Equiangular Lines and

Eigenvalue Multiplicities

Yufei Zhao
MIT

Equiangular Lines

$N(d)=$ max \# of lines in \mathbb{R}^{d} with pairwise equal angles

$N(2)=3$

Exact answer known for finitely many d
General bounds:

$$
\text { [de Caen '00] } \quad c d^{2} \leq N(d) \leq\binom{ d+1}{2} \quad \text { [Gerzon'73] }
$$

In lower bound constructions, pairwise angles $\rightarrow 90^{\circ}$ as $d \rightarrow \infty$

Equiangular Lines With a Fixed Angle

$N_{\alpha}(d)=\max \#$ of lines in \mathbb{R}^{d} with pairwise angle $\cos ^{-1} \alpha$
(focus: $\alpha>0$ fixed, $d \rightarrow \infty$)

- $N_{\alpha}(d)$ grows linearly in d
- in contrast to $N(d)=\Theta\left(d^{2}\right)$
- Problem: determine

$$
\lim _{d \rightarrow \infty} \frac{N_{\alpha}(d)}{d}
$$

Equiangular Lines With a Fixed Angle: History

[Lemmens, Seidel'73] $N_{1 / 3}(d)=2(d-1) \quad \forall d \geq 15$
[Neumaier '89]

$$
N_{1 / 5}(d)=\left\lfloor\frac{3}{2}(d-1)\right] \text { for sufficiently large } d
$$

"the next interesting case will require substantially stronger techniques"
[Bukh '16]

$$
N_{\alpha}(d) \leq C_{\alpha} d
$$

[Balla, Dräxler, Keevash, Sudakov '18] $\limsup _{d \rightarrow \infty} N_{\alpha}(d) / d$ maximized at $\alpha=\frac{1}{3}$
[Jiang, Polyanskii '20] Determined $\lim _{d \rightarrow \infty} N_{\alpha}(d) / d \forall \alpha>0.196$
[Jiang, Tidor, Yao, Zhang, Z. '21] Solved! Determined $\lim _{d \rightarrow \infty} N_{\alpha}(d) / d$ for all fixed α

The Answer [Jiang, Tidor, Yao, Zhang, Z. '21]

$N_{\alpha}(d)=\max \#$ of lines in \mathbb{R}^{d} with pairwise angle $\cos ^{-1} \alpha$
 For every integer $k \geq 2$

$$
N_{\frac{1}{2 k-1}}(d)=\left\lfloor\frac{k}{k-1}(d-1)\right\rfloor \forall d \geq d_{0}(k)
$$

Other angles: \forall fixed $\alpha \in(0,1)$, setting $\lambda=(1-\alpha) /(2 \alpha)$ and spectral radius order $k=k(\lambda)$
$=\min \#$ vertices in a graph with top eigval exactly λ (adj. matrix)

- If $k<\infty, N_{\alpha}(d)=\left\lfloor\frac{k}{k-1}(d-1)\right\rfloor \quad \forall d \geq d_{0}(\alpha)$
- If $k=\infty, N_{\alpha}(d)=d+o(d) \quad$ as $d \rightarrow \infty$

Spectral radius order

spectral radius order $k=k(\lambda)$
$=\min \#$ vertices in a graph with top eigval exactly λ (adj. matrix)

Examples

α	λ	k	G
$1 / 3$	1	2	\square
$1 / 5$	2	3	∇
$1 / 7$	3	4	∇
$\frac{1}{1+2 \sqrt{2}}$	$\sqrt{2}$	3	\vee

The Answer [Jiang, Tidor, Yao, Zhang, Z. '21]

$N_{\alpha}(d)=\max \#$ of lines in \mathbb{R}^{d} with pairwise angle $\cos ^{-1} \alpha$

For every integer $k \geq 2$

$$
N_{\frac{1}{2 k-1}}(d)=\left\lfloor\frac{k}{k-1}(d-1)\right\rfloor \forall d \geq d_{0}(k)
$$

Proof needs $d \geq 2^{2^{k^{1+o(1)}}}$
Conjecture: $\forall d \geq k^{C}$

Other angles: \forall fixed $\alpha \in(0,1)$, setting $\lambda=(1-\alpha) /(2 \alpha)$ and spectral radius order $k=k(\lambda)$
$=\min \#$ vertices in a graph with top eigval exactly λ (adj. matrix)

- If $k<\infty, N_{\alpha}(d)=\left\lfloor\frac{k}{k-1}(d-1)\right\rfloor \forall d \geq d_{0}(\alpha) \stackrel{o(d) \text { is } O_{\alpha}(d / \log \log d)}{ } \begin{aligned} & \text { Jiang-Polyanskii'20 conj: } O_{\alpha}(1)\end{aligned}$
- If $k=\infty, N_{\alpha}(d)=d+o(d) \quad$ as $d \rightarrow \infty \quad$ constructed $\Omega_{\alpha}(\log \log d)$

Second Eigenvalue Multiplicity

A connected bounded degree graph has sublinear second eigenvalue multiplicity (always referring to the adjacency matrix)

Theorem. (Jiang, Tidor, Yao, Zhang, Z. '21)
A connected n-vertex graph with maximum degree Δ has second largest eigenvalue with multiplicity

$$
\leq C \log \Delta \frac{n}{\log \log n}
$$

Connection to Spectral Graph Theory

Graduate Texts in Mathematics

Chris Godsil Gordon Royle
Algebraic Graph Theory

The problem that we are about to discuss is one of the founding problems of algebraic graph theory, despite the fact that at first sight it has little connection to graphs. A simplex in a metric space with distance function d is a subset S such that the distance $d(x, y)$ between any two distinct points of S is the same. In \mathbb{R}^{d}, for example, a simplex contains at most $d+1$ elements. However, if we consider the problem in real projective space then finding the maximum number of points in a simplex is not so easy. The points of this space are the lines through the origin of \mathbb{R}^{d}, and the distance between two lines is determined by the angle between them. Therefore, a simplex is a set of lines in \mathbb{R}^{d} such that the angle between any two distinct lines is the same. We call this a set of equiangular lines. In this chapter we show how the problem of determining the maximum number of equiangular lines in \mathbb{R}^{d} can be expressed in graph-theoretic terms.

Connection to Spectral Graph Theory

Equiangular lines in $\mathbb{R}^{d} \rightarrow$ unit vectors in $\mathbb{R}^{d} \rightarrow \operatorname{graph} G$

Edge = obtuse Non-edge = acute

Given a list of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$, Gram matrix is PSD and rank $\leq d$:

$$
\text { Gram matrix }=\left(\begin{array}{ccc}
v_{1} \cdot v_{1} & \cdots & v_{1} \cdot v_{n} \\
\vdots & \ddots & \vdots \\
v_{n} \cdot v_{1} & \cdots & v_{n} \cdot v_{n}
\end{array}\right)=(1-\alpha) I-2 \alpha A_{G}+\alpha J
$$

Equivalent problem: given α, d, find graph G with max \# vertices N s.t.

$$
(1-\alpha) I-2 \alpha A_{G}+\alpha J \text { is PSD and rank } \leq d
$$

Connection to Spectral Graph Theory

Problem: Given α, d, find graph G with max \# vertices N s.t.

$$
\text { Gram }=(1-\alpha) I-2 \alpha A_{G}+\alpha J \text { is PSD and rank } \leq d .
$$

Example: recall $N_{1 / 5}(d)=\left[\frac{3}{2}(d-1)\right\rfloor$ for all large d.
To verify $N_{1 / 5}(9) \geq 12$, check

$$
\begin{gathered}
G=\vee \vee \vee \\
\begin{array}{c}
(1-\alpha) I-2 \alpha A_{G}+\alpha J= \\
\text { is PSD and rank } 9 \\
(\alpha=1 / 5)
\end{array}
\end{gathered}
$$

Upper Bound on N

Problem: Given α, d, find graph G with max \# vertices N s.t.

$$
\text { Gram }=(1-\alpha) I-2 \alpha A_{G}+\alpha J \text { is PSD and rank } \leq d .
$$

By rank-nullity

$$
\begin{aligned}
& N=\operatorname{rank}(\text { Gram })+\operatorname{nullity}(\text { Gram }) \\
& \begin{array}{lll}
\leq & d & +\operatorname{null}\left((1-\alpha) I-2 \alpha A_{G}+\alpha J\right) \\
\leq & d & +\operatorname{null}\left((1-\alpha) I-2 \alpha A_{G}\right)+1
\end{array} \\
& \text { Multiplicity of } \lambda=\frac{1-\alpha}{2 \alpha} \text { as an eigval of } A_{G}
\end{aligned}
$$

Since Gram is PSD, if $\lambda=\frac{1-\alpha}{2 \alpha}$ is an eigval of A_{G}, it must be either the largest eigval (equality case) or $2^{\text {nd }}$ largest (need to rule out) easy hard

Recap

- Equiangular lines in $\mathbb{R}^{d} \rightarrow$ unit vectors in $\mathbb{R}^{d} \rightarrow$ graph G

$$
N=\# \text { lines }
$$

\# vertices

- $N \leq d+\operatorname{mult}\left(\lambda, A_{G}\right)+1$
- Optimal configuration (for large d) turns out to be
$G=$ disjoint copies of a fixed graph with top eigval exactly $\lambda=\frac{1-\alpha}{2 \alpha}$

- What happens if λ is the $2^{\text {nd }}$ eigval of G ?
- Can assume G is connected from now on
- Want to show that mult $\left(\lambda_{2}, A_{G}\right)$ is small

Second Eigenvalue Multiplicity

Q: must all connected graphs have small $2^{\text {nd }}$ eigval multiplicity?
No. k-clique has eigvals $k-1$ (once) and -1 ($k-1$ times)
Not all graphs can arise from equiangular lines

$$
\begin{aligned}
& \text { Theorem (Balla, Dräxler, Keevash, Sudakov '18) } \\
& \forall \alpha \exists \Delta=\Delta(\alpha): \text { can switch so that max degree } \leq \Delta \\
& \text { [Balla '21+] } \Delta=0\left(\alpha^{-4}\right) \& \text { tight }
\end{aligned}
$$

Theorem. (Jiang, Tidor, Yao, Zhang, Z. '21) A connected n-vertex graph with $\max \operatorname{deg} \leq \Delta$ has $2^{\text {nd }}$ eigval multiplicity $O_{\Delta}\left(\frac{n}{\log \log n}\right)$

Sublinear Second Eigenvalue Multiplicity

Theorem. (Jiang, Tidor, Yao, Zhang, Z. '21) A connected n-vertex graph with $\max \operatorname{deg} \leq \Delta$ has $2^{\text {nd }}$ eigval multiplicity $O_{\Delta}\left(\frac{n}{\log \log n}\right)$
More generally, $j^{\text {th }}$ eigval multiplicity $O_{\Delta, j}\left(\frac{n}{\log \log n}\right)$ for fixed j

Near miss examples

- Strongly regular graphs (e.g., complete graph, Paley graph)
- Not bounded degree
- has eigval 0 with linear multplicity
- 0 is not the $2^{\text {nd }}$ largest eigval
- $\Delta \Delta \Delta \Delta \Delta \Delta$ has top eigval with linear multiplicity
- not connected

Second Eigenvalue Multiplicity

Open: Maximum $2^{\text {nd }}$ eigval mult of conn. bounded degree graph on n vertices?

- [Jiang, Tidor, Yao, Zhang, Z. '21]

$$
\operatorname{mult}\left(\lambda_{2}, G\right) \leq \frac{C_{\Delta} n}{\log \log n}
$$

- [Haiman, Schildkraut, Zhang, Z. '22]
\exists infinite family of bounded degree graphs with

Construction.

Step 1. Cayley graph on $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ generated by:
(I) a multiplicative generator, and
(II) an additive shift.

Step 2. Each (II) edge mus path of length $\log q$

- Eigenvalues tend not to collide "by accident"
- Relies on group representations to get multiple eigval. Barrier at \sqrt{n}
- Open: $\operatorname{mult}\left(\lambda_{2}, G\right)<n^{1-c}$? (\Rightarrow equiangular lines theorem for dimension $d>k^{C}$)

Second Eigenvalue Multiplicity

Q: Maximum $2^{\text {nd }}$ eigval multiplicity of connected bounded degree n-vertex graph?
[Jiang, Tidor, Yao, Zhang, Z. '21] mult $\left(\lambda_{2}, G\right)=O(n / \log \log n)$

- For expander graphs $(N(A) \geq(1+\delta)|A| \forall|A| \leq n / 2)$,

$$
\operatorname{mult}\left(\lambda_{2}, G\right)=O\left(n /(\log n)^{c}\right)
$$

- [Lee-Makarychev '08, building on Gromov, Colding-Minicozzi, Kleiner]

For non-expanding Cayley graphs, $\operatorname{mult}\left(\lambda_{2}, G\right)=O(1)$

- Examples of non-expanding: Abelian groups, nilpotent groups of bounded step
- [McKenzie, Rasmussen, Srivastava '21] For regular graphs

$$
\operatorname{mult}\left(\lambda_{2}, G\right)=O\left(n /(\log n)^{c}\right)
$$

- A typical length $2 k$ closed walk covers $\geq k^{c}$ vertices
- [Haiman, Schildkraut, Zhang, Z. '22] Lower bound constructions

$$
\text { Irregular: } \gtrsim \sqrt{n / \log n}
$$

Cayley: $\gtrsim n^{2 / 5}$

Proof Sketch

Theorem. mult $\left(\lambda_{2}, G\right) \leq C_{\Delta} n / \log \log n$ for connected G

$$
r=c \log \log n \quad s=c \log n \quad \lambda=\lambda_{2}(G)
$$

- $H=G$ with a small r-net removed
- radius s balls in H typ. have spectral radius $<\lambda-\varepsilon$
- By counting length $2 s$ closed walks
- Bound $2^{\text {nd }}$ eigval multiplicity in H via moments:
vertex removal lowers spectral radius

$$
\operatorname{mult}(\lambda, H) \lambda^{2 s} \leq \sum_{i} \lambda_{i}(H)^{2 s}=\operatorname{tr} A_{H}^{2 s}=\# \text { closed length } 2 s \text { walks in } H
$$

$$
\leq \sum_{v \in V(H)} \lambda_{1}(\text { radius } s \text { ball around } v \text { in } H)^{2 s} \leq n(\lambda-\varepsilon)^{2 s}
$$

- $\Rightarrow \operatorname{mult}(\lambda, H)=o(n)$

- $\Rightarrow \operatorname{mult}(\lambda, G) \leq \operatorname{mult}(\lambda, H)+\mid$ net $\mid=o(n)$ by Cauchy eigval interlacing

Approximate $2^{\text {nd }}$ Eigenvalue Multiplicity

- Proof also bounds the "approximate $2^{\text {nd }}$ eigval multiplicity", showing at most $O\left(\frac{n}{\log \log n}\right)$ eigenvalues (incl. mult.) within $O\left(\frac{1}{\log n}\right)$ of λ_{2}

- [Haiman, Schildkraut, Zhang, Z. '22]

A construction showing the above bounds are tight

- Demonstrates a limitation of the trace method

Spherical Codes

- $L \subseteq[-1,1)$. An L-code in \mathbb{R}^{d} is a set of unit vectors whose pairwise inner products lie in L
- $N_{L}(d)=$ size of largest L-code in \mathbb{R}^{d}
- Points on a sphere with pairwise angle $\geq \theta: L=[-1, \cos \theta]$
- Kissing number $\mathbb{R}^{d}: L=\left[-1, \frac{1}{2}\right]$
- Sphere packing upper bounds in high dimensions

- Linear programming bound (Delsarte '73)
- Equiangular lines: $L=\{-\alpha, \alpha\}$

Beyond linear programming bounds ...

Spherical Codes

$N_{L}(d)=$ size of largest L-code in \mathbb{R}^{d}, i.e., unit vec, pairwise inner products lie in L

- [Bukh '05]

For fixed $L=[-1,-\beta] \cup\{\alpha\}$ with $\beta>0$

$$
N_{L}(d)=O_{L}(d)
$$

- [Balla, Dräxler, Keevash, Sudakov '18]

For fixed $L=[-1,-\beta] \cup\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ with $\beta>0$

$$
N_{L}(d)=O_{L}\left(d^{k}\right)
$$

Further research: determine $N_{L}(d)$ more precisely

Spherical Two-Distance Sets

[Jiang, Tidor, Yao, Zhang, Z. '20+] [Jiang, Polyanskii '21+]

- Problem. For fixed $\alpha, \beta>0$, determine

$$
\lim _{d \rightarrow \infty} \frac{N_{\{-\beta, \alpha\}}(d)}{d}
$$

- A conjectural limit in terms of eigenvalue of signed graphs
- Solved in special cases: $\alpha<2 \beta$ or $(1-\alpha) /(\alpha+\beta)<2.019 \ldots$
- Open in general
- Obstacle: Sublinear eigenvalue multiplicity FALSE for signed graphs
- E.g., \exists bounded degree graph whose most negative eigval multiplicity is linear

Solution Framework

I. Forbidden local configurations / subgraphs

- Using Gram matrix is PSD
II. Global graph structure
- Graph theory, Ramsey theory
- Equiangular lines: bounded degree graph
- Spherical two-distance sets: complete multipartite XOR bounded degree
III. New insights in spectral graph theory ??
- [JTYZZ] Sublinear eigenvalue multiplicity in connected bounded degree graphs
- [Jiang Polyanski '21+] \{signed graphs with largest eigenvalue $\leq \lambda\}$ is characterized by forbidding a finite set of induced subgraphs iff $\lambda<2.019 \ldots$

Complex Equiangular Lines

Unrestricted angles

- Zauner's conjecture: $N^{\mathbb{C}}(d)=d^{2}$ for all $d \quad$ (known: $N^{\mathbb{C}}(d) \leq d^{2}$) i.e., $\exists d^{2}$ unit vec. in \mathbb{C}^{d} with equal abs. of pairwise inner product
- "SIC-POVM" from quantum mechanics
- Verified in small dim. (exactly for $d \leq 53$, numerically for $d \leq 193$)

Restricted angles

- Determine $\lim _{d \rightarrow \infty} N_{\alpha}^{\mathbb{C}}(d) / d$

Equiangular subspaces in \mathbb{R}^{d}

- Configs of k-dim. subspaces in \mathbb{R}^{d} with given pairwise angles

Equiangular lines and eigenvalue multiplicities

Equiangular lines with a fixed angle.

$N_{\alpha}(d)=\max \#$ of lines in \mathbb{R}^{d} with pairwise angle $\cos ^{-1} \alpha$

