Popular common difference

Yufei Zhao (MIT)

Based on joint works arXiv:1903.04863, 2004.07722, 2004.13690
with

Jacob Fox
(Stanford)

Huy Tuan Pham (Stanford)

Ashwin Sah
(MIT)

Mehtaab Sawhney (MIT)

David Stoner (Stanford)

Roth's theorem. Fix $\alpha>0$. For all sufficiently large N, every subset of $[N]:=\{1,2, \ldots, N\}$ with $\geq \alpha N$ elements contains a 3-AP

A random subset of $\mathbb{Z} / N \mathbb{Z}$ with density α has $\approx \alpha^{3}$ fraction of all 3-APs
There exists $A \subset \mathbb{Z} / N \mathbb{Z}$ with $|A| \geq \alpha N$ and whose \#3-AP is $\leq \alpha^{c \log (1 / \alpha)} N^{2}$ much less than $\alpha^{3} N^{2}$ (a blow-up of Behrend construction)
Nonetheless, can find "popular common difference" that is at roughly as least as popular as random:

Roth's theorem with popular difference (Green '05). $\forall \epsilon>0 \exists N_{0}(\epsilon)$ so that for all $N \geq N_{0}(\epsilon)$ and $A \subset[N]$ with $|A| \geq \alpha N, \exists d \neq 0$ such that the number of 3 -APs in A with common difference d is $\geq\left(\alpha^{3}-\epsilon\right) N$

Proved via an arithmetic analog of Szemerédi's graph regularity lemma

Roth's theorem with popular difference (Green '05). $\forall \epsilon>0 \exists N_{0}(\epsilon)$ so that for all $N \geq N_{0}(\epsilon)$ and $A \subset[N]$ with $|A| \geq \alpha N, \exists d \neq 0$ such that the number of 3-APs in A with common difference d is $\geq\left(\alpha^{3}-\epsilon\right) N$
How large does $N_{0}(\epsilon)$ need to be?
Arithmetic regularity lemma needed tower $\left(\epsilon^{-O(1)}\right)=2^{2^{2^{2^{\varepsilon^{2}}}}}$ (height $\epsilon^{-O(1)}$), tight for the regularity lemma [Gowers, Green, Hosseini-Lovett-Moshkovitz-Shapira]
Theorem (Fox-Pham—Z.). The optimal $N_{0}(\epsilon)$ is $\operatorname{tower}(\Theta(\log 1 / \epsilon))$
(Extends earlier results of Fox—Pham for finite field setting \mathbb{F}_{p}^{n})
First application of regularity method where tower-type bounds are necessary
What about patterns other than 3-APs?
Multidimensional patterns in \mathbb{Z}^{d} ?

Szemerédi's 4-AP theorem with popular difference (Green-Tao '10). $\forall \epsilon>0$
$\exists N_{0}(\epsilon)$ so that for all $N \geq N_{0}(\epsilon)$ and $A \subset[N]$ with $|A| \geq \alpha N, \exists d \neq 0$ such that the number of 4-APs in A with common difference d is $\geq\left(\alpha^{4}-\epsilon\right) N$

Proof uses quadratic Fourier analysis
Theorem (Bergelson-Host-Kra-Ruzsa 2005). False for k-AP for $k \geq 5$

What about other patterns?
Whereas 4-APs are dilation of $\{0,1,2,3\}$, what about dilations of $\{0,1,2,4\}$?
Patterns in \mathbb{Z}^{d} ? (Pattern = dilation of a fixed set)
(Note: no applicable higher order Fourier analysis for multidimensional Szemerédi theorem)

Patterns with popular difference property

Question. Which finite sets $P \subseteq \mathbb{Z}^{r}$ (with ≥ 3 points) have the following property: $\forall A \subseteq[N]^{r} \exists d \neq 0: A$ contains $\left(\alpha^{|P|}-o(1)\right) N^{r}$ translates of $d \cdot P=\{d p: p \in P\}$, where $\alpha=|A| / N^{r}$?

Green: all 3-point patterns
Green-Tao: 4-APs. More generally, 4-point patterns of the form $\{0, a, b, a+b\}$
Theorem (Sah-Sawhney-Z.). No other patterns have the popular diff. property

Question. For each given pattern, what "popular difference density" can you guarantee?

Green's proof of Roth with popular difference

Illustrated here for \mathbb{F}_{3}^{n} (more generally, use Bohr sets instead of subspaces)
Let $A \subset \mathbb{F}_{3}^{n}$ and $f=1_{A}$
Regularity lemma. ヨsubspace H with codim tower $\left(\epsilon^{-O(1)}\right)$ so that f_{H} approximates f really well
(Here f_{H} is obtained by averaging f along each H-coset; i.e., $f_{H}=f * \mu_{H}$)
Denote the density of 3-APs with common difference in H by

$$
\Lambda_{H}(f):=\mathbb{E}_{x \in \mathbb{F}_{3}^{n}, y \in H} f(x) f(x+y) f(x+2 y)
$$

Counting lemma. $\Lambda_{H}(f) \geq \Lambda_{H}\left(f_{H}\right)-\epsilon=\mathbb{E}\left[f_{H}^{3}\right]-\epsilon \geq(\mathbb{E} f)^{3}-\epsilon, \begin{gathered}f_{H}(x)=f_{H}(x+y) \\ = \\ f\end{gathered} f_{H}(x+2 y) \forall y \in H$ Thus, provided H not too small, one can find a popular common difference.
Proof works provided $n \geq \operatorname{tower}\left(\epsilon^{-c}\right)$

A more efficient "cubic energy" increment

(Fox—Pham, Fox—Pham-Z.) Use "cubic energy" $\mathbb{E}\left[f_{H}^{3}\right]$

Regularity lemma. \exists subspaces $W \leq U \leq \mathbb{F}_{3}^{n}$ with codim tower $(O(\log 1 / \epsilon))$ such that

$$
\left\|\left(f-f_{W}\right)^{\wedge}\right\|_{\infty} \leq \frac{\epsilon}{\left|U^{\perp}\right|} \quad \text { and } \quad 2\left\|f_{U}\right\|_{3}^{3}-\left\|f_{W}\right\|_{3}^{3} \geq(\mathbb{E} f)^{3}-\epsilon
$$

Energy roughly doubles at each iteration of the regularity proof; $O(\log 1 / \epsilon)$ iterations
Schur's inequality. $a^{3}+b^{3}+c^{3}+3 a b c \geq a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2} \forall a, b, c \geq 0$
Deduce that \forall subspaces $W \leq U, \quad \Lambda_{U}\left(f_{W}\right) \geq 2\left\|f_{U}\right\|_{3}^{3}-\left\|f_{W}\right\|_{3}^{3}$
Counting lemma. With $W \leq U$ produced by the regularity lemma,

$$
\Lambda_{U}(f) \geq \alpha^{3}-O(\epsilon)
$$

Thus if U is not too small, then it contains a nonzero popular common difference.
Proof works provided $n \geq$ tower $(c \log 1 / \epsilon)$

Ideas of lower bound constructions

[Gowers '97] Tower-type bounds are necessary for Szemerédi's regularity lemma. Iterative construction.
[Fox—Pham—Z.] Construction of $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[0,1]$ without 3-AP popular difference Let $H_{i}=\mathbb{Z} / p_{i} \mathbb{Z}$, with primes $p_{1} \ll p_{2} \ll \cdots \ll p_{s}$. Construct weighted functions iteratively
$f_{1}: H_{1} \rightarrow[0,1] \quad f_{2}: H_{1} \times H_{2} \rightarrow[0,1] \quad \cdots \quad f_{s}: H_{1} \times \cdots \times H_{s} \rightarrow[0,1]$
Each f_{i} is obtained from the previous by extending + random modification,
Maintain the property that each f_{i} has the 3-AP popular difference
Finish by a "Behrend-twist"

Popular difference result for corners?

"corner"
Question. Given $A \subset[N]^{2}$ with $|A| \geq \alpha N^{2}$, is there always some nonzero $d \neq 0$ such that there are $\geq\left(\alpha^{3}-o(1)\right) N^{2}$ corners with common difference d, i.e., $(x, y),(x+d, y),(x, y+d) \in A$?

Matei Mandache: No! Construction with $<\alpha^{3.13} N^{2}$ corners for every common difference
On the other hand, can find d with $\geq\left(\alpha^{4}-\mathrm{o}(1)\right) N^{2}$ corners
(Mandache proved it for \mathbb{F}_{2}^{n}; extended to abelian groups and intervals by Aaron Berger)
Reduces the problem to a certain variational problem

- Upper bound (probabilistic construction)
- Lower bound (arithmetic regularity for corners; Fourier for corners due to Shkredov)

Theorem (Fox—Sah—SawAney-Stoner-Z.). The optimal popular difference density that can be guaranteed for corners is $\geq \omega\left(\alpha^{4}\right)$ and $\leq \alpha^{4-o(1)}$

Note: everything applies to patterns of 3 non-collinear points in \mathbb{Z}^{2}

Triforce and corners

The triforce
Mandache/Berger reduce the popular difference problem for corners to
Problem. Find the minimum triforce density $g(\alpha)$ in 3-uniform a hypergraph with triple density α
Theorem (Fox-Sah—Sawhney-Stoner-Z.). $\omega\left(\alpha^{4}\right) \leq g(\alpha) \leq \alpha^{4-o(1)}$
Lower bound: triangle removal lemma
Upper bound: Behrend construction
More generally, the maximum k-force density in a k-uniform hypergraph with edge density α is $\geq \omega\left(\alpha^{k+1}\right)$ and $\leq \alpha^{k+1-o(1)}$
C.f. (Tao blog) Minimum diamond density in a graph with triangle-density β

$$
\text { is } \geq \omega\left(\beta^{2}\right) \text { and } \leq \beta^{2-o(1)}
$$

Higher dimensional corners?

No popular difference for 3-dimensional corners!
Theorem (Fox—Sah—Sawhney-Stoner-Z.). $\forall 0<\alpha<1 / 2 \exists A \subset[N]^{3}$:
$|A| \geq \alpha N^{3}$ but the number of 3-dim corners with common difference d is $\leq \alpha^{c \log (1 / \alpha)} N^{3}$ for every nonzero d

Stacking Behrend (simpler construction given in Sah—Sawhney-Z.)
Take a set $B \subset(\mathbb{Z} / N \mathbb{Z})^{2}$ with few corners, and layer dilates of B
density of 3-dim corners in the stack with fixed common difference
\leq density of 2-dim corners in the stack with a fixed common difference $2 \cdot B$
= density of 2-dim corners in B (without restriction on common difference)
More general patterns: if a pattern contains has 3 points that do not affine span the whole space, then there is a construction with popular difference density $\leq \alpha^{\text {c } \log (1 / \alpha)}$

5-point patterns in 1-dim

Theorem (Bergelson-Host-Kra-Ruzsa '05). No popular common difference property for 5-AP

Extended to all 5-point patterns [Fox—Sah—Sawhney—Stoner—Z.]
Theorem. $\forall 0<\alpha<1 / 2 \exists A \subset[N]$ with $|A| \geq \alpha N$ such that for every $d \neq 0$, the number of 5-APs in A with common difference d is $\leq \alpha^{c \log (1 / \alpha)} N$

Recall Behrend constructed a 3-AP-free subset of [L] of size $L e^{-O(\sqrt{\log L})}$, obtained as the image of a projection of a set of lattice points of some higher dimensional sphere

Why 5?

Related to: a quadratic curve intersects a sphere in ≤ 4 points
"Quadratic Behrend": there exists a subset of [L] of size $L e^{-O(\sqrt{\log L})}$ that does not contain any pattern of the form $(P(0), P(1), P(2), P(3), P(4))$ for any nonconstant quadratic polynomial P

4-point patterns in 1-dim

Green-Tao's popular difference for 4-APs: quadratic Fourier analysis + "positivity":
symmetric coefficients in

$$
x^{2}+3(x+2 y)^{2}=(x+3 y)^{2}+3(x+y)^{2}
$$

Same argument apply to any 4-term pattern of the form $\{0, a, b, a+b\}$
What about other 4-point patterns? E.g., $\{0,1,2,4\}$?
Question. Is it true that every $A \subset[N]$ with $|A| \geq \alpha N$ has some $y \neq 0$ such that

$$
\#\{x: x, x+y, x+2 y, x+4 y \in A\} \geq\left(\alpha^{4}-o(1)\right) N
$$

Theorem (Sah-Sawhney-Z.). For every $0<a_{1}<a_{2}<a_{3}$ with $a_{3} \neq a_{1}+a_{2}$, and $0<\alpha<1 / 2$, $\exists A \subset[N]$ with $|A| \geq \alpha N$ such that for all $y \neq 0$

$$
\#\left\{x: x, x+a_{1} y, x+a_{2} y, x+a_{3} y \in A\right\} \leq(1-c) \alpha^{4} N
$$

where $c>0$ is some absolute constant (and N assumed sufficiently large).

No popular difference for $(0,1,2,5)$ pattern

Goal. Construction function $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[0,1]$ with $\mathbb{E} f \geq \alpha$ and for every $y \neq 0$,

$$
\mathbb{E}_{x} f(x) f(x+y) f(x+2 y) f(x+5 y)<0.999 \alpha^{4}
$$

Construction. Let $\omega=N$-th root of unity. Let

$$
\frac{f(x)}{\alpha}=1+\gamma_{1} \cdot\left(\omega^{6 x^{2}}+\omega^{-6 x^{2}}\right)+\gamma_{2} \cdot\left(\omega^{15 x^{2}}+\omega^{-15 x^{2}}\right)+\gamma_{3} \cdot\left(\omega^{10 x^{2}}+\omega^{-10 x^{2}}\right)+\gamma_{4} \cdot\left(\omega^{x^{2}}+\omega^{-x^{2}}\right)
$$

After Gauss sum cancelations

$$
\mathbb{E} f=\alpha+o(1)
$$

and

$$
\mathbb{E}_{x} f(x) f(x+y) f(x+2 y) f(x+5 y)=\alpha^{4}\left(1+2 \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}+o(1)\right)
$$ not taken over y

as the only possible nontrivial relation among the quadratic exponentials is

$$
6 x^{2}-15(x+y)^{2}+10(x+2 y)^{2}-(x+5 y)^{2}=0
$$

Conclude by picking a small negative γ_{1} and small positive $\gamma_{2}, \gamma_{3}, \gamma_{4}$

No popular difference for $(0,1,2,4)$ pattern

Goal. construction function $f: \mathbb{Z} / N \mathbb{Z} \rightarrow[0,1]$ with $\mathbb{E} f \geq \alpha$ and for every nonzero y ,

$$
\mathbb{E}_{x} f(x) f(x+y) f(x+2 y) f(x+4 y)<0.999 \alpha^{4}
$$

Construction. Let $\omega=N$-th root of unity. Let

$$
\frac{f(x)}{\alpha}=1+\gamma_{1} \cdot\left(\omega^{3 x^{2}}+\omega^{-3 x^{2}}\right)+\gamma_{2} \cdot\left(\omega^{8 x^{2}}+\omega^{-8 x^{2}}\right)+\gamma_{3} \cdot\left(\omega^{6 x^{2}}+\omega^{-6 x^{2}}\right)+\gamma_{4} \cdot\left(\omega^{x^{2}}+\omega^{-x^{2}}\right)
$$

But now

$$
\begin{aligned}
& \mathbb{E}_{x} f(x) f(x+y) f(x+2 y) f(x+5 y) \\
& =\alpha^{4}\left(1+2 \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}+\gamma_{1}^{2} \gamma_{3}^{2}\left(\omega^{30 y^{2}}+\omega^{-30 y^{2}}\right)+\gamma_{1}^{2} \gamma_{3}\left(\omega^{24 y^{2}}+\omega^{6 y^{2}}+\omega^{-6 y^{2}}+\omega^{-24 y^{2}}\right)+o(1)\right)
\end{aligned}
$$

Extra terms due to additional linear relations among the quadratic exponentials, e.g.,

$$
6 x^{2}-6(x+y)^{2}-3(x+2 y)^{2}+3(x+4 y)^{2}=30 y^{2}
$$

Fortunately, in this case, we can still conclude by picking a small negative γ_{1} and small positive $\gamma_{2}, \gamma_{3}, \gamma_{4}$
In general, rule out/handle all such linear relations (computer assisted; rational points on hyperelliptic curves)

4-point patterns in 1-dim

Theorem (Sah-Sawhney-Z.). For every $0<a_{1}<a_{2}<a_{3}$ with $a_{3} \neq a_{1}+a_{2}$, and
$0<\alpha<1 / 2$,
$\exists A \subset[N]$ with $|A| \geq \alpha N$ such that for all $y \neq 0$

$$
\#\left\{x: x, x+a_{1} y, x+a_{2} y, x+a_{3} y \in A\right\} \leq(1-c) \alpha^{4} N
$$

where $c>0$ is some absolute constant (and N assumed sufficiently large).
Also for certain patterns we can do much better:
for every $C>0$, there exist 4-pt patterns where the RHS can be replaced by $<\alpha^{C} N$

Related to open problem of the type: max size of subset of [N]

$$
\text { avoiding } x+3 y=2 z+2 w \quad \text { (known: between } \sqrt{N} \text { and } o(N) \text {) }
$$

No Behrend-type constructions

A question of Gowers

Basic idea of Fourier analytic proof of Roth's theorem: a Fourier uniform subset of $\mathbb{Z} / N \mathbb{Z}$ with density α has 3-AP density $=\alpha^{3}-o(1)$

False for 4-APs
The standard example $\left\{x: x^{2} \bmod N<\alpha N\right\}$ has more 4-APs than expected ($\approx C \alpha^{3} \geq \alpha^{4}$), so not an obstruction to the density increment argument

Question. Can a Fourier uniform set have 4-AP density much less than α^{4} ?
Gowers constructed a example with 4-AP density $<\alpha^{4+c}$
Question (Gowers). Must a Fourier-uniform set of density α have 4-AP density $\geq \alpha^{1000}$?
We don't know. But the result on the previous slide implies that "4-AP" cannot be replaced by an "arbitrary 4-point pattern" (if one is not allowed to change the "1000")

4-point patterns: 2-dim

Theorem (Sah-Sawhney-Z.). For every 4point pattern P in \mathbb{Z}^{2}, and fixed $0<\alpha<1 / 2$, $\exists A \subset[N]^{2}$ so that $\forall y \neq 0$, the number of translates of $y \cdot P$ in A is $\leq \alpha^{5} e^{C \sqrt{\log (1 / \alpha)}} N^{3}$

For every nonconvex 4-point pattern, result can be improved to $\leq \alpha^{c \log (1 / \alpha)} N^{3}$

Roth's theorem with popular difference (Green '05). $\forall \epsilon>0 \exists N_{0}(\epsilon)$ so that for all $N \geq N_{0}(\epsilon)$ and $A \subset[N]$ with $|A| \geq \alpha N, \exists d \neq 0$ such that the number of 3-APs in A with common difference d is $\geq\left(\alpha^{3}-\epsilon\right) N^{2}$

Theorem (Fox-Pham-Z.). The optimal $N_{0}(\epsilon)$ is tower $(\Theta(\log 1 / \epsilon))$
$P \subseteq \mathbb{Z}^{r}$
3 points in \mathbb{Z}
$k_{1}<k_{2}<k_{3}<k_{4}$ in \mathbb{Z} with $k_{1}+k_{4}=k_{2}+k_{3}$
Other 4 point patterns in \mathbb{Z}
Affine dim of $P<r$
3 non-collinear points in \mathbb{Z}^{2}

4 points in strict convex position in \mathbb{Z}^{2}
4 points in nonconvex position in \mathbb{Z}^{2}
At least 5 points
Affine dimension at least 3

Popular difference density
$\operatorname{pdd}_{P}(\alpha)=\alpha^{3} \quad\left[\right.$ Green $\left.{ }^{\prime 5}{ }^{5}\right]$
$\operatorname{pdd}_{P}(\alpha)=\alpha^{4} \quad\left[\right.$ Green-Tao ${ }^{10]}$
$\operatorname{pdd}_{P}(\alpha)<(1-c) \alpha^{4}$
$\operatorname{pdd}_{P}(\alpha)<\alpha^{c \log (1 / \alpha)}$
$\omega\left(\alpha^{4}\right) \leq \operatorname{pdd}_{P}(\alpha) \leq \alpha^{4-o(1)}$ Fox-SSah-Sawhney-Steroner-2]]
$\operatorname{pdd}_{P}(\alpha)<\alpha^{5-o(1)}$
$\left.\operatorname{pdd}_{P}(\alpha)<\alpha^{c \log (1 / \alpha)}\right\}$
$\operatorname{pdd}_{P}(\alpha)<\alpha^{c \log (1 / \alpha)} \quad$ [Bergelson-Host-Kra-Ruzsa/
$\operatorname{pdd}_{P}(\alpha)<\alpha^{c \log (1 / \alpha)} \quad$ [Fox-Sah-Sawhney-Stoner-z]

