Pseudorandom Graphs and the Green-Tao Theorem

Yufei Zhao
MIT

Based on joint work with David Conlon and Jacob Fox
SIAM Conference on Discrete Mathematics
Dénes König Prize Lecture
June 5, 2018

A progression of theorems on progressions

van der Waerden's theorem (1927)

If \mathbb{N} is colored with finitely many colors, then there are arbitrarily long monochromatic arithmetic progressions (AP).

A progression of theorems on progressions

van der Waerden's theorem (1927)

If \mathbb{N} is colored with finitely many colors, then there are arbitrarily long monochromatic arithmetic progressions (AP).

Erdős-Turán conjecture (1936)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.

A progression of theorems on progressions

van der Waerden's theorem (1927)

If \mathbb{N} is colored with finitely many colors, then there are arbitrarily long monochromatic arithmetic progressions (AP).

Erdős-Turán conjecture (1936)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.

Roth's theorem (1953)

Every subset of \mathbb{N} with positive density contains a 3-term AP.

A progression of theorems on progressions

van der Waerden's theorem (1927)

If \mathbb{N} is colored with finitely many colors, then there are arbitrarily long monochromatic arithmetic progressions (AP).

Erdős-Turán conjecture (1936)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.

Roth's theorem (1953)

Every subset of \mathbb{N} with positive density contains a 3-term AP.

Szemerédi's theorem (1975)

Erdős-Turán conjecture is true.

Szemerédi's theorem (1975)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.
(upper) density of $A \subset \mathbb{N}$ is $\limsup _{N \rightarrow \infty} \frac{|A \cap[N]|}{N}$ where $[N]:=\{1,2, \ldots, N\}$

Szemerédi's theorem (1975)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.
(upper) density of $A \subset \mathbb{N}$ is $\limsup _{N \rightarrow \infty} \frac{|A \cap[N]|}{N}$ where $[N]:=\{1,2, \ldots, N\}$

Conjecture (Erdős 1973)

Every $A \subset \mathbb{N}$ with $\sum_{a \in A} 1 / a=\infty$ contains arbitrarily long APs.

Szemerédi's theorem (1975)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.
(upper) density of $A \subset \mathbb{N}$ is $\limsup _{N \rightarrow \infty} \frac{|A \cap[N]|}{N}$ where $[N]:=\{1,2, \ldots, N\}$

Conjecture (Erdős 1973)

Every $A \subset \mathbb{N}$ with $\sum_{a \in A} 1 / a=\infty$ contains arbitrarily long APs.

Green-Tao theorem (2008)

The primes contain arbitrarily long APs.

Szemerédi's theorem (1975)

Every subset of \mathbb{N} with positive density contains arbitrarily long APs.
(upper) density of $A \subset \mathbb{N}$ is $\limsup _{N \rightarrow \infty} \frac{|A \cap[N]|}{N}$ where $[N]:=\{1,2, \ldots, N\}$

Conjecture (Erdős 1973)

Every $A \subset \mathbb{N}$ with $\sum_{a \in A} 1 / a=\infty$ contains arbitrarily long APs.

Green-Tao theorem (2008)

The primes contain arbitrarily long APs.
Prime number theorem: $\frac{\# \text { primes up to } N}{N} \sim \frac{1}{\log N}$

Our main advance, then, lies not in our understanding of the primes but rather in what we can say about arithmetic progressions.

Ben Green
Clay Math Proceedings 2007

Proof strategy of Green-Tao theorem

$P=$ prime numbers

Proof strategy of Green-Tao theorem

$P=$ prime numbers, $S=$ "almost primes"
$P \subseteq S$ with positive relative density, i.e., $\frac{|P \cap[N]|}{|S \cap[N]|}>\delta$

Proof strategy of Green-Tao theorem

$P=$ prime numbers, $S=$ "almost primes"
$P \subseteq S$ with positive relative density, i.e., $\frac{|P \cap[N]|}{|S \cap[N]|}>\delta$
Step 1:

Relative Szemerédi theorem (informally)

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S with positive relative density contains long APs.

Proof strategy of Green-Tao theorem

$P=$ prime numbers, $S=$ "almost primes"
$P \subseteq S$ with positive relative density, i.e., $\frac{|P \cap[N]|}{|S \cap[N]|}>\delta$
Step 1:

Relative Szemerédi theorem (informally)

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S with positive relative density contains long APs.

Step 2: Construct a superset of primes that satisfies the pseudorandomness conditions.

Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S with positive relative density contains long APs.

What pseudorandomness conditions?

1. Linear forms condition
Green-Tao:
2. Correlation condition

Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S with positive relative density contains long APs.

What pseudorandomness conditions?
Green-Tao:

1. Linear forms condition
2. Correlation condition

Question

Does relative Szemerédi theorem hold with weaker and more natural pseudorandomness hypotheses?

Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S with positive relative density contains long APs.

What pseudorandomness conditions?
Green-Tao:

1. Linear forms condition
2. Correlation condition \leftarrow no longer needed

Question

Does relative Szemerédi theorem hold with weaker and more natural pseudorandomness hypotheses?

Theorem (Conlon-Fox-Z. '15)

Yes! A weaker linear forms condition suffices.

Relative Szemerédi theorem

k-AP-free: contains no k-term arithmetic progressions

Szemerédi's theorem (1975)

If $A \subseteq \mathbb{Z} / N \mathbb{Z}$ is k-AP-free, then $|A|=o(N)$.

Relative Szemerédi theorem (Conlon-Fox-Z.)

If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.

Earlier versions of relative Roth theorems with other pseudorandomness hypotheses:
Green, Green-Tao, Kohayakawa-Rödl-Schacht-Skokan

Relative Szemerédi theorem

k-AP-free: contains no k-term arithmetic progressions

Szemerédi's theorem (1975)

If $A \subseteq \mathbb{Z} / N \mathbb{Z}$ is k-AP-free, then $|A|=o(N)$.

Relative Szemerédi theorem (Conlon-Fox-Z.)

If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.

Earlier versions of relative Roth theorems with other pseudorandomness hypotheses:
Green, Green-Tao, Kohayakawa-Rödl-Schacht-Skokan
What does it mean for a set to be pseudorandom?
A: It resembles a random set in certain statistics

Pseudorandom graphs

In what ways can a graph look like a random graph?

Pseudorandom graphs

In what ways can a graph look like a random graph?
Fix a graph H. The H-density in a random graph with edge density p is $\approx p^{e(H)}$.

Pseudorandom graphs

In what ways can a graph look like a random graph?
Fix a graph H. The H-density in a random graph with edge density p is $\approx p^{e(H)}$.
A (sequence of) graph is pseudorandom if it satisfies some asymptotic properties, e.g., having asymptotically the same H-density as that of a typical random graph.

Pseudorandom graphs

In what ways can a graph look like a random graph?
Fix a graph H. The H-density in a random graph with edge density p is $\approx p^{e(H)}$.
A (sequence of) graph is pseudorandom if it satisfies some asymptotic properties, e.g., having asymptotically the same H-density as that of a typical random graph.

Other ways that graphs can be pseudorandom: eigenvalues, edge discrepancy Equivalent for dense graphs, but not for sparse graphs (Thomason '87, Chung-Graham-Wilson '89)

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct
tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct
tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct
tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Triangle $x y z$ in $G_{S} \Longleftrightarrow$
$2 x+y, x-z,-y-2 z \in S$

Graphs and 3-APs (3-term arithmetic progression)

Given $S \subseteq \mathbb{Z} / N \mathbb{Z}$, construct tripartite graph G_{S} with vertex sets $X=Y=Z=\mathbb{Z} / N \mathbb{Z}$.

Triangle $x y z$ in $G_{S} \Longleftrightarrow$
$2 x+y, x-z,-y-2 z \in S$
3-AP with common difference $-x-y-z$

Roth's theorem (1952)
If $A \subseteq \mathbb{Z} / N \mathbb{Z}$ is 3 -AP-free, then $|A|=o(N)$.

Relative Roth theorem (Conlon-Fox-Z.)

If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the 3-linear forms condition, and $A \subseteq S$ is 3-AP-free, then $|A|=o(|S|)$.

Roth's theorem (1952)

If $A \subseteq \mathbb{Z} / N \mathbb{Z}$ is 3-AP-free, then $|A|=o(N)$.

Relative Roth theorem (Conlon-Fox-Z.)

If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the 3-linear forms condition, and $A \subseteq S$ is 3-AP-free, then $|A|=o(|S|)$.

Roth's theorem (1952)

If $A \subseteq \mathbb{Z} / N \mathbb{Z}$ is 3-AP-free, then $|A|=o(N)$.

Relative Roth theorem (Conlon-Fox-Z.)

If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the 3 -linear forms condition, and $A \subseteq S$ is 3-AP-free, then $|A|=o(|S|)$.

3-linear forms condition:
G_{S} has asymptotically the same H-density as a random graph for every $H \subseteq K_{2,2,2}$

3-linear forms condition

$S \subset \mathbb{Z} / N \mathbb{Z}$ satisfies the 3-linear forms condition if, for uniformly random $x_{0}, x_{1}, y_{0}, y_{1}, z_{0}, z_{1} \in \mathbb{Z} / N \mathbb{Z}$, the probability that

$$
\left\{\begin{array}{lll}
-y_{0}-2 z_{0}, & x_{0}-z_{0}, & 2 x_{0}+y_{0}, \\
-y_{1}-2 z_{0}, & x_{1}-z_{0}, & 2 x_{1}+y_{0}, \\
-y_{0}-2 z_{1}, & x_{0}-z_{1}, & 2 x_{0}+y_{1}, \\
-y_{1}-2 z_{1}, & x_{1}-z_{1}, & 2 x_{1}+y_{1}
\end{array}\right\} \subseteq S
$$

is with in $1+o(1)$ factor of the expectation for a random S, and

3-linear forms condition

$S \subset \mathbb{Z} / N \mathbb{Z}$ satisfies the 3-linear forms condition if, for uniformly random $x_{0}, x_{1}, y_{0}, y_{1}, z_{0}, z_{1} \in \mathbb{Z} / N \mathbb{Z}$, the probability that

$$
\left\{\begin{array}{lll}
-y_{0}-2 z_{0}, & x_{0}-z_{0}, & 2 x_{0}+y_{0}, \\
-y_{1}-2 z_{0}, & x_{1}-z_{0}, & 2 x_{1}+y_{0}, \\
-y_{0}-2 z_{1}, & x_{0}-z_{1}, & 2 x_{0}+y_{1}, \\
-y_{1}-2 z_{1}, & x_{1}-z_{1}, & 2 x_{1}+y_{1}
\end{array}\right\} \subseteq S
$$

is with in $1+o(1)$ factor of the expectation for a random S, and the same is true if we erase any subset of the 12 patterns.

Relative Szemerédi theorem (Conlon-Fox-Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.

Relative Szemerédi theorem (Conlon-Fox-Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.
$k=4$: build a 4-partite 3-uniform hypergraph
4-AP \longleftrightarrow tetrahedron

Relative Szemerédi theorem (Conlon-Fox-Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.
$k=4$: build a 4-partite 3-uniform hypergraph 4-AP \longleftrightarrow tetrahedron
Vertex sets $W=X=Y=Z=\mathbb{Z} / N \mathbb{Z}$

$$
\begin{aligned}
& w x y \in E \Longleftrightarrow 3 w+2 x+y \quad \in S \\
& w x z \in E \Longleftrightarrow 2 w+x \quad-z \in S \\
& w y z \in E \Longleftrightarrow w \quad-y-2 z \in S \\
& x y z \in E \Longleftrightarrow \quad \Longleftrightarrow \quad x-2 y-3 z \in S
\end{aligned}
$$

4-AP with common diff: $-w-x-y-z$

Relative Szemerédi theorem (Conlon-Fox-Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.
$k=4$: build a 4-partite 3-uniform hypergraph 4-AP \longleftrightarrow tetrahedron
Vertex sets $W=X=Y=Z=\mathbb{Z} / N \mathbb{Z}$

$$
\begin{aligned}
& w x y \in E \Longleftrightarrow 3 w+2 x+y \quad \in S \\
& w x z \in E \Longleftrightarrow 2 w+x \quad-z \in S \\
& w y z \in E \Longleftrightarrow w \quad-y-2 z \in S \\
& x y z \in E \Longleftrightarrow \quad \Longleftrightarrow \quad-x-2 y-3 z \in S
\end{aligned}
$$

4-AP with common diff: $-w-x-y-z$
4-linear forms condition: If H is a subgraph of the 2-blow-up of the tetrahedron, then the H-density in the above hypergraph is asymptotically same as random

Relative Szemerédi theorem (Conlon-Fox-Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.

4-linear forms condition: for uniform random $w_{0}, w_{1}, x_{0}, x_{1}, y_{0}, y_{1}, z_{0}, z_{1} \in \mathbb{Z} / N \mathbb{Z}$, the probability that

$$
\left\{\begin{array}{llll}
3 w_{0}+2 x_{0}+y_{0}, & 2 w_{0}+x_{0}-z_{0}, & w_{0}-y_{0}-2 z_{0}, & -x_{0}-2 y_{0}-3 z_{0}, \\
3 w_{0}+2 x_{0}+y_{1}, & 2 w_{0}+x_{0}-z_{1}, & w_{0}-y_{0}-2 z_{1}, & -x_{0}-2 y_{0}-3 z_{1}, \\
3 w_{0}+2 x_{1}+y_{0}, & 2 w_{0}+x_{1}-z_{0}, & w_{0}-y_{1}-2 z_{0}, & -x_{0}-2 y_{1}-3 z_{0}, \\
3 w_{0}+2 x_{1}+y_{1}, & 2 w_{0}+x_{1}-z_{1}, & w_{0}-y_{1}-2 z_{1}, & -x_{0}-2 y_{1}-3 z_{1}, \\
3 w_{1}+2 x_{0}+y_{0}, & 2 w_{1}+x_{0}-z_{0}, & w_{1}-y_{0}-2 z_{0}, & -x_{1}-2 y_{0}-3 z_{0}, \\
3 w_{1}+2 x_{0}+y_{1}, & 2 w_{1}+x_{0}-z_{1}, & w_{1}-y_{0}-2 z_{1}, & -x_{1}-2 y_{0}-3 z_{1}, \\
3 w_{1}+2 x_{1}+y_{0}, & 2 w_{1}+x_{1}-z_{0}, & w_{1}-y_{1}-2 z_{0}, & -x_{1}-2 y_{1}-3 z_{0}, \\
3 w_{1}+2 x_{1}+y_{1}, & 2 w_{1}+x_{1}-z_{1}, & w_{1}-y_{1}-2 z_{1}, & -x_{1}-2 y_{1}-3 z_{1}
\end{array}\right\} \subseteq S
$$

is with in $1+o(1)$ factor of the expectation for a random S, and the same is true if we erase any subset of the $2^{3} \cdot 4=32$ patterns.

Roth's theorem: from one 3-AP to many 3-APs

Roth's theorem

Let $\delta>0$, every $A \subset \mathbb{Z} / N \mathbb{Z}$ with $|A| \geq \delta N$ contains a 3-AP if N is sufficiently large.
By an averaging argument (Varnavides), we get many 3-APs:
Roth's theorem (counting version)
Every $A \subset \mathbb{Z} / N \mathbb{Z}$ with $|A| \geq \delta N$ contains $\geq c(\delta) N^{2}$ many 3-APs for some $c(\delta)>0$.

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S, \quad|A| \geq \delta|S|
$$

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good dense model \widetilde{A} for A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good dense model \widetilde{A} for A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Counting lemma:

$$
\left.\left.\left(\frac{N}{|S|}\right)^{3} \right\rvert\,\{3-A P s \text { in } A\}|\approx|\{3-A P s \text { in } \widetilde{A}\} \right\rvert\,
$$

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good dense model \widetilde{A} for A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Counting lemma:

$$
\begin{aligned}
& \left.\left.\left(\frac{N}{|S|}\right)^{3} \right\rvert\,\{3 \text {-APs in } A\}|\approx|\{3 \text {-APs in } \widetilde{A}\} \right\rvert\, \\
& \geq c N^{2} \quad \text { [By Roth's Theorem] } \\
& \Longrightarrow \text { relative Roth theorem (also works for } k-A P \text {) }
\end{aligned}
$$

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good dense model \widetilde{A} for A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Counting lemma:

$$
\begin{aligned}
\left.\left.\left(\frac{N}{|S|}\right)^{3} \right\rvert\,\{3-\text { APs in } A\} \right\rvert\, & \approx \mid\{3 \text {-APs in } \widetilde{A}\} \mid \\
& \geq c N^{2} \quad[\text { By Roth's Theorem }]
\end{aligned}
$$

\Longrightarrow relative Roth theorem (also works for $k-A P$)

Dense model

What does it mean for

$$
\text { (dense) } \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}
$$

to be a good approximation (dense model) of

$$
\text { (sparse) } \quad A \subset S \subset \mathbb{Z} / N \mathbb{Z} \text { ? }
$$

Dense model

Let \widetilde{G} (dense) and G (sparse) be two graphs on the same set of N vertices We say that \widetilde{G} is an good p-dense model of G if $p \cdot \widetilde{G} \approx G$ in terms of the number of edges when restricted to every vertex subset, i.e.,

$$
\left|p \cdot e_{\widetilde{G}}(U)-e_{G}(U)\right|=o\left(p N^{2}\right) \quad \forall U \subset V(G)=V(\widetilde{G})
$$

Dense model

Let \widetilde{G} (dense) and G (sparse) be two graphs on the same set of N vertices We say that \widetilde{G} is an good p-dense model of G if $p \cdot \widetilde{G} \approx G$ in terms of the number of edges when restricted to every vertex subset, i.e.,

$$
\left|p \cdot e_{\widetilde{G}}(U)-e_{G}(U)\right|=o\left(p N^{2}\right) \quad \forall U \subset V(G)=V(\widetilde{G})
$$

We say that $\widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}$ is a good p-dense model of $A \subset \mathbb{Z} / N \mathbb{Z}$ if CayleySumGraph $(\mathbb{Z} / N \mathbb{Z}, \widetilde{A})$ is a good p-dense model of CayleySumGraph $(\mathbb{Z} / N \mathbb{Z}, A)$

CayleySumGraph (G, A) has vertex set G, and $x \sim y$ iff $x+y \in A$

Dense model theorem

If $\mathbb{Z} / N \mathbb{Z}$ is a good p-dense model of $S \subset \mathbb{Z} / N \mathbb{Z}$ with $p=|S| / N$, then every $A \subset S$ has a good p-dense model $\tilde{A} \subset \mathbb{Z} / N \mathbb{Z}$.

Proof ideas: Hahn-Banach theorem/linear programming duality
Originally Green-Tao and Tao-Ziegler. Simplified by Gowers and Reingold-Trevisan-Tulsiani-Vadhan. Specialized to this form in Z.

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S \subset \mathbb{Z} / N \mathbb{Z}, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good p-dense model \widetilde{A} of A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Counting lemma:

$$
\begin{aligned}
\left.\left.\left(\frac{N}{|S|}\right)^{3} \right\rvert\,\{3 \text {-APs in } A\} \right\rvert\, & \approx \mid\{3 \text {-APs in } \widetilde{A}\} \mid \\
& \geq c N^{2} \quad[\text { By Roth's Theorem }]
\end{aligned}
$$

\Longrightarrow relative Roth theorem (also works for $k-A P$)

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S \subset \mathbb{Z} / N \mathbb{Z}, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good p-dense model \widetilde{A} of A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Counting lemma:

$$
\begin{aligned}
\left.\left.\left(\frac{N}{|S|}\right)^{3} \right\rvert\,\{3-A P s \text { in } A\} \right\rvert\, & \approx \mid\{3 \text {-APs in } \widetilde{A}\} \mid \\
& \geq c N^{2} \quad[\text { By Roth's Theorem }]
\end{aligned}
$$

\Longrightarrow relative Roth theorem (also works for $k-A P$)

Counting lemma

Triangle counting lemma, dense setting
Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

Triangle counting lemma, sparse setting (Conlon-Fox-Z.)
(Sparse) $G \subset \Gamma$ and (dense) \widetilde{G} are (tripartite) graphs on the same vertex set. Suppose

- "Sparse pseudorandom host graph" Г has edge density p and satisfies the 3 -linear forms condition (densities of $H \subset K_{2,2,2}$ are close to random)
- \widetilde{G} is a good p-dense model of G

Then

$$
\operatorname{triangle-density}(G)=p^{3}(\operatorname{triangle}-\operatorname{density}(\widetilde{G})+o(1))
$$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

good 1-dense model: $\quad\left|\mathbb{E}\left[(G(x, y)-\widetilde{G}(x, y)) 1_{A}(x) 1_{B}(y)\right]\right|=o(1) \quad \forall A \subseteq X, B \subseteq Y$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

good 1-dense model: $\quad\left|\mathbb{E}\left[(G(x, y)-\widetilde{G}(x, y)) 1_{A}(x) 1_{B}(y)\right]\right|=o(1) \quad \forall A \subseteq X, B \subseteq Y$ triangle-density $(G)=\mathbb{E}[G(x, y) G(x, z) G(y, z)]$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

good 1-dense model: $\quad\left|\mathbb{E}\left[(G(x, y)-\widetilde{G}(x, y)) 1_{A}(x) 1_{B}(y)\right]\right|=o(1) \quad \forall A \subseteq X, B \subseteq Y$

$$
\begin{aligned}
\text { triangle-density }(\mathrm{G}) & =\mathbb{E}[G(x, y) G(x, z) G(y, z)] \\
& =\mathbb{E}[\widetilde{G}(x, y) G(x, z) G(y, z)]+o(1)
\end{aligned}
$$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

good 1-dense model: $\quad\left|\mathbb{E}\left[(G(x, y)-\widetilde{G}(x, y)) 1_{A}(x) 1_{B}(y)\right]\right|=o(1) \quad \forall A \subseteq X, B \subseteq Y$

$$
\begin{aligned}
\text { triangle-density }(G) & =\mathbb{E}[G(x, y) G(x, z) G(y, z)] \\
& =\mathbb{E}[\widetilde{G}(x, y) G(x, z) G(y, z)]+o(1) \\
& =\mathbb{E}[\widetilde{G}(x, y) \widetilde{G}(x, z) G(y, z)]+o(1)
\end{aligned}
$$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

good 1-dense model: $\quad\left|\mathbb{E}\left[(G(x, y)-\widetilde{G}(x, y)) 1_{A}(x) 1_{B}(y)\right]\right|=o(1) \quad \forall A \subseteq X, B \subseteq Y$

$$
\begin{aligned}
\text { triangle-density }(\mathrm{G}) & =\mathbb{E}[G(x, y) G(x, z) G(y, z)] \\
& =\mathbb{E}[\widetilde{G}(x, y) G(x, z) G(y, z)]+o(1) \\
& =\mathbb{E}[\widetilde{G}(x, y) \widetilde{G}(x, z) G(y, z)]+o(1) \\
& =\mathbb{E}[\widetilde{G}(x, y) \widetilde{G}(x, z) \widetilde{G}(y, z)]+o(1) \text { =triangle-density }(G)+o(1)
\end{aligned}
$$

Counting lemma

Triangle counting lemma, dense setting

Let G and \widetilde{G} be (tripartite) graphs on the same vertex set, such that \widetilde{G} is a good 1 -dense model of G. Then

$$
\operatorname{triangle-density}(G)=\operatorname{triangle-density}(\widetilde{G})+o(1)
$$

good 1-dense model: $\quad\left|\mathbb{E}\left[(G(x, y)-\widetilde{G}(x, y)) 1_{A}(x) 1_{B}(y)\right]\right|=o(1) \quad \forall A \subseteq X, B \subseteq Y$

$$
\begin{aligned}
\text { triangle-density }(\mathrm{G}) & =\mathbb{E}[G(x, y) G(x, z) G(y, z)] \\
& =\mathbb{E}[\widetilde{G}(x, y) G(x, z) G(y, z)]+o(1) \\
& =\mathbb{E}[\widetilde{G}(x, y) \widetilde{G}(x, z) G(y, z)]+o(1) \\
& =\mathbb{E}[\widetilde{G}(x, y) \widetilde{G}(x, z) \widetilde{G}(y, z)]+o(1) \text { =triangle-density }(G)+o(1)
\end{aligned}
$$

Fails in the sparse setting (need $o\left(p^{3}\right)$ error)

Sparse counting lemma

Triangle counting lemma, sparse setting (Conlon-Fox-Z.)

(Sparse) $G \subset \Gamma$ and (dense) \widetilde{G} are (tripartite) graphs on the same vertex set. Suppose

- "Sparse pseudorandom host graph" Γ has edge density p and satisfies the 3-linear forms condition (densities of $H \subset K_{2,2,2}$ are close to random)
- \widetilde{G} is a good p-dense model of G

Then

$$
\operatorname{triangle-density}(G)=p^{3}(\operatorname{triangle}-\operatorname{density}(\widetilde{G})+o(1))
$$

Key new proof ingredient: densification

Densification

$$
\mathbb{E}\left[G(x, z) G(y, z) G\left(x, z^{\prime}\right) G\left(y, z^{\prime}\right)\right]
$$

Densification

$$
\begin{aligned}
& \mathbb{E}\left[G(x, z) G(y, z) G\left(x, z^{\prime}\right) G\left(y, z^{\prime}\right)\right] \\
& \quad=\mathbb{E}\left[G^{\prime}(x, y) G(x, z) G(y, z)\right]
\end{aligned}
$$

Set $G^{\prime}(x, y):=\operatorname{codeg}_{G}(x, y) /|Z|$
$G^{\prime}(x, y)=O\left(p^{2}\right)$ for almost all pairs (x, y), and thus behaves like a dense weighted graph after scaling

Densification

$$
\begin{aligned}
& \mathbb{E}\left[G(x, z) G(y, z) G\left(x, z^{\prime}\right) G\left(y, z^{\prime}\right)\right] \\
& \\
& =\mathbb{E}\left[G^{\prime}(x, y) G(x, z) G(y, z)\right]
\end{aligned}
$$

Set $G^{\prime}(x, y):=\operatorname{codeg}_{G}(x, y) /|Z|$
$G^{\prime}(x, y)=O\left(p^{2}\right)$ for almost all pairs (x, y), and thus behaves like a dense weighted graph after scaling

Densified $G(X, Y)$. Now repeat for $G(X, Z)$ and $G(Y, Z)$.
Reduce to dense setting.

Transference

Let $S \subset \mathbb{Z} / N \mathbb{Z}$ be pseudorandom with density p, and

$$
\text { (sparse) } \quad A \subset S \subset \mathbb{Z} / N \mathbb{Z}, \quad|A| \geq \delta|S|
$$

Dense model theorem: One can find a good p-dense model \widetilde{A} of A :

$$
\text { (dense) } \quad \widetilde{A} \subset \mathbb{Z} / N \mathbb{Z}, \quad \quad \frac{|\widetilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta
$$

Counting lemma:

$$
\begin{aligned}
\left.\left.\left(\frac{N}{|S|}\right)^{3} \right\rvert\,\{3-\text { APs in } A\} \right\rvert\, & \approx \mid\{3-\text { APs in } \widetilde{A}\} \mid \\
& \geq c N^{2} \quad[\text { By Roth's Theorem }]
\end{aligned}
$$

\Longrightarrow relative Roth theorem (also works for $k-A P$)

Relative Szemerédi theorem

Szemerédi's theorem (1975)

If $A \subseteq \mathbb{Z} / N \mathbb{Z}$ is k-AP-free, then $|A|=o(N)$.

Relative Szemerédi theorem (Conlon-Fox-Z.)

If $S \subseteq \mathbb{Z} / N \mathbb{Z}$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A|=o(|S|)$.

Green-Tao theorem

Every subset of the primes with positive relative density contains arbitrarily long APs.

Polynomial progressions in the primes

Polynomial Szemerédi theorem (Bergelson-Leibman 1996)

Every subset of \mathbb{N} with positive density contains arbitrary polynomial progressions, i.e., for every $P_{1}, \ldots, P_{k} \in \mathbb{Z}[X]$ with $P_{1}(0)=\cdots=P_{k}(0)=0$, the subset contains $x+P_{1}(y), \ldots, x+P_{k}(y)$ for some x and $y>0$.

Polynomial Szemerédi theorem in the primes (Tao-Ziegler 2008)

Every subset of the primes with positive relative density contains arbitrary polynomial progressions.

Using the densification method, Tao and Ziegler recently strengthened their result:

- (2015) existence of narrow progressions with polylogarithmic gaps
- (2018) asymptotics for the number of polynomial patterns in the primes

Some open problems

- Can the pseudorandomness hypotheses be further weakened?
- A multidimensional relative Szemerédi theorem? Linear forms conditions on $S \subset \mathbb{Z} / N \mathbb{Z}$ so that every relatively dense $A \subset S \times S$ contains a $k \times k$ square grid

Some open problems

- Can the pseudorandomness hypotheses be further weakened?
- A multidimensional relative Szemerédi theorem? Linear forms conditions on $S \subset \mathbb{Z} / N \mathbb{Z}$ so that every relatively dense $A \subset S \times S$ contains a $k \times k$ square grid

THANK YOU!

