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Abstract

In this note, we give a short proof of the fact that the coefficients of the polynomial

An(x) = (1− x)(1− x2)(1− x3) · · · (1− xFn)(1− xFn+1)

are all equal to −1, 0 or 1, where Fn is the n-th Fibonacci number. This improves the previous
result that the coefficients of

∏
n≥2

(
1− xFn

)
are all equal to −1, 0 or 1.

Consider the infinite product

A(x) =
∏
n≥2

(
1− xFn

)
= (1− x)(1− x2)(1− x3)(1− x5)(1− x8) · · ·

= 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + x18 + · · · .

regarded as a formal power series, where Fn is the n-th Fibonacci number. There is a very simple
combinatorial interpretation of the coefficients of A(x), namely, the coefficient of xm is rE(m) −
rO(m), where rE(m) (resp. rO(m)) is the number of ways to write m as a sum of an even (resp.
odd) number of distinct positive Fibonacci numbers. Robbins [2] showed that the coefficients of
A(x) are all equal to −1, 0 or 1, and Ardila [1] gave a simple recursive description of the coefficients
of A(x).

In this note, we give a short proof of a somewhat stronger result. Namely, we show that any
partial product of A(x), considered as a polynomial, also has coefficients −1, 0, 1.

Proposition 1. Let n be a positive integer. The coefficients of the polynomial

An(x) = (1− x)(1− x2)(1− x3) · · · (1− xFn)(1− xFn+1)

are all equal to −1, 0 or 1.

For instance, the first few partial products are

A1(x) = 1− x

A2(x) = 1− x− x2 + x3

A3(x) = 1− x− x2 + x4 + x5 − x6

A4(x) = 1− x− x2 + x4 + x7 − x9 − x10 + x11

A5(x) = 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x15 + x17 + x18 − x19

A6(x) = 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + x18 − x19

− x20 + x21 − x24 + x25 + x28 − x30 − x31 + x32
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Combinatorially, this is equivalent to saying that if we are only allowed to use distinct parts taken
from the set {F2, F3, . . . , Fn}, then the number of partitions of m into an odd number of parts
differs by at most one from the number of partitions of m into an even number of parts.

Note that Proposition 1 implies the result that the coefficients of A(x) are −1, 0 and 1, since
the terms of An(x) agree with A(x) until at least up to the term xFn+1−1. Thus, by choosing n
arbitrarily large, our result implies the result about A(x).

Proof of Proposition 1. We say that a polynomial is timid if each of its coefficients is −1, 0 or
1. Let us construct the auxiliary polynomials

Bn(x) = (1− x)(1− x2)(1− x3) · · · (1− xFn)(1− xFn+1 − xFn+2),

and Cn(x) = (1− x)(1− x2)(1− x3) · · · (1− xFn)(1 + xFn − xFn+2).

In the n = 1 case, we define B1(x) = 1 − xF2 + xF3 and C1 = 1 + xF1 − xF3 . We will show by
induction that the polynomials An, Bn, Cn are all timid for all positive integer n.

We can check the base cases (n = 1, 2) manually. Now suppose that we know that Ak, Bk, Ck

are all timid for all k < n. We want to prove that An, Bn, Cn are all timid as well.
First, we show that An is timid. We have

An(x) = An−3(x)(1− xFn−1)(1− xFn)(1− xFn+1)

= An−3(x)(1− xFn−1 − xFn − xFn+1 + xFn−1+Fn + xFn−1+Fn+1 + xFn+Fn+1 − xFn−1+Fn+Fn+1)

= An−3(x)(1− xFn−1 − xFn + xFn−1+Fn+1 + xFn−2+Fn−1+Fn+1 − xFn−1+Fn+Fn+1)

= An−3(x)(1− xFn−1 − xFn) + xFn−1+Fn+1An−3(x)(1 + xFn−2 − xFn)

= Bn−2(x) + xFn−1+Fn+1Cn−2(x).

Now, notice that the degree of Bn−2(x) is F2 + F3 + · · · + Fn−2 + Fn = 2Fn − F3, and we have
Fn−1+Fn+1 > 2Fn−F3 since (Fn−1+Fn+1)−(2Fn−F3) = Fn−3+F3 > 0. Informally, this means that
when we add the two polynomials Bn−2(x) and xFn−1+Fn+1Cn−2(x), the terms “don’t mix.” Then,
the fact that Bn−2 and Cn−2 are both timid implies that An(x) = Bn−2(x) + xFn−1+Fn+1Cn−2(x)
is timid as well.

Next, we show that Bn is timid. We have

Bn(x) = An−2(x)(1− xFn)(1− xFn+1 − xFn+2)

= An−2(x)(1− xFn+1 − xFn+2 − xFn + xFn+Fn+1 + xFn+Fn+2)

= An−2(x)(1− xFn − xFn+1) + An−2(x)xFn+Fn+2

= Bn−1(x) + An−2(x)xFn+Fn+2 .

Now we argue as before. Since the degree of Bn−1 is 2Fn+1−F3, which is less than Fn + Fn+2, the
fact that Bn−1 and An−2 are both timid implies that Bn is timid as well.

Finally, we show that Cn is timid. We have

Cn(x) = An−2(x)(1− xFn)(1 + xFn − xFn+2)

= An−2(x)(1 + xFn − xFn+2 − xFn − x2Fn + xFn+Fn+2)

= An−2(x)(1− x2Fn+Fn−1 − x2Fn + x2Fn+Fn+1)

= An−2(x)− x2FnAn−2(x)(1 + xFn−1 − xFn+1)

= An−2(x)− x2FnCn−1(x).
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The degree of An−2 is F2 + F3 + · · · + Fn−1 = Fn+1 − F3, and Fn+1 − F3 is less than 2Fn since
2Fn − (Fn+1 − F3) = Fn−2 + F3 > 0. Therefore, since An−2 and Cn−1 are both timid, Cn is timid
as well.

We have completed our proof that An, Bn, Cn are timid for all n. The proposition follows. �

This proof also allows us to make a slightly more general conclusion.

Proposition 2. Let t1, t2, . . . be a sequence of positive integers satisfying t1 < t2 and tn+2 = tn+1+
tn for all positive integers n. Then the coefficients of the polynomial (1− xt1)(1− xt2) · · · (1− xtn)
are all equal to −1, 0 or 1 for all positive integers n.

To prove Proposition 2, we simply have to replace every occurrence of Fn with tn−1 in the proof
of Proposition 1.

For instance, for any positive integers m < n, the coefficients of polynomials
∏n

k=m+1

(
1− xFk

)
and

∏n
k=m

(
1− xLk

)
are all equal to −1, 0 or 1. Here Lk is the k-th Lucas number.

Note that while
∏

n≥1(1 − xn) has coefficients −1, 0 and 1 due to Euler’s pentagonal number
theorem, we cannot say the same thing about its partial products, as

∏4
n=1(1− xn) = 1− x− x2 +

2x5− x8− x9 + x10. Also, if a sequence of positive integers (tn) satisfies tn+1 > tn + tn−1 + · · ·+ t1
for all n, then the polynomial

∏n
k=1(1− xtk) clearly always has coefficients −1, 0 or 1. It would be

interesting to characterize all sequences that have similar properties.
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