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Central limit theorem:
! − #$% < ' < ! + #)%

Large deviations
' − ! ≫ %

Universality Problem-dependent

Key questions:
•What is the probability of seeing large deviation?

(often exponentially small)
•What does a typical conditioned instance look like?
•How to model/estimate/sample?



Warm up: sum of independent random variables

Let ! = #$ + #& + ⋯+ #(

#)’s are i.i.d. random variables with finite variance 

• Central Limit Theorem: *+,*
-./01 *

→ Normal as 9 → ∞

• Large deviation theory (Cramér’s theorem): 
ℙ ! ≥ 9= ≈ ?+(@ A

where B(=) is the rate function, which depends on the distribution of the 
#)’s
e.g., if #)~Bernoulli(K), then B = = = log

A

M
+ 1 − = log

$+A

$+M



Sums of dependent random variables
E.g., ! = # $%, $', … , $)
$%, $' … i.i.d. Bernoulli random variables
f – a low degree polynomial

•Moments calculation: *[!,] often easy to compute
• Central limit theorem: follows with enough control on 

moments
• Large deviations: ???



The upper tail problem
Let X be the number of triangles in the Erdős–Rényi random graph G(n,p) 
(n vertices, every pair is an edge with probability p independently)

!" = $
3 &'

Central Limit Theorem (Ruciński ’88): X is asymptotially normal, i.e., 
" − !"
Var " → Normal, as $ → ∞, provided $& → ∞, $ 1 − & → ∞

Problem: Estimate ℙ " ≥ 1 + = !" (fixed = > 0)



Random Structures & Algorithms 2002 

Janson, Oleszkiewicz, Rucinski ’04
Bollobás ’81, ’85 
Janson, Luczak, Rucinski ’02, ’04
Vu ’01
Kim & Vu ’04
ChaIerjee & Dey ’10

Order of 
logℙ % ≥ 1 + ) *%

independently determined by

DeMarco & Kahn ’11
and

Chatterjee ’11

X = # triangles in G(n,p).       ℙ % ≥ 1 + ) *% = ?



What can “cause” a random graph to have 
too many triangles? 
•Overall increase in edge density
•Some extra edges forming a clique
•Some some number of vertices 

forming a hub connecting to 
everything else
•…

! ", $

symmetry 
breaking

replica symmetry



Summary of what we now know/believe

X = # triangles in !(#, %)
Large deviation: ' ≥ 1 + + ,' (constant +)
• Sparse setting: % → 0 (not too quickly) as # → ∞
• If + > 27/8, plant a clique
• If + < 27/8, plant a hub

•Dense setting: constant p
• Some range of +: replica symmetry (uniform density boost)
• Outside of this range: symmetry breaking (precise structure 

unknown)



How to compute large devia2ons

1. Prove a large deviation principle (LDP) that 
reduces the problem to a variational problem 
(maximization/minimization problem modeling 
the “most likely cause”)

2. Solve this variational problem



Review of large deviations
Fixed 0 < p < q < 1. 
X ~ Binomial(n, p).           P(X ≥ nq) = ??

Ip(x) := x log
x

p
+ (1� x) log

1� x

1� p
p 1

Relative entropy (KL divergence):

logP(X � nq) = �(Ip(q) + o(1))n as n ! 1
“cost of tilting”



Triangles in G(n,p)
For each pair (", $) of vertices

• Tilt its probability to some &"$ ≥ (
• Pay )*(&+,) cost in log probability.

Objective: minimize relative entropy cost  min∑12+3,24 )* &+,
Constraint: enough triangles ∑12+3,3524 &+,&+5&,5 ≥ 4

6 &6

This actually works! The minimum is asymptotically − logℙ(< ≥ 4
6 &6)

Chatterjee—Varadhan ’11 dense setting: p constant

Chatterjee—Dembo ’16 sparse setting:p ≥ n−1/42 log n
Eldan ’17+ improved: p ≥ n−1/18 log n



Another interpreta,on
By Gibbs variational principle, a conditional probability 
distribution is given by the entropy-maximizing 
probability distribution subject to the conditions.

Large deviation principle (whenever it holds): For random 
graphs, we can approximate this distribution by an 
entropy-maximizing product measure (independent 
edges)



Graphon variational problem
• A graphon is a symmetric measurable function !: 0,1 & → 0,1 .

!(), *) = !(*, ))

Discrete variational problem

Minimize  ∑./012/3 45 602
Subject to 

7
./01218/3

602608628 ≥
:
3 6<

Graphon varia=onal problem [Cha@erjee—Varadhan]

Minimize  ∫>,. ? 45 ! ), * @)@*
Subject to 

A
>,. B

! ), * ! ), C ! *, C @)@*@C ≥ 6<

• Due to compactness of the space of graphons under cut metric (Lovasz—

Szegedy), the above minimum is always attained 

• In general we do NOT know how to solve the variational problem



What do the minimizing graphons represent?

The set of relative entropy minimizing graphons
represents the most likely graphs conditioned on the 
rare event.
Replica symmetry: If minimized (uniquely) by the 
constant graphon, then the conditioned random 
graph is close to Erdős–Rényi (in cut distance).



Sparse setting

G(n,p)

! = !# → 0 as & → ∞, 
perhaps slowly



Order of the rate

Proof of lower bound:
Force a clique on ! = Θ$(&') vertices

Obtain )
* ≥ 1 + . /

* '* triangles 

Occurs with probability ' 0
1 = '23(/141)

Theorem (DeMarco—Kahn ’11, Cha@erjee ’11).
Let X denote the number of triangles in G(n,p).
Fix . > 0. For ' ≳ (log &)/&, 

ℙ ; ≥ 1 + . <; = '23(/141)

=$&'

G(n,p)

clique



Theorem (Chatterjee—Dembo/Eldan + Lubetzky—Z.).
Let X denote the number of triangles in G(n,p).

Fix ! > 0. With " → 0 and and " ≥ &'(/(* log &,

ℙ / ≥ 1 + ! 2/ = " (45 ( 678 (
9:

;/<, (>: ?;@;

Proof of lower bound:

p(1+o(1))
1
2 �

2/3p2n2

extra triangles

With probability:

extra triangles

With probability:

G(n,p)

�1/3pn

clique
complete to rest 

of the graph

p(1+o(1))
1
3 �p

2n2
G(n,p)

K�1/3pn
1
3�p

2n
⇠ �p3

✓
n

3

◆
⇠ �p3

✓
n

3

◆

Preferred for δ > 27/8 Preferred for δ < 27/8

Improve this!



Proof of lower bound:

p(1+o(1))
1
2 �

2/3p2n2

(1 + o(1))�p3
✓
n

3

◆

extra triangles

With probability:

(1 + o(1))�p3
✓
n

3

◆

extra triangles

With probability:

p(1+o(1))
1
3 �p

2n2

p

1�1/3p

p

11
3�p

2

Theorem (Cha6erjee—Dembo/Eldan + Lubetzky—Z.).
Let X denote the number of triangles in G(n,p).
Fix ! > 0. With " → 0 and and " ≥ &'(/(* log &,

ℙ / ≥ 1 + ! 2/ = " (45 ( 678 (
9:

;/<, (>: ?;@;

Similar results for 
the number of Kt

[Bhattacharya, Ganguly, Lubetzky, Z. ’17]
Solution for every H



For example

For ! = #$ %& ' = min +

,
'-/$, +

0
'

For ! = #1 %& ' = min +

,
'2/-, −1 + 1 + +

,
'

2/-

For ! = 61 %& ' = min +

,
'2/-, +

7
'

Theorem (Bhattacharya, Ganguly, Lubetzky, Z. ’17).
Fix ' > 0 and a graph H. Let XH = # copies of H in G(n,p).
With 8 → 0 and and 8 ≥ <=2/>?(&) log <,

ℙ F& ≥ 1 + ' GF& = 8 HI J KL 2 MNO,

where Δ = max deg H, and cH(δ) > 0 is an explicit constant …



Theorem (Bhattacharya, Ganguly, Lubetzky, Z. ’17).
Fix ! > 0 and a graph H. Let XH = # copies of H in G(n,p).
With " → 0 and and " ≥ &'(/*+(-) log &,

ℙ 3- ≥ 1 + ! 63- = " 89 : ;< ( =>?@

where Δ = max deg H, and cH(δ) > 0 is an explicit constant …

For example

For A = BC,E F- ! = 1 + ! (/C − 1

For A = F- ! = −H
@ +

I
@ 5 + 4 1 + !



Independence polynomial: !" # ≔ ∑&'()* +), - #
|-|

Let H* denote the subgraph of H induced by its maximum degree vertices. 

Let / > 0 satisfy !"∗ / = 1 + 6. Then, for a connected graph H,

7" 6 = 8
min /, =

>
6>/@(") if C is regular
/ if H is irregular

Theorem (Bha@acharya, Ganguly, Lubetzky, Z. ’17).
Fix 6 > 0 and a graph H. Let XH = # copies of H in G(n,p).
With D → 0 and and D ≥ GH=/IJ(") log G,

ℙ O" ≥ 1 + 6 PO" = D QR S TU = VWXY

where Δ = max deg H, and cH(δ) > 0 is an explicit constant …



Large deviations in random hypergraphs
Ongoing joint work with Yang Liu

• !(#)(%, '): random k-uniform hypergraph, where every triple appears with 
probability p independently
• Given some fixed 3-uniform hypergraph H, what can you say about upper tails of 

H-densities in !(()(%, ')?
• Possible ways to embed extra edges

• Plant clique: all triples contained in some chosen subset S of vertices
• Plant 2-hub: all triples with at least two vertices in S
• Plant 1-hub: all triples with at least one vertex in S
• A simultaneous overlay of these constructions

• Currently we understand what happens when H is a clique … 



Arithmetic progressions

• Proof of lower bound: plant an interval of length ∼ "#$%&

Theorem (Bhattacharya, Ganguly, Shao, Z.).
Fix k and " > 0. Let Xk denote the number of 
k-term arithmetic progressions in a random 
subset of {1, 2, …, N} where every element is 
included with probability p. With # → 0 and 
# ≥ %*+/(.$ ($*&)/& ) log %,
ℙ 4$ ≥ 1 + " 74$ = # +9: + ;<=>?

The order in the 
exponent was 
determined by 
Warnke, and holds 
for all 

# ≳ log %
%

+/($*+)

Recent improvement 
by Briët--Gopi



Dense se&ng

G(n,p)
! constant
" → ∞



Possibilities:

• Yes: more edges, uniformly distributed 
(replica symmetry)

• No: some other non-uniform distribution of edges 
(symmetry breaking)

Question (Chatterjee—Varadhan ’11).
Fix 0 < p < q < 1. Let G be an instance of G(n,p) conditioned on 
having at least as many triangles as a typical G(n,q). 
Is G ≈ G(n,q) in cut-distance?

!" # = %
& ' + ) *& for every U⊂V.
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Does G(n,p), conditioned on having ≥ "
# $#

triangles, look like G(n,q)?

Yes

No
Theorem (Lubetzky—Z. ’15).
Replica symmetry phase:

p �
⇣
1 + (q�1 � 1)1/(1�2q)

⌘�1

Earlier partial results: 
[Chatterjee & Dey ’10] [Chatterjee & Varadhan ’11]



Upper tail of H-density
[Lubetzky—Z. ’15] Identified the phase 

diagram for H-density if H is d-regular.

The phase diagram depends only on d.

Also: upper tail large deviation of 

the top eigenvalue of G(n,p). 
(Top eigvalue typically ≈ np; what if ≥ nq?)

Same diagram as d = 2

Open: any irregular H, 

e.g., a path of two edges



Lower tail

! ≤ (1 − &)(! as p → 0

δ = 0.01 Replica symmetry

δ* cri4cal ???

δ = 0.99 Symmetry breaking
0 0.5 1
0

0.5

1

p

q

replica 
symmetry

symmetry
breaking

?

[Z. 2017]



Theorem (Lubetzky—Z. ’15).
Let 0 < # < $ < 1. The constant graphon & ≡ $
minimizes ∫),+ , -. & /, 0 1/10 subject to 

2
),+ 3

& /, 0 & /, 4 & 0, 4 1/1014 ≥ $6

if and only if the point ($2, -#($)) lies on the convex 
minorant of / ↦ -.( /).

Upper tail phase diagram
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p2 1

Always convex for

1

Not convex for

p � 1

1 + e2
⇡ 0.12p <

1

1 + e2
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Exponential random graph model (ERGM)
A random graph G on n vertices, where G is chosen with 
probability proportional to !" #

Examples:
• ℎ % ≡ 1 same as G(n, 1/2)
• ℎ % = )|+ % | same as G(n, p) for some , = ,())
• ℎ % = ) + % + 0|1 % |
• 0 > 0 prefer more triangles 
• 0 < 0 prefer fewer triangles

T(G) = triangles in G



Exponential random graph models
MCMC: Glauber dynamics by flipping a random edge according to its condi8onal probability•

Does it converge to desired distribu8on? How quickly?•

• [Bhamidi, Bresler, Sly ’08] For the “dense” ERGM

! " = 1
% exp

)
2 +,- ./, " + +/- .2, "

with +/ ≥ 0
High temperature regime: mixing 8me • Θ )/ log )

“not appreciably different from Erdős–Rényi random graph”
Lower temperature regime: mixing 8me • 9:(<)

[ChaUerjee, • Diaconis ’13] Dense ERGMs can be analyzed via the graphon varia8onal problem:

Maximize   h > + ?(>) over graphons W
Hamiltonian 
(normalized)

entropy
With +/ ≥ 0 always 
maximized by constant 
graphon



Weakness of model?
• For the ERGM

! " = 1
% exp

)
2 +,- ./, " + +/- .2, "

with +/ ≥ 0 (similar if allow more terms), the graphon that maximizes 
the variational problem is the constant graphon, so ERGM ≈ G(n, p) in 
this case, so ERGM does not accomplish the goal of modeling triangle 
clustering

• [Lubetzky, Z. ’15] Modify the model as

! " = 1
% exp

)
2 +,- ./, " + +/- .2, " 5

For 6 < 2/3 we get non-Erdős–Rényi behavior



ERGM  ! " = $
% exp

)
* +$, -*, " + +*, -0, " 1
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Partition function of ERGM à LDP
• Estimating the partition function ! = ∑$ %& $ is closely related to sampling

• Estimating the partition function also leads to 
large deviation principles. Take g to be the function

• Then large deviation ' ( > *corresponds to computing

+
$:- $ ./

0 1 $ 1 − 0 1 $ ≈+
$
0 1 $ 1 − 0 1 $ %5 - $ =+

$
%& $ = !&

for some appropriate h

• Recent advances give better methods for estimating the partition function, 
allowing somewhat sparser graphs
• [Chatterjee—Dembo ’15] Stein’s method     [Eldan ’17+] stochastic calculus and control 

t

g



Summary
• Large deviation principles
• Variational problem
• Exponential random graphs
• Large deviations of triangle counts in G(n, p)
• Constant p: replica symmetry vs. symmetry breaking
• Sparse ! → 0: planting cliques or hubs

• Exponential random graphs
• Adding an exponent introduces non-Erdős–Rényi behavior

Thank you!
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