*(1 + 2y1¥2Y3Vs + 0(1)) Expectation

not taken over y

as the only possible nontrivial relation among the quadratic exponentials is
6x% —15(x + y)2 + 10(x + 2y)* — (x + 5¥)* = 0

Conclude by picking a small negative y; and small positive Y5, ¥3, V4



No popular difference for (0,1,2,4) pattern

Goal. construction function f: Z/NZ — [0,1] with Ef > a and for every nonzero y,
E. /() f(x+vy)f(x+2y)f(x +4y) < 0.999a*

Construction. Let w = N-th root of unity. Let

" 147y, - (a)3x2 +w"3x2) + v, - (a)8x2 +a)"8x2) + 5 - (a)6x2 +a)"6x2) + v, (a)x2 +a)‘x2)

But now Expectation
E.f()f(x+y)f(x+2y)f(x+ 5y) not taken over y

= a*(1 + 2y1¥2¥3¥a + VEVE(03%° + 0 7397) + y2y5 (0" 4+ 08" + w8 + w72%7) + 0(1))

Extra terms due to additional linear relations among the quadratic exponentials, e.g.,
6x% —6(x +y)? —3(x + 2y)? + 3(x + 4y)? = 30y?

Fortunately, in this case, we can still conclude by picking a small negative y; and small positive y,, 3, Va

In general, rule out/handle all such linear relations (computer assisted; rational points on hyperelliptic curves)



4-point patterns in 1-dim

Theorem .Forevery0 < a4 < a, < az withaz # a; + a,, and
0<a<l1/2,
3 A c [N] with |A| = aN such that forally #0
#{x:x,x + a1y, x +ay,x +azy €A} < (1 —c)a*N
where ¢ > 0 is some absolute constant (and N assumed sufficiently large).

Also for certain patterns we can do much better:

for every C > 0, there exist 4-pt patterns where the RHS can be replaced by < a®N

Related to open problem of the type: max size of subset of [N]
avoiding x + 3y =2z + 2w (known: between VN and o(N))

No Behrend—type constructions



A question of Gowers

Basic idea of Fourier analytic proof of Roth’s theorem: a Fourier uniform subset of Z/NZ
with density a has 3-AP density = a3 — 0(1)

False for 4-APs

The standard example {x: x? mod N < aN} has more 4-APs than expected (= Ca® > a*),
so not an obstruction to the density increment argument

Question. Can a Fourier uniform set have 4-AP density much less than a*?
Gowers constructed a example with 4-AP density < a**¢
Question . Must a Fourier-uniform set of density a have 4-AP density > a1909?

We don’t know. But the result on the previous slide implies that “4-AP” cannot be replaced
by an “arbitrary 4-point pattern” (if one is not allowed to change the “1000”)



4-point patterns: 2-dim

Theorem . For every 4-
point pattern Pin Z2, and fixed 0 < a < 1/2,
3 A c [N]?sothat V y # 0, the number of

translatesof y - Pin A is < a5 eCV108(1/a) 3

For every nonconvex 4-point pattern, result
can be improved to < ¢ 108(1/a) N3



Roth’s theorem with popular difference (Green '05). V € >0 3 Ny(€) so that for all
N = Ny(e) and A c [N] with |A| = aN, 3 d # 0 such that
the number of 3-APs in A with common difference dis > (a3 — €)N?

Theorem (Fox—Pham—7.). The optimal Ny(€) is tower(@(log 1/6))

PCZ" Popular difference density

3 points in Z pddp(a) = [Green "05]

kl < kg < ]Cg < k4 in Z with kl —+ k4 = kz + k‘g pddp a) — [Green—Tao "10]

Other 4 point patterns in Z @ pddp(a) < (1 —¢)a 4 } e

Affine dim of P < r ‘w:ja pddp a) < aclosl/a)

3 non-collinear poins in Z2 R (o) < pidpla) < ato0 UL

5—o(1)
. . .. . [Sah—Sawhney—Z.]
4 points in nonconvex position in 7.2 pdd pla) < a"log(l/ a)
[Bergelson—Host—Kra—Ruzsa /

) <
)

At least 5} point.s pddp a) < QCIOg(l/Q) Fox—Sah—Sawhney—Stoner—2.]
)

(

(

(

!)
4 points in strict convex position in Z? pddp(a) <

(

(
Affine dimension at least 3 pddp(a) < oclog(l/a)  [Fox—sah—sawhney—Stoner—z]



