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Asymptotic notation convention

Each line below has the same meaning for positive functions f and g (as some parameter,
usually n, tends to infinity)

• f . g, f = O(g), g = Ω(f), f ≤ Cg (for some constant C > 0)

• f/g → 0, f � g, f = o(g) (and sometimes g = ω(f))

• f = Θ(g), f � g, g . f . g

• f ∼ g, f = (1 + o(1))g

• whp (= with high probability) means with probability 1− o(1)

Warning: analytic number theorists use� differently to mean O(·) (Vinogradov notation)



1 Introduction Probabilistic Methods in Combinatorics — Yufei Zhao

Figure 1: Paul Erdős (1913–1996) is considered the father of the probabilistic method.
He published around 1,500 papers during his lifetime, and had more than 500 collabora-
tors. To learn more about Erdős, see his biography The man who loved only numbers by
Hoffman and the documentary N is a number .

1 Introduction

Probabilistic method: to prove that an object exists, show that a random construction
works with positive probability

Tackle combinatorics problems by introducing randomness

Theorem 1.0.1. Every graph G = (V,E) contains a bipartite subgraph with at least
|E| /2 edges.

Proof. Randomly color every vertex of G with black or white, iid uniform

Let E ′ = edges with one end black and one end white

Then (V,E ′) is a bipartite subgraph of G

Every edge belongs to E ′ with probability 1
2
, so by linearity of expectation, E[|E ′|] = 1

2
|E|.

Thus there is some coloring with |E ′| ≥ 1
2
|E|, giving the desired bipartite subgraph.

1.1 Lower bounds to Ramsey numbers

Ramsey number R(k, `) = smallest n such that in every red-blue edge coloring of Kn,
there exists a red Kk or a blue K`.

e.g., R(3, 3) = 6

Ramsey (1929) proved that R(k, `) exists and is finite

1
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Figure 2: Frank Ramsey (1903–1930) wrote seminal papers in philosophy, economics, and
mathematical logic, before his untimely death at the age of 26 from liver problems. See a
recent profile of him in the New Yorker.

1.1.1 Erdős’ original proof

The probabilistic method started with:
P. Erdős, Some remarks on the theory of graphs, BAMS, 1947

Remark 1.1.1 (Hungarian names). Typing “Erdős” in LATEX: Erd\H{o}s and not Erd\"os

Hungarian pronunciations: s = /sh/ and sz = /s/, e.g., Erdős, Szekeres, Lovász

Theorem 1.1.2 (Erdős 1947). If
(
n
k

)
21−(k2) < 1, then R(k, k) > n. In other words, there

exist a red-blue edge-coloring of Kn without a monochromatic Kk.

Proof. Color edges uniformly at random

For every fixed subset R of k vertices, let AR denote the event that R induces a monochro-
matic Kk. Then P(AR) = 21−(k2).

P(there exists a monochromatic Kk) = P

 ⋃
R∈([n]

k )

AR

 ≤ ∑
R∈([n]

k )

P(AR) =

(
n

k

)
21−(k2) < 1.

Thus, with positive probability, the random coloring gives no monochromatic Kk.

Remark 1.1.3. By optimizing n (using Stirling’s formula) above, we obtain

R(k, k) >

(
1

e
√

2
+ o(1)

)
k2k/2

Can be alternatively phrased as counting: of all 2(n2) possible colorings, not all are bad
(this was how the argument was phrased in the original Erdős 1947 paper.

In this course, we almost always only consider finite probability spaces. While in principle
the finite probability arguments can be rephrased as counting, but some of the later more

2
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involved arguments are impractical without a probabilistic perspective.

Constructive lower bounds? Algorithmic? Open! “Finding hay in a haystack”

Remark 1.1.4 (Ramsey number upper bounds). Erdős–Szekeres (1935):

R(k + 1, `+ 1) ≤
(
k + `

k

)
.

Recent improvements by Conlon (2009), and most recently Sah (2020+):

R(k + 1, k + 1) ≤ e−c(log k)2
(

2k

k

)
.

All these bounds have the form R(k, k) ≤ (4+o(1))k. It is a major open problem whether
R(k, k) ≤ (4− c)k is true for some constant c > 0 and all sufficiently large k.

1.1.2 Alteration method

Two steps: (1) randomly color (2) get rid of bad parts

Theorem 1.1.5. For any k, n, we have R(k, k) > n−
(
n

k

)
21−(k2).

Proof. Construct in two steps:
(1) Randomly 2-color the edges of Kn

(2) Delete a vertex from every monochromatic Kk

Final graph has no monochromatic Kk

After step (1), every fixed Kk is monochromatic with probability 21−(k2), let X be the
number of monochromatic Kk’s. EX =

(
n
k

)
21−(k2).

We delete at most |X| vertices in step (2). Thus final graph has size ≥ n − |X|, which
has expectation n−

(
n
k

)
21−(k2).

Thus with positive probability, the remaining graph has size at least n −
(
n
k

)
21−(k2) (and

no monochromatic Kk by construction)

Remark 1.1.6. By optimizing the choice of n in the theorem, we obtain

R(k, k) >

(
1

e
+ o(1)

)
k2k/2,

which improves the previous bound by a constant factor of
√

2.

3
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1.1.3 Lovász local lemma

We give one more improvement to the lower bound, using the Lovász local lemma, which
we will prove later in the course

Consider “bad events” E1, . . . , En. We want to avoid all.

If all P(Ei) small, say
∑

i P(Ei) < 1, then can avoid all bad events.

Or, if they are all independent, then the probability that none of Ei occurs is
∏n

i=1(1 −
P(Ei)) > 0 (provided that all P(Ei) < 1).

What if there are some weak dependencies?

Theorem 1.1.7 (Lovász local lemma). Let E1, . . . , En be events, with P[Ei] ≤ p for all
i. Suppose that each Ei is independent of all other Ej except for at most d of them. If

ep(d+ 1) < 1,

then with some positive probability, none of the events Ei occur.

Remark 1.1.8. The meaning of “independent of . . . ” is actually somewhat subtle (and
easily mistaken). We will come back to this issue later on when we discuss the local
lemma in more detail.

Theorem 1.1.9 (Spencer 1977). If e
((
k
2

)(
n
k−2

)
+ 1
)

21−(k2) < 1, then R(k, k) > n.

Proof. Random 2-color edges of Kn

For each k-vertex subset R, let ER be the event that R induces a monochromatic Kk.
P[ER] = 21−(k2).

ER is independent of all ES other than those such that |R ∩ S| ≥ 2

For each R, there are at most
(
k
2

)(
n
k−2

)
choices S with |S| = k and |R ∩ S| ≥ 2.

Apply Lovász local lemma to the events
{
ER : R ∈

(
V
k

)}
and p = 21−(k2) and d =

(
k
2

)(
n
k−2

)
,

we get that with positive probability none of the events ER occur, which gives a coloring
with no monochromatic Kk’s.

Remark 1.1.10. By optimizing the choice of n, we obtain

R(k, k) >

(√
2

e
+ o(1)

)
k2k/2

4
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once again improving the previous bound by a constant factor of
√

2. This is the best
known lower bound to R(k, k) to date.

1.2 Set systems

1.2.1 Sperner’s theorem

Let F a collection of subsets of {1, 2, . . . , n}. We say that F is an antichain if no set in
F is contained in another set in F .

Question 1.2.1. What is the maximum number of sets in an antichain?

Example: F =
(

[n]
k

)
has size

(
n
k

)
. Maximized when k =

⌊
n
2

⌋
or
⌈
n
2

⌉
. The next result shows

that we cannot do better.

Theorem 1.2.2 (Sperner 1928). If F is an antichain of subsets of {1, 2, . . . , n}, then

|F| ≤
(

n

bn/2c

)
.

In fact, we will show an even stronger result:

Theorem 1.2.3 (LYM inequality; Bollobás 1965, Lubell 1966, Meshalkin 1963, and
Yamamoto 1954). If F is an antichain of subsets of [n], then∑

A∈F

1(
n
|A|

) ≤ 1.

Sperner’s theorem follows since
(
n
|A|

)
≥
(

n
bn/2c

)
.

Proof. Consider a random permutation σ of {1, 2, . . . , n}, and its associated chain of
subsets

∅, {σ(1)} , {σ(1), σ(2)} , {σ(1), σ(2), σ(3)} , . . . , {σ(1), . . . , σ(n)}

where the last set is always equal to {1, 2, . . . , n}. For each A ⊂ {1, 2, . . . , n}, let EA
denote the event that A is found in this chain. Then

P(EA) =
|A|!(n− |A|)!

n!
=

1(
n
|A|

) .
Since F is an antichain, if A,B ∈ F are distinct, then EA and EB cannot both occur. So
{EA : A ∈ F} is a set of disjoint event, and thus their probabilities sum to at most 1.

5
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1.2.2 Bollobás two families theorem

Sperner’s theorem is generalized by the following celebrated result of Bollobás, which has
many more generalizations that we will not discuss here.

Theorem 1.2.4 (Bollobás (1965) “two families theorem”). Let A1, . . . , Am be r-element
sets and B1, . . . , Bm be s-element sets such that Ai ∩Bi = ∅ for all i and Ai ∩Bj 6= ∅ for
all i 6= j. Then m ≤

(
r+s
r

)
.

Remark 1.2.5. The bound is sharp: let Ai range over all r-element subsets of [r + s] and
set Bi = [r + s] \ Ai.

Let us give an application/motivation for Bollobás’ two families theorem in terms of
transversals.

Given a set family F , say that T is a transversal for F if T ∩ S 6= ∅ for all S ∈ F (i.e.,
T hits every element of F).

Let τ(F), the transversal number of F , be the size of the smallest transversal of F .

Say that F is τ-critical if τ(F \ {S}) < τ(F) for all S ∈ F .

Question 1.2.6. What is the maximum size of a τ -critical r-uniform F with τ(F) = s+1?

We claim that the answer is
(
r+s
r

)
. Indeed, let F = {A1, . . . , Am}, and Bi an s-element

transversal of F \ {Ai} for each i. Then the condition is satisfied. Thus m ≤
(
r+s
r

)
.

Conversely, F =
(

[r+s]
r

)
is τ -critcal r-uniform with τ(F) = s+ 1. (why?)

Here is a more general statement of the Bollobás’ two-family theorem.

Theorem 1.2.7. Let A1, . . . , Am and B1, . . . , Bm be finite sets such that Ai ∩Bi = ∅ for
all i and Ai ∩Bj 6= ∅ for all i 6= j. Then

m∑
i=1

(
|Ai|+ |Bi|
|Ai|

)−1

≤ 1.

Note that Sperner’s theorem and LYM inequality are also special cases, since if {A1, . . . , Am}
is an antichain, then setting Bi = [n] \ Ai for all i satisfies the hypothesis.

Proof. Consider a uniform random ordering of all elements.

Let Xi be the event that all elements of Ai come before Bi.

Then P[Xi] =
(|Ai|+|Bi|
|Ai|

)−1
(all permutations of Ai ∪Bi are equally likely to occur).

6
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Note that the events Xi are disjoint (Xi and Xj both occuring would contradict the
hypothesis for Ai, Bi, Aj, Bj). Thus

∑
i P[Xi] ≤ 1.

1.2.3 Erdős–Ko–Rado theorem on intersecting families

A family F of sets is intersecting if A ∩B 6= ∅ for all A,B ∈ F .

Question 1.2.8. What is the largest intersecting family of k-element subsets of [n]?

Example: F = all subsets containing the element 1. Then F is intersecting and |F| =(
n−1
k−1

)
Theorem 1.2.9 (Erdős–Ko–Rado 1961; proved in 1938). If n ≥ 2k, then every intersect-
ing family of k-element subsets of [n] has size at most

(
n−1
k−1

)
.

Remark 1.2.10. The assumption n ≥ 2k is necessary since if n < 2k, then the family of
all k-element subsets of [n] is automatically intersecting by pigeonhole.

Proof. Consider a uniform random circular permutation of 1, 2, . . . , n (arrange them ran-
domly around a circle)

For each k-element subset A of [n], we say that A is contiguous if all the elements of A
lie in a contiguous block on the circle.

The probability that A forms a contiguous set on the circle is exactly n/
(
n
k

)
.

So the expected number of contiguous sets in F is exactly n |F| /
(
n
k

)
.

Since F is intersecting, there are at most k contiguous sets in F (under every circular
ordering of [n]). Indeed, suppose that A ∈ F is contiguous. Then there are 2(k−1) other
contingous sets (not necessarily in F) that intersect A, but they can be paired off into
disjoint pairs. Since F is intersecting, it follows that it contains at most k contiguous
sets.

Combining with result from the previous paragraph, we see that n |F| /
(
n
k

)
≤ k, and hence

|F| ≤ k
n

(
n
k

)
=
(
n−1
k−1

)
.

1.3 2-colorable hypergraphs

An k-uniform hypergraph (or k-graph) is a pair H = (V,E), where V (vertices) is a
finite set and E (edges) is a set of k-element subsets of E, i.e., E ⊆

(
V
k

)
(so hypergraphs

are really the same concept as set families).

7
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We say that H is r-colorable if the vertices can be colored using r colors so that no edge
is monochromatic.

Let m(k) denote the minimum number of edges in a k-uniform hypergraph that is not 2-
colorable (elsewhere in the literature, “2-colorable” = “property B”, named after Bernstein
who introduced the concept in 1908)

m(2) = 3

m(3) = 7. Example: Fano plane (below) is not 2-colorable (the other direction is by
exhaustive search)

m(4) = 23, proved via exhaustive computer search (Östergård 2014)

Exact value of m(k) is unknown for all k ≥ 5

The probabilistic method gives a short proof of a lower bound (random coloring):

Theorem 1.3.1 (Erdős 1964). For any k ≥ 2, m(k) ≥ 2k−1, i.e., every k-uniform hyper-
graph with fewer than 2k−1 edges is 2-colorable.

Proof. Let there be m < 2k−1 edges. In a random 2-coloring, the probability that there
is a monochromatic edge is ≤ 2−k+1m < 1.

Remark 1.3.2. Later on we will prove an better lower bound m(k) & 2k
√
k/ log k, which

is the best known to date.

Perhaps somewhat surprisingly, the state of the art upper bound is also proved using
probabilistic method (random construction).

Theorem 1.3.3 (Erdős 1964). m(k) = O(k22k), i.e., there exists a k-uniform hypergraph
with O(k22k) edges that is not 2-colorable.

Proof. Fix |V | = n to be decided. Let H be the k-uniform hypergraph obtained by
choosing m random edges (with replacement) S1, . . . , Sm.

Given a coloring χ : V → [2], let Aχ denote the event that χ is a proper coloring (i.e., no
monochromatic edges). It suffices to check that

∑
χ P[Aχ] < 1.
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If χ colors a vertices with one color and b vertices with the other color, then the probability
that (random) S1 is monochromatic under (fixed) χ is(

a
k

)
+
(
b
k

)(
n
k

) ≥
2
(
n/2
k

)(
n
k

) =
2(n/2)(n/2− 1) · · · (n/2− k + 1)

n(n− 1) · · · (n− k + 1)

≥ 2

(
n/2− k + 1

n− k + 1

)k
= 2−k+1

(
1− k − 1

n− k + 1

)k
Setting n = k2, we see that the above quantity is at least c2−k for some constant c > 0.

Thus, the probability that χ is a proper coloring (i.e., no monochromatic edges) is at most
(1− c2−k)m ≤ e−c2

−km (using 1 + x ≤ ex for all real x).

Thus,
∑

χ P[Aχ] ≤ 2ne−c2
−km < 1 for some m = O(k22k) (recall n = k2).

1.4 List chromatic number of Kn,n

Given a graph G, its chromatic number χ(G) is the minimum number of colors required
to proper color its vertices.

In list coloring, each vertex of G is assigned a list of allowable colors. We say that G is
k-choosable (also called k-list colorable) if it has a proper coloring no matter how one
assigns a list of k colors to each vertex.

We write ch(G), called the choosability (also called: choice number, list colorability,
list chromatic number) of G, to be the smallest k so that G is k-choosable.

It should be clear that χ(G) ≤ ch(G), but the inequality may be strict.

For example, while every bipartite graph is 2-colorable, K3,3 is not 2-choosable. Indeed,
no list coloring of K3,3 is possible with color lists (check!):

{2, 3} {2, 3}
{1, 3} {1, 3}
{1, 2} {1, 2}

Easy to check then that ch(K3,3) = 3.

Question 1.4.1. What is the asymptotic behavior of ch(Kn,n)?

First we prove an upper bound on ch(Kn,n).

Theorem 1.4.2. If n < 2k−1, then Kn,n is k-choosable.

9
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In other words, ch(Kn,n) ≤ blog2(2n)c+ 1.

Proof. For each color, mark it either “L” or “R” iid uniformly.

For any vertex of Kn,n on the left part, remove all its colors marked R.

For any vertex of Kn,n on the right part, remove all its colors marked L.

The probability that some vertex has no colors remaining is at most 2n2−k < 1. So with
positive probability, every vertex has some color remaining. Assign the colors arbitrarily
for a valid coloring.

The lower bound on ch(Kn,n) turns out to follow from the existence of non-2-colorable
k-uniform hypergraph with many edges.

Theorem 1.4.3. If there exists a non-2-colorable k-uniform hypergraph with n edges,
then Kn,n is not k-choosable.

Proof. Let H = (V,E) be a k-uniform hypergraph |E| = n edges. Label the vertex of
Kn,n by ve and we as e ranges over E. View V as colors and assign to both ve and we a
list of colors given by the k-element set e.

If this Kn,n has a proper list coloring with the assigned colors. Let C be the colors used
among the n vertices. Then we get a proper 2-coloring of H by setting C black and V \C
white. So if H is not 2-colorable, then this Kn,n is not k-choosable.

Recall from Theorem 1.3.3 that there exists a non-2-colorable k-uniform hypergraph with
O(k22k) edges. Thus ch(Kn,n) > (1− o(1)) log2 n.

Putting these bounds together:

Corollary 1.4.4. ch(Kn,n) = (1 + o(1)) log2 n

It turns out that, unlike the chromatic number, the list chromatic number always grows
with the average degree. The following result was proved using the method of hyper-
graph containers (a very important modern development in combinatorics) provides
the optimal asymptotic dependence (the example of Kn,n shows optimality).

Theorem 1.4.5 (Saxton and Thomason 2015). If a graph G has average degree d, then
ch(G) > (1 + o(1)) log2 d.

They also proved similar results for the list chromatic number of hypergraphs. For graphs,
a slightly weaker result, off by a factor of 2, was proved earlier by Alon (2000).

10
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2 Linearity of expectations

Let X = c1X1 + · · · + cnXn where X1, . . . , Xn are random variables, and c1, . . . , cn con-
stants. Then

E[X] = c1E[X1] + · · ·+ cnE[Xn]

Note: this identity does not require any assumption of independence. On the other hand,
generally E[XY ] 6= E[X]E[Y ] unless X and Y are uncorrelated (Independent random
variables are always uncorrelated)

Here is a simple question with a simple solution (there are also much more involved
solutions via enumerations, but linearity of expectations nearly trivializes the problem).

Question 2.0.1. What is the average number of fixed points of a random permutation
of [n] chosen uniformly at random?

Let Xi be the event that i is fixed. Then E[Xi] = 1/n. So the expected number of fixed
points is E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] = 1

2.1 Hamiltonian paths in tournaments

Important observation for proving existence: With positive probability, X ≥ E[X] (like-
wise for X ≤ E[X])

A tournament is a directed complete graph.

Theorem 2.1.1 (Szele 1943). There is a tournament on n vertices with at least n!2−(n−1)

Hamiltonian paths

Proof. Let X be the number of Hamiltonian paths in a random tournament.

For every permutation σ of [n], one has the directed path σ(1) → σ(2) → · · · → σ(n)

with probability 2−n+1.

Let X be the number of σ satisfying the above. EX = n!2−n+1.

This was considered the first use of the probabilistic method. Szele conjectured that the
maximum number of Hamiltonian paths in a tournament on n players is n!/(2 − o(1))n.
This was proved by Alon (1990) using the Minc–Brégman theorem on permanents (we
will see this later in the course when discussing the entropy method).
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2.2 Sum-free set

A subset A in an abelian group is sum-free if there do not exist a, b, c ∈ A with a+b = c.

Does every n-element set contain a large sum-free set?

Theorem 2.2.1 (Erdős 1965). Every set of n nonzero integers contains a sum-free subset
of size ≥ n/3.

Proof. Let A ⊂ Z \ {0} with |A| = n. For θ ∈ [0, 1], let

Aθ := {a ∈ A : {aθ} ∈ (1/3, 2/3)}

where {·} denotes fractional part. Then Aθ is sum-free since (1/3, 2/3) is sum-free in
R/Z.

For θ uniformly chosen at random, {aθ} is also uniformly random in [0, 1], so P(a ∈ Aθ) =

1/3. By linearity of expectations, E|Aθ| = n/3.

Remark 2.2.2. Alon and Kleitman (1990) noted that one can improve the bound to ≥
(n+ 1)/3 by noting that |Aθ| = 0 for θ ≈ 0.

Bourgain (1997) improved it to ≥ (n+2)/3 via a difficult Fourier analytic argument. This
is currently the best bound known.

Eberhard, Green, and Manners (2014) showed that there exist n-element sets of integers
whose largest sum-free subset has size (1/3 + o(1))n.

It remains an open problem to prove ≥ (n+ ω(n))/3 for some function ω(n)→∞

2.3 Turán’s theorem and independent sets

Question 2.3.1. What is the maximum number of edges in an n-vertex Kk-free graph?

Taking the complement of a graph changes its independent sets to cliques and vice versa.
So the problem is equivalent to one about graphs without large independent sets.

The following result, due to Caro (1979) and Wei (1981), shows that a graph with small
degrees much contain large independent sets. The probabilistic method proof shown here
is due to Alon and Spencer.
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Theorem 2.3.2 (Caro 1979, Wei 1981). Every graph G contains an independent set of
size at least ∑

v∈V (G)

1

dv + 1
,

where dv is the degree of vertex v.

Proof. Consider a random ordering (permutation) of the vertices. Let I be the set of
vertices that appear before all of its neighbors. Then I is an independent set.

For each v ∈ V , P(v ∈ I) = 1
1+dv

(this is the probability that v appears first among
{v} ∪ N(v)). Thus E|I| =

∑
v∈V (G)

1
dv+1

. Thus with positive probability, |I| is at least
this expectation.

Remark 2.3.3. Equality occurs if G is a disjoint union of cliques.
Remark 2.3.4 (Derandomization). Here is an alternative “greedy algorithm” proof of the
Caro–Wei inequality.

Permute the vertices in non-increasing order of their degree.

And then greedily construct an independent set: at each step, take the first available
vertex (in this order) and then discarding all its neighbors.

If each vertex v is assigned weight 1/(dv + 1), then the total weight removed at each step
is at most 1. Thus there must be at least

∑
v 1/(dv + 1) steps.

Taking the complement

Corollary 2.3.5. Every n-vertex graph G contains a clique of size at least
∑

v∈V (G)
1

n−dv .

Note that equality is attained when G is multipartite.

Now let us answer the earlier question about maximizing the number of edges in a Kr+1-
free graph.

The Turán graph Tn,r is the complete multipartite graph formed by partitioning n

vertices into r parts with sizes as equal as possible (differing by at most 1).

Easy to see that Tn,r is Kr+1-free.

Turán’s theorem (1941) tells us that Tn,r indeed maximizes the number of edges among
n-vertex Kr+1-free graphs.

We will prove a slightly weaker statement, below, which is tight when n is divisible by r.

Theorem 2.3.6. (Turán’s 1941) Every n-vertex Kr+1-free graph has ≤
(
1− 1

r

)
n2

2
edges.

13
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Figure 3: The Turán graph T10,3.

Proof. Since G is Kr+1-free, by Corollary 2.3.5, letting d be average degree and m = nd/2

be the number of edges, we see that the size ω(G) of the largest clique of G satisfies

r ≥ ω(G) ≥
∑
v∈V

1

n− dv
≥ n

n− d
=

n

n− 2m/n
.

Rearranging gives m ≤
(
1− 1

r

)
n2

2
.

Remark 2.3.7. By a careful refinement of the above argument, we can deduce Turán’s
theorem that Tn,r maximizes the number of edges in a n-vertex Kr+1-free graph, by
noting that

∑
v∈V

1
n−dv is minimized over fixed

∑
v dv when the degrees are nearly equal.

2.4 Crossing number inequality

Consider drawings of graphs on a plane using continuous curves as edges.

The crossing number cr(G) is the minimum number of crossings in a drawing of G.

A graph is planar if cr(G) = 0.

K3,3 and K5 are non-planar; furthermore, the following famous theorem characterizes
these two graphs as the only obstructions to planarity

Kuratowski’s theorem (1930): every non-planar graph contains a subgraph that is
topologically homeomorphic to K3,3 or K5

(Also related: Wagner’s theorem (1937) says that a graph is planar if and only if it does
not have K3,3 or K5 as a minor. It is not too hard to show that Wagner’s theorem and
Kuratowski’s theorem are equivalent)
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Question 2.4.1. What is the minimum possible number of crossings that a drawing of:

• Kn? (Hill’s conjecture)

• Kn,n? (Zarankiewicz conjecture; Turán’s brick factory problem)

• a graph on n vertices and n2/100 edges?

The following result, due to Ajtai–Chvátal–Newborn–Szemerédi (1982) and Leighton
(1984), lower bounds the number of crossings for graphs with many edges.

Theorem 2.4.2 (Crossing number inequality). In a graph G = (V,E), if |E| ≥ 4|V |,
then

cr(G) &
|E|3

|V |2

Corollary 2.4.3. In a graph G = (V,E), if |E| & |V |2, then cr(G) & |V |4.

Proof. Recall Euler’s formula: v − e+ f = 2 for every connected planar graph

For every connected planar graph with at least one cycle, 3|F | ≤ 2|E| since every face is
adjacent to ≥ 3 edges, whereas every edge is adjacent to exactly 2 faces. Plugging into
Euler, |E| ≤ 3|V | − 6.

Thus |E| ≤ 3|V | for all planar graphs. Hence cr(G) > 0 whenever |E| > 3|V |.

By deleting one edge for each crossing, we get a planar graph, so |E| − cr(G) > 3|V |, i.e.,

cr(G) ≥ |E| − 3|V |

This is a “cheap bound” that we will boost using the probabilistic method.

For graphs with |E| = Θ(n2), this gives cr(G) & n2. This not a great bound. We will use
the probabilistic method to boost this bound.

Let p ∈ [0, 1] to be decided. Let G′ = (V ′, E ′) be obtained from G by randomly keeping
each vertex with probability p. Then

cr(G′) ≥ |E ′| − 3|V ′|

So
E cr(G′) ≥ E|E ′| − 3E|V ′|
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We have E cr(G′) ≤ p4 cr(G), E|E ′| = p2|E| and E|V ′| = pE|V |. So

p4 cr(G) ≥ p2|E| − 3p|V |.

Thus
cr(G) ≥ p−2|E| − 3p−3|V |.

Setting p ∈ [0, 1] so that 4p−3|V | = p−2|E|, we obtain cr(G) & |E|3 / |V |2.

2.4.1 Application to incidence geometry

Question 2.4.4. What is the maximum number of incidences between n distinct points
and n distinct lines on a plane?

Let P be a set of points and L a set of lines. Denote the number of incidences by

I(P ,L) := |{(p, `) ∈ P × L : p ∈ `}|

Example: n points and n lines:

P = [k]× [2k2] and L = {y = mx+ b : m ∈ [k], b ∈ [k2]}

Every line contains k points from P . Taking 3k3 ≈ n gives k4 = Θ(n4/3) incidences.

Can we do better?

No. The following foundational theorem in incidence geometry implies that one has
O(n4/3) incidences between n points and n lines.

Theorem 2.4.5 (Szemerédi–Trotter 1983). Given a set P of points and L of lines in R2,

I(P ,L) . |P|2/3|L|2/3 + |P|+ |L|.

We will show how to prove the Szemerédi–Trotter theorem using the crossing number
inequality. This proof is due to Székely (1997).

Trivial bound: I(P ,L) ≤ |P||L|

Using that every pair of points determine at most one line, and counting triples (p, p′, `) ∈
P × P × L with p 6= p′ and p, p′ ∈ `, this is ≤ |P|2 and

≥
∑
`∈L

|P ∩ `|(|P ∩ `| − 1) ≥ |I(P ,L)|2/|L| − |I(P ,L)|
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Combining we get
I(P ,L) . |P||L|1/2 + |L|

By point-line duality, also
I(P ,L) . |L||P|1/2 + |P|

This gives n3/2 for n points and n lines. Can we do better? Note that this is tight for
planes over finite fields. Need to use topology of Euclidean space.

Proof of Szemerédi–Trotter theorem. Assume that there are no lines with < 2 incidences
(otherwise remove such lines repeatedly until this is the same; we remove ≤ |L| incidences
this way).

Draw a graph based on incidences. Vertices are point in P and edges join consecutive
points of P on a given line of L.

A line with k incidences gives k − 1 ≥ k/2 edges, so the total number of edges is ≤
|I(P ,L)|/2.

There are at most |L|2 crossings. So by crossing number inequality

|L|2 ≥ cr(G) &
|E|3

|V |2
&
|I(P ,L)|3

|P|2
if |I(P ,L)| ≥ 8|P|.

So I(P ,L) . |P|2/3|L|2/3 + |P|. Remember to add |L| to the bound from the first step of
the proof (removing lines with < 2 incidences).

2.5 Dense packing of spheres in high dimensions

Question 2.5.1. What is the maximum density of a packing of non-overlapping unit
balls in Rn for large n?

Here the density is fraction of volume occupied (fraction of the box [−n, n]d as n→∞)

Let ∆n denote the supremum of unit ball packing densities in Rn

Exact maximum only solved in dimension 1, 2, 3, 8, 24. Dimensions 8 and 24 were only
solved recently (see this Quanta magazine story). Dimensions 8 and 24 are special because
of the existences of highly symmetric lattices (E8 lattice in dimension 8 and Leech lattice
in dimension 24).

What are examples of dense packings?

We can add balls greedily. Any maximal packing has density ≥ 2−n. Doubling the ball
radius would cover space
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What about lattices? Zn has sphere packing density vol(B(1/2)) = πn/2

(n/2)!2n
< n−cn.

Best upper bound: Kabatiansky–Levenshtein (1978): ∆n ≤ 2−(0.599···+o(1))n

Existence of a dense lattice? (Optimal lattices known in dimensions 1–8 and 24)

We will use the probabilistic method to show that a random lattice has high density.

How does one pick a random lattice?

A lattice the Z-span of of its basis vectors v1, . . . , vn. It’s covolume (volume of its
fundamental domain) is given by |det(v1|v2| · · · |vn)|.

So every matrix in SLn(R) corresponds to a unimodular lattice (i.e., covolume 1).

Every lattice can be represented in different ways by picking a different basis (e.g., {v1 +

v2, v2}). The matrices A,A′ ∈ SLn(R) represent the same lattice iff A′ = AU for some
U ∈ SLn(Z).

So the space of unimodular lattices is SLn(R)/ SLn(Z), which has a finite Haar measure
(even though this space not compact), so can normalize to a probability measure.

We can pick a random unimodular lattice in Rn by picking a random point in
SLn(R)/ SLn(Z) according to its Haar probability measure.

The following classic result of Siegel acts as like a linearity of expectations statement for
random lattices.

Theorem 2.5.2 (Siegel mean value theorem). Let L be the random lattice in Rn as above
and S ⊂ Rn. Then

E|S ∩ L \ {0}| = λLeb(S)

Proof sketch. 1. µ(S) = E|S ∩ L \ {0}| defines a measure on Rn (it is additive by
linearity of expectations)

2. This measure is invariant under SLn(R) action (since the random lattice is choosen
with respect to Haar measure)

3. Every SLn(R)-invariant measure on Rn is a constant multiple of the Lebesgue mea-
sure.

4. By considering a large ball S, deduce that c = 1.

Theorem 2.5.3 (Minkowski 1905). For every n, there exist a lattice sphere packing in
Rn with density ≥ 2−n.
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Proof. Let S be a ball of volume 1 (think 1 − ε for arbitrarily small ε > 0 if you like)
centered at the origin. By the Siegel mean value theorem, the random lattice is has
expected 1 nonzero lattice point in S, so with positive probability it has no nonzero
lattice point in S. Putting a copy of 1

2
S (volume 2−n) at each lattice point then gives a

lattice packing of density ≥ 2−n

Here is a factor 2 improvement. Take S to be a ball of volume 2. Note that the number
of nonzero lattice points in S must be even (if x ∈ S then −x ∈ S). So same argument
gives lattice packing of density ≥ 2−n+1.

The above improvement uses 2-fold symmetry of Rn. Can we do better by introducing
more symmetry?

Historically, a bunch of improvements of the form ≥ cn2−n for a sequence of improving
constants c > 0

Venkatesh (2012) showed that one can get a lattice with a k-fold symmetry by building
it using two copies of the cyclotomic lattice Z[ω] where ω = e2π/k. Every lattice of this
form has k-fold symmetry by multiplication by ω.

Skipping details, one can extend the earlier idea to choose a random unimodular lattice
in in dimension n = 2φ(k) with k-fold length-preserving symmetry (without fixed points).
An extension of Siegel mean value theorem also holds in this case.

By apply same argument with S being a ball of volume k, we get a a lattice packing of
density ≥ k2−n in Rn. This bound can be optimized (in term of asymptotics along a
subsequence of n) by taking primorial k = p1p2 · · · pm where p1 < p2 < · · · are the prime
numbers. This gives the current best known bound:

Theorem 2.5.4 (Venkatesh 2012). For infinitely many n, there exists a lattice sphere
packing in Rn of density

≥ (e−γ − o(1))n log log n2−n.

Here γ = 0.577 . . . is Euler’s constant.

Open problem 2.5.5. Do there exist lattices (or sphere packings) in Rn with density
≥ (c+ o(1))n for some constant c > 1/2?
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2.6 Unbalancing lights

Theorem 2.6.1. Let aij = ±1 for all i, j ∈ [n]. There exists xi, yj ∈ {−1, 1} for all
i, j ∈ [n] such that

n∑
i,j=1

aijxiyj ≥

(√
2

π
+ o(1)

)
n3/2

Interpretation: n × n array of lights. Can flip rows and columns. Want to turn on as
many lights as possible.

Proof. Choose y1, . . . , yn randomly. And then choose xi to make the i-th row sum
nonnnegative. Let

Ri =
n∑
j=1

aijyj and R =
n∑
i=1

|Ri|.

How is Ri distributed? Same distribution as Sn = ε1 + · · ·+ εn, a sum of n i.i.d. uniform
{−1, 1}. And so for every i

E[|Ri|] = E[|Sn|] =

(√
2

π
+ o(1)

)
√
n,

e.g., by central limit theorem

lim
n→∞

E
[
|Sn|√
n

]
= E[|X|] where X ∼ Normal(0, 1)

=
1√
2π

∫
R
|x|e−x2/2 dx =

√
2

π

(one can also use binomial sum identities to compute exactly: E[|Sn|] = n21−n( n−1
b(n−1)/2c

)
,

though it is rather unnecessary to do so.) Thus

E[R] =

(√
2

π
+ o(1)

)
n3/2.

Thus with positive probability, R ≥
(√

2
π

+ o(1)
)
n3/2.

The next example is tricky. The proof will set up a probabilistic process where the
parameters are not given explicitly. A compactness argument will show that a good
choice of parameters exists.
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Theorem 2.6.2. Let V = V1 ∪ · · · ∪ Vk, where V1, . . . , Vk are disjoint sets of size n. The
edges of the complete k-uniform hypergraph on V are colored with red/blue. Suppose
that every edge formed by taking one vertex from each V1, . . . , Vk is colored blue. Then
there exists S ⊂ V such that the number of red edges and blue edges in S differ by more
than cknk, where ck > 0 is a constant.

Proof. Let’s do this proof for k = 3. Proof easily generalizes to other k.

Let p1, p2, p3 be real numbers to be decided. We are going to pick S randomly by including
each vertex in Vi with probability pi, independently. Let

ai,j,k = #{blue edges in Vi × Vj × Vk} −#{red edges in Vi × Vj × Vk}.

Then
E[#{red edges in S} −#{blue edges in S}]

equals to some polynomial

f(p1, p2, p3) =
∑
i≤j≤k

ai,j,kpipjpk = n3p1p2p3 + a1,1,1p
3
1 + a1,1,2p

2
1p2 + · · · .

(note that a1,2,3 = n3 by hypothesis). We would be done if we can find p1, p2, p3 ∈ [0, 1]

such that |f(p1, p2, p3)| > c for some constant c > 0 (not depending on the ai,j,k’s). Note
that |ai,j,k| ≤ n3. We are done after the following lemma

Lemma 2.6.3. Let Pk denote the set of polynomials g(p1, . . . , pk) of degree k, whose
coefficients have absolute value ≤ 1, and the coefficient of p1p2 · · · pk is 1. Then there
is a constant ck > 0 such that for all g ∈ Pk, there is some p1, . . . , pk ∈ [0, 1] with
|g(p1, . . . , pk)| ≥ c.

Proof of Lemma. Set M(g) = supp1,...,pk∈[0,1] |g(p1, . . . , pk)| (note that sup is achieved as
max due to compactness). For g ∈ Pk, since g is nonzero (its coefficient of p1p2 · · · pk is
1), we have M(g) > 0. As Pk is compact and M : Pk → R is continuous, M attains a
minimum value c = M(g) > 0 for some g ∈ Pk. �
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3 Alterations

3.1 Ramsey numbers

Recall from Section 1.1:

R(s, t) = smallest n such that every red/blue edge coloring of Kn contains a red Ks or a
blue Kt

Using the basic method (union bounds), we deduce

Theorem 3.1.1. If there exists p ∈ [0, 1] with(
n

s

)
p(

s
2) +

(
n

t

)
(1− p)(

t
2) < 1

then R(s, t) > n.

Proof sketch. Color edge red with prob p and blue with prob 1 − p. LHS upper bounds
the probability of a red Ks or a blue Kt.

Using the alteration method, we deduce

Theorem 3.1.2. For all p ∈ [0, 1] and n,

R(s, t) > n−
(
n

s

)
p(

s
2) −

(
n

t

)
(1− p)(

t
2)

Proof sketch. Color edge red with prob p and blue with prob 1−p remove one vertex from
each red Ks or blue Kt. RHS lower bounds the expected number remaining vertices.

3.2 Dominating set in graphs

In a graph G = (V,E), we say that U ⊂ V is dominating if every vertex in V \ U has a
neighbor in U .

Theorem 3.2.1. Every graph on n vertices with minimum degree δ > 1 has a dominating
set of size at most

(
log(δ+1)+1

δ+1

)
n.

Naive attempt: take out vertices greedily. The first vertex eliminates 1 + δ vertices, but
subsequent vertices eliminate possibly fewer vertices.
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Proof. Two-step process (alteration method):
1. Choose a random subset
2. Add enough vertices to make it dominating

Let p ∈ [0, 1] to be decided later. Let X be a random subset of V where every vertex is
included with probability p independently.

Let Y = V \ (X ∪N(X)). Each v ∈ V lies in Y with probability ≤ (1− p)1+δ.

Then X ∪ Y is dominating, and

E[|X ∪ Y |] = E[|X|] + E[|Y |] ≤ pn+ (1− p)1+δn ≤ (p+ e−p(1+δ))n

using 1 + x ≤ ex for all x ∈ R. Finally, setting p = log(δ+1)
δ+1

to minimize p + e−p(1+δ), we
bound the above expression by

≤
(

1 + log(δ + 1)

δ + 1

)
.

3.3 Heilbronn triangle problem

Question 3.3.1. How can one place n points in the unit square so that no three points
forms a triangle with small area?

Let
∆(n) = sup

S⊂[0,1]2

|S|=n

min
p,q,r∈S
distinct

area(pqr)

Naive constructions fair poorly. E.g., n points around a circle has a triangle of area
Θ(1/n3) (the triangle formed by three consectutive points has side lengths � 1/n and
angle θ = (1 − 1/n)2π). Even worse is arranging points on a grid, as you would get
triangles of zero area.

Heilbronn conjectured that ∆(n) = O(n−2).

Komlós, Pintz, and Szemerédi (1982) disproved the conjecture, showing ∆(n) & n−2 log n.
They used an elaborate probabilistic construction. Here we show a much simpler version
probabilistic construction that gives a weaker bound ∆(n) & n−2.
Remark 3.3.2. The currently best upper bound known is ∆(n) ≤ n−8/7+o(1) (Komlós,
Pintz, and Szemerédi 1981)

Theorem 3.3.3. For every positive integer n, there exists a set of n points in [0, 1]2 such
that every triple spans a triangle of area ≥ cn−2, for some absolute constant c > 0.
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Proof. Choose 2n points at random. For every three random points p, q, r, let us estimate

Pp,q,r(area(p, q, r) ≤ ε).

By considering the area of a circular annulus around p, with inner and outer radii x and
x+ ∆x, we find

Pp,q(|pq| ∈ [x, x+ ∆x]) ≤ π((x+ ∆x)2 − x2)

So the probability density function satisfies

Pp,q(|pq| ∈ [x, x+ dx]) ≤ 2πxdx

For fixed p, q

Pr(area(pqr) ≤ ε) = Pr
(
dist(pq, r) ≤ 2ε

|pq|

)
.

ε

|pq|
Thus, with p, q, r at random

Pp,q,r(area(pqr) ≤ ε) .
∫ √2

0

2πx
ε

x
dx � ε.

Given these 2n random points, let X be the number of triangles with area ≤ ε. Then
EX = O(εn3).

Choose ε = c/n2 with c > 0 small enough so that EX ≤ n.

Delete a point from each triangle with area ≤ ε.

The expected number of remaining points is E[2n −X] ≥ n, and no triangles with area
≤ ε = c/n2.

Thus with positive probability, we end up with ≥ n points and no triangle with area
≤ c/n2.

Algebraic construction. Here is another construction due to Erdős (in appendix of
Roth (1951)) also giving ∆(n) & n−2:

Let p be a prime. The set {(x, x2) ∈ F2
p : x ∈ Fp} has no 3 points collinear (a parabola

meets every line in ≤ 2 points). Take the corresponding set of p points in [p]2 ⊂ Z2. Then
every triangle has area ≥ 1/2 due to Pick’s theorem. Scale back down to a unit square.
(If n is not a prime, then use that there is a prime between n and 2n.)
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3.4 Markov’s inequality

We note an important tool that will be used next.

Markov’s inequality. Let X ≥ 0 be random variable. Then for every a > 0,

P(X ≥ a) ≤ E[X]

a
.

Proof. E[X] ≥ E[X1X≥a] ≥ E[a1X≥a] = aP(X ≥ a)

Take-home message: for r.v. X ≥ 0, if EX is very small, then typically X is small.

3.5 High girth and high chromatic number

If a graph has a k-clique, then you know that its chromatic number is at least k.

Conversely, if a graph has high chromatic number, is it always possible to certify this fact
from some “local information”?

Surprisingly, the answer is no. The following ingenious construction shows that a graph
can be “locally tree-like” while still having high chromatic number.

The girth of a graph is the length of its shortest cycle.

Theorem 3.5.1 (Erdős 1959). For all k, `, there exists a graph with girth > ` and
chromatic number > k.

Proof. Let G ∼ G(n, p) with p = (log n)2/n (the proof works whenever log n/n � p �
n−1+1/`). Here G(n, p) is Erdős–Rényi random graph (n vertices, every edge appearing
with probability p independently).

Let X be the number of cycles of length at most ` in G. By linearity of expectations, as
there are exactly

(
n
i

)
(i− 1)!/2 cycles of length i in Kn for each 3 ≤ i ≤ n, we have (recall

that ` is a constant)

EX =
∑̀
i=3

(
n

i

)
(i− 1)!

2
pi ≤

∑̀
i=3

nipi = o(n).

By Markov’s inequality

P(X ≥ n/2) ≤ EX
n/2

= o(1).
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(This allows us to get rid of all short cycles.)

How can we lower bound the chromatic number χ(·)? Note that χ(G) ≥ |V (G)|/α(G),
where α(G) is the independence number (the size of the largest independent set).

With x = (3/p) log n,

P(α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) < nxe−px(x−1)/2 = (ne−p(x−1)/2)x = o(1).

Let n be large enough so that P(X ≥ n/2) < 1/2 and P(α(G) ≥ x) < 1/2. Then there is
some G with fewer than n/2 cycles of length ≤ ` and with α(G) ≤ (3/p) log n.

Remove a vertex from each cycle to get G′. Then |V (G′)| ≥ n/2, girth > `, and α(G′) ≤
α(G) ≤ (3/p) log n, so

χ(G′) ≥ |V (G′)|
α(G′)

≥ np

6 log n
=

log n

6
> k

if n is sufficiently large.

Remark 3.5.2. Erdős (1962) also showed that in fact one needs to see at least a linear
number of vertices to deduce high chromatic number: for all k, there exists ε = εk such
that for all sufficiently large n there exists an n-vertex graph with chromatic number > k

but every subgraph on bεnc vertices is 3-colorable. (In fact, one can take G ∼ G(n,C/n);
see "Probabilistic Lens: Local coloring" in Alon–Spencer)

3.6 Greedy random coloring

Recall m(k) is the minimum number of edges in a k-uniform hypergraph that is not
2-colorable.

Earlier we proved that m(k) ≥ 2k−1. Indeed, given a k-graph with < 2k−1 edges, by
randomly coloring the vertices, the expected number of monochromatic numbers is < 1.

We also proved an upper bound m(k) = O(k22k) by taking a random k-uniform hyper-
graph on k2 vertices.

Here is the currently best known lower bound.

Theorem 3.6.1 (Radhakrishnan and Srinivasan (2000)). m(k) &
√

k
log k

2k

Here we present a simpler proof, based on a random greedy coloring, due to Cherkashin
and Kozik (2015), following an approach of Pluhaár (2009).
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Proof. Suppose H is a k-graph with m edges.

Map V (H)→ [0, 1] uniformly at random.

Color vertices greedily from left to right: color a vertex blue unless it would create a
monochromatic edge, in which case color it red (i.e., every red vertex is the final vertex
in an edge with all earlier k − 1 vertices have been colored blue).

The resulting coloring has no all-blue edges. What is the probability of seeing a red edge?

If there is a red edge, then there must be two edges e, f so that the last vertex of e is the
first vertex of f . Call such pair (e, f) conflicting.

Want to bound probability of seeing a conflicting pair in a random V (H)→ [0, 1].

Here is an attempt (an earlier weaker result due to Pluhaár (2009)). Each pair of edges
with exactly one vertex in common conflicts with probability (k−1)!2

(2k−1)!
= 1

2k−1

(
2k−2
k−1

)−1 �
k−1/22−2k; union bounding over < m2 pairs of edges, the probability of of getting a
conflicting edge is . m2k−1/22−2k, which is < 1 for some m � k1/42k.

We’d like to do better by more carefully analyzing conflicting edges. Continuing . . .

Write [0, 1] = L ∪M ∪R where (p to be decided)

L :=

[
0,

1− p
2

)
M :=

[
1− p

2
,
1 + p

2

]
R :=

(
1 + p

2
, 1

]
.

The probability that a given edge lands entirely in L is (1−p
2

)k, and likewise with R

So probability that some edge of H is entirely contained in L or contained in R is ≤
2m(1−p

2
)k.

Suppose that no edge of H lies entirely in L or entirely in R. If (e, f) conflicts, then their
unique common vertex xv ∈ e ∩ f must lie in M . So the probability that (e, f) conflicts
is (here we use x(1− x) ≤ 1/4)

∫ (1+p)/2

(1−p)/2
xk−1(1− x)k−1 dx ≤ p4−k+1.

Thus the probability of seeing any conflicting pair is

≤ 2m

(
1− p

2

)k
+m2p4−k+1 < 2−k+1me−pk + (2−k+1m)2p.

Set p = log(2−k+2k/m)/k, we find that the above probability is < 1 form = c2k
√
k/ log k,

with c > 0 being a sufficiently small constant.
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4 Second moment method

Previously, we used EX ≥ a to deduce P(X ≥ a) > 0. We also saw from Markov’s
inequality that for X ≥ 0, if EX is very small, then X is small with high probability.

Does EX being (very) large imply that X is large with high probability?

No! X could be almost always small but EX could still be large due to outliers (rare
large values of X).

Often we want to show that some random variable is concentrated around its mean.
This would then imply that outliers are unlikely.

We will see many methods in this course on proving concentrations of random variables.
We begin with the simplest method. It is the easiest to execute, requires the least hy-
potheses, but only produces weak (though often useful) concentration bounds.

Second moment method: show that a random variable is concentrated near its mean
by bounding its variance.

Variance: Var[X] = E[(X − EX)2] = E[X2]− E[X]2

Notation convention: mean µ, variance σ2, standard deviation σ.

Theorem 4.0.1 (Chebyshev’s inequality). Let X be a random variable with mean µ and
standard deviation σ. For any λ > 0

P(|X − µ| ≥ λσ) ≤ λ−2.

Proof. By Markov’s inequality,

LHS = P(|X − µ|2 ≥ λ2σ2) ≤ E[(X − µ)2]

λ2σ2
=

1

λ2
.

Remark 4.0.2. Concentration bounds that show small probability of deviating from the
mean are called tail bounds (also: upper tail bounds for bounding P(X ≥ µ + a) and
lower tail bounds for bounding P(X ≤ µ− a)). Chebyshev’s inequality gives tail bounds
with polynomial decay. Later on we will see tools that give much better decay (usually ex-
ponential) provided additional assumptions on the random variable (e.g., independence).

We can rewrite Chebyshev’s inequality as

P(|X − EX| ≥ εEX) ≤ VarX

ε2(EX)2
.
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Corollary 4.0.3. If Var[X] = o(EX)2 then X ∼ EX whp.

Remark 4.0.4. We are invoking asymptotics here (so we are actually considering a sequence
Xn of random variables instead of a single one). The conclusion is equivalent to that for
every ε > 0, one has |X − EX| ≤ εEX with probability 1− o(1) as n→∞.

Variance can be calculated from pairwise covariances. Recall the covariance

Cov[X, Y ] := E[(X − EX)(Y − EY )] = E[XY ]− E[X]E[Y ].

So Var[X] = Cov[X,X]. Covariance is bilinear in X and Y , i.e., for constants a1, . . . and
b1, . . . , one has

Cov

[∑
i

aiXi,
∑
j

bjYj

]
=
∑
i,j

aibj Cov[Xi, Yj].

Thus, given X = X1 + · · ·+ Xn (no assumptions on dependencies between the Xi’s), we
have

Var[X] = Cov[X,X] =
∑
i,j∈[n]

Cov[Xi, Xj] =
∑
i∈[n]

Var[Xi] + 2
∑
i<j

Cov[Xi, Xj]

We have Cov[X, Y ] = 0 if X and Y are independent. Thus in the sum we only need to
consider dependent pairs (i, j).

Example 4.0.5 (Sum of independent Bernoulli). Suppose X = X1 + · · · + Xn with Xi

iid Xi ∼ Bernoulli(p), i.e., X = 1 with prob p and X = 0 with prob 1− p.

Then µ = np and σ2 = np(1− p). If np� 1 then σ � µ and thus X = µ+ o(µ) whp.

Note that the above computation remains identical even if we only knew that the Xi’s
are pairwise uncorrelated (much weaker than assuming full independence).

Here the “tail probability” (the bound hidden in “whp”) decays polynomially in the de-
viation. Later on we will derive much sharper rates of decay (exponential) using more
powerful tools such as the Chernoff bound when the r.v.’s are independent.

Example 4.0.6 (The number of triangles in a random graph). Let

X = the number of triangles in the random graph G(n, p).

For vertices i, j, k ∈ [n], denote the edge indicator variables by Xij = 1ij is an edge. Let the
triangle indicator variables be Xijk = 1ijk is a triangle = XijXikXjk. Then

X =
∑
i<j<k

Xijk =
∑
i<j<k

XijXikXjk.
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Its expectation is easy to compute, since E[XijXikXjk] = E[Xij]E[Xik]E[Xjk] = p3 by
independence. So

EX =

(
n

3

)
p3

Now we compute VarX. Unlike in the earlier example, the summands of X are not all
independent. Nonetheless, it is easy to compute the variance.

Given two triples T1, T2 of vertices

Cov[XT1 , XT2 ] = E[XT1XT2 ]− E[XT1 ]E[XT2 ] = pe(T1∪T2) − pe(T1)+e(T2)

=


0 if |T1 ∩ T2| ≤ 1

p5 − p6 if |T1 ∩ T2| = 2

p3 − p6 if T1 = T2

Thus

VarX =
∑
T1,T2

Cov[XT1 , XT2 ] =

(
n

3

)
(p3 − p6) +

(
n

2

)
n(n− 1)(p5 − p6) . n3p3 + n4p5

When do we have σ � µ? It is equivalent to satisfying both n3/2p3/2 � n3p3 (which gives
p � 1/n) and n2p5/2 � n3p3 (which gives p � n−2). So σ � µ if and only if p � 1/n,
and as we saw earlier, in this case X ∼ EX with high probability.

Remark 4.0.7. Later on we will use more powerful tools (including martingale methods/Azuma-
Hoeffding inequalities, and also Janson inequalities) to prove better tail bounds on triangle
(and other subgraph) counts.
Remark 4.0.8. Actually the number X of triangles in G(n, p) satisfies an asymptotic
central limit theorem, i.e., (X − µ)/σ → N(0, 1) in distribution (Rucinski 1988), initially
proved via moment of moments (by showing that higher moments of (X − µ)/σ match
those of the normal distribution). Later a different proof was found using the “method of
projections.”

On the other hand, for much sparser random graphs, when p . 1/n, X is asymptotically
Poisson.

4.1 Threshold functions for small subgraphs in random graphs

Question 4.1.1. For which p = pn is K4 ⊂ G(n, p) true with high probability (i.e., with
probability 1− o(1))?

There are two statements that one wants to show:
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• (0-statement) if p = pn is small, then P(K4 ⊂ G(n, p))→ 0 as n→∞.

• (1-statement) if p = pn is large, then P(K4 ⊂ G(n, p))→ 1 as n→∞.

Let X be the number of copies of K4 in G(n, p).

• To show the 0-statement, it suffices to have EX → 0, in which case Markov’s
inequality implies that P(X ≥ 1) ≤ EX → 0 (here we are only using the first
moment method).

• To show the 1-statement, it suffices to show VarX = o((EX)2), by the lemma below
(second moment method).

For simple applications, e.g., K4 ⊂ G(n, p), these two methods turn out to be sufficient.
Other applications may require stronger techniques (though sometimes “only” second mo-
ment, but much more difficult applications).

Lemma 4.1.2. For any random variable X,

P(X = 0) ≤ VarX

(EX)2

Proof. By Chebyshev inequality, writing µ = EX,

P(X = 0) ≤ P(|X − µ| ≥ |µ|) ≤ VarX

µ2
.

Corollary 4.1.3. If VarX = o((EX)2), then X > 0 with probability 1− o(1).

Remark 4.1.4. Here is a slightly stronger inequality in the case of nonnegative random
variables. It is a special case of the Paley–Zygmund inequality. I am showing it here
because it is neat. It makes no difference for our applications whether we use the next
lemma or the previous one.

Lemma 4.1.5. For any random variable X ≥ 0,

P(X > 0) ≥ (EX)2

E[X2]
.

Proof. We have P(X > 0) = E[1X>0]. By the Cauchy–Schwarz inequality

E[1X>0] E[X2] ≥ (E[1X>0X])2 = (EX)2.
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Definition 4.1.6 (Graph properties). A graph property P is a subset of all graphs.
We say that P is monotone (increasing) if whenever G ∈ P , then any graph obtained
by adding edges to G also satisfies P . We say that P is non-trivial if for all sufficiently
large n, there exists an n-vertex graph in P and an n-vertex graph not in P .

Example 4.1.7. Examples of graph properties

• Contains K4; i.e., P = {G : K4 ⊂ G}

• Connected

• Hamiltonian

• 3-colorable (a monotone decreasing property)

• Planar (monotone decreasing)

• Contains a vertex of degree 1 (not monotone increasing or decreasing)

Definition 4.1.8 (Threshold function). We say that rn is a threshold function for
some graph property P if

P(G(n, pn) satisfies P)→

{
0 if pn/rn → 0,

1 if pn/rn →∞.

Remark 4.1.9. The above definition is most suitable for monotone increasing properties.
For other types of properties one may need to adjust the definition appropriately.

Remark 4.1.10. From the definition, we see that if rn and r′n are both threshold functions,
then they must be within a constant factor of each other. So it is fine to say “the threshold”
of some property, with the understanding that we do not care about constant factors.
Later on we will see that every monotone property has a threshold function.

Theorem 4.1.11. A threshold function for containing a K3 is 1/n, i.e.,

lim
n→∞

P(K3 ⊂ G(n, pn)) =

{
0 if pnn→ 0

1 if pnn→∞

Proof. Let X be the number of triangles in G(n, p). Then µ := EX =
(
n
3

)
p3 ∼ n3p3/6.

Let σ2 = VarX.
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If p� 1/n, then µ = o(1), so P(X ≥ 1) = o(1) by Markov, and hence X = 0 w.h.p.

If p� 1/n, then µ→∞, and we saw earlier that σ � µ, so whp X ∼ µ and thus X > 0

whp.

Question 4.1.12. What is the threshold for containing a fixed H as a subgraph?

The next calculation is similar in spirit to what we did earlier for triangles, but we
would like to be more organized as there may be more interacting terms in the variance
calculation.

General setup. Suppose X = X1 + · · ·+Xm where Xi is the indicator random variable
for event Ai. Write i ∼ j if i 6= j and the pair of events (Ai, Aj) are not independent.
(For variance calculation, we are only considering pairwise dependence. Warning: later
on when we study the Lovász Local Lemma, we will need a strong notion of a dependency
graph.)

If i 6= j and i 6∼ j then Cov[Xi, Xj] = 0. Otherwise,

Cov[Xi, Xj] = E[XiXj]− E[Xi]E[Xj] ≤ E[XiXj] = P[Ai ∧ Aj].

Thus
VarX =

∑
i,j

Cov[Xi, Xj] ≤ EX + ∆

where
∆ =

∑
(i,j):i∼j

P(Ai ∧ Aj)

The earlier second moment results (Corollary 4.0.3) imply that

If EX →∞ and ∆ = o(EX)2 then and X ∼ EX and X > 0 whp.

We have ∑
(i,j):i∼j

P(Ai ∧ Aj) =
∑
i

P(Ai)
∑
j:j∼i

P (Aj | Ai)

In many symmetric situations (e.g. our examples), the following quantity does not depend
on i:

∆∗ =
∑
j:j∼i

P (Aj | Ai)

(or take ∆∗ to be the maximum such value ranging over all i). Then

∆ =
∑
i

P[Ai]∆
∗ = ∆∗EX

33



4 Second moment method Probabilistic Methods in Combinatorics — Yufei Zhao

Thus we have

Lemma 4.1.13. If EX →∞ and ∆∗ = o(EX), then X ∼ EX and X > 0 whp.

Theorem 4.1.14. A threshold function for containing K4 is n−2/3.

Proof. Let X denote the number of copies of K4 in G(n, p). Then EX =
(
n
4

)
p6 ∼ n4p6/24.

If p� n−2/3 then EX = o(1) so X = 0 whp

Now suppose p � n−2/3, so EX → ∞. For each 4-vertex subset S, let AS be the event
that S is a clique in G(n, p).

For each fixed S, one has AS ∼ AS′ if and only if |S ∩ S ′| ≥ 2.

• The number of S ′ that share exactly 2 vertices with S is 6
(
n
2

)
= O(n2), and for each

such S ′ one has P(AS′ |AS) = p5 (as there are 5 additional edges, no in the S-clique,
that needs to appear clique to form the S ′-clique).

• The number of S ′ that share exactly 3 vertices with S is 4(n − 4) = O(n), and for
each such S ′ one has P(AS′ |AS) = p3.

Summing over all above S ′, we find Then

∆∗ =
∑

S′:|S′∩S|∈{2,3}

P(AS′ |AS) . n2p5 + np3 � n4p6 � EX.

Thus X > 0 whp by Lemma 4.1.13.

For both K3 and K4, we saw that any choice of p = pn with EX → ∞ one has X > 0

whp. Is this generally true?

Example 4.1.15 (First moment is not enough). Let H = . We have EXH � n5p7.
If EX = o(1) then X = 0 whp. But what if EX →∞, i.e., p� n−5/7?

We know that if n−5/7 � p� n−2/3, then XK4 = 0 whp, so XH = 0 whp since K4 ⊂ H.

On the other hand, if p � n−2/3, then whp can find K4, and pick an arbitrary edge to
extend to H (we’ll prove this).

Thus the threshold for H = is actually n−2/3, and not n−5/7 as one might have
naively predicted from the first moment alone.

Why didn’t EXH → ∞ give XH > 0 whp? In the calculation of ∆∗, one of the terms is
� np (from two copies of H with a K4-overlap), and np 6� n5p7 � EXH if p� n−2/3.

34



4 Second moment method Probabilistic Methods in Combinatorics — Yufei Zhao

Definition 4.1.16. Define the edge-vertex ratio of a graph H by ρ(H) = eH/vH .
Define the maximum edge-vertex ratio of a subgraph of H:

m(H) := max
H′⊂H

ρ(H ′).

Example 4.1.17. Let H = . We have ρ(H) = 7/5 whereas ρ(K4) = 3/2 > 7/5.
It is not hard to check that m(H) = ρ(K4) = 3/2 as K4 is the subgraph of H with the
maximum edge-vertex ratio.

Theorem 4.1.18 (Bollobás 1981). Fix a graph H with vH vertices and eH edges. Then
p = n−1/m(H) is a threshold function for containing H has a subgraph. Furthermore, if
p � n−1/m(H), then the number XH of copies of H in G(n, p) satisfies, with probability
1− o(1),

XH ∼ EXH =

(
n

vH

)
vH !

aut(H)
peH ∼ nvHpeH

aut(H)
.

Proof. Let H ′ be a subgraph of H achieving the maximum edge-vertex ratio, i.e., ρ(H ′) =

m(H).

If p� n−1/m(H), then EXH′ � nvH′peH′ = o(1), so XH′ = 0 whp, hence XH = 0 whp.

Now suppose p� n−1/m(H). Let us count labeled copies of the subgraph H in G(n, p). Let
J be a labeled copy of H in Kn, and let AJ denote the event that J appears in G(n, p).
We have, for fixed J ,

∆∗ =
∑
J ′∼J

P (AJ ′ | AJ) =
∑
J ′∼J

p|E(J ′)\E(J)|

For any J ′ ∼ J , we have

n|V (J ′)\V (J)|p|E(J ′)\E(J)| � n|V (J)|p|E(J)|

since
p� n−1/m(H) ≥ n−1/ρ(J∩J ′) = n−|V (J)∩V (J ′)|/|E(J)∩E(J ′)|.

It then follows, after consider all the possible ways that J ′ can overlap with J , that
∆∗ � n|V (J)|p|E(J)| � EXH . So Lemma 4.1.13 yields the result.
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4.2 Existence of thresholds

Question 4.2.1. Does every monotone graph property P have a threshold function?

E.g., could it be the case that P(G(n, n−1/3) ∈ P),P(G(n, n−1/4) ∈ P) ∈ [0.1, 0.9] for all
sufficiently large n?

First, an even simpler question, why is it that if P is a nontrivial monotone property,
then P(G(n, p) ∈ P) is an increasing function of p? This is intuitively obvious, but how
to prove it?

Let us give two (related) proofs of this basic fact. Both are quite instructive.

More abstractly, this is not really about graphs, but rather about random subsets (for
random graphs, we are taking random subgraphs of edges).

Given a collection F of subsets of [n], we say that F is an upward closed set (or up-set)
if whenever A ⊂ B and A ∈ F then B ∈ F . We say that an up-set F is nontrivial if
∅ /∈ F and [n] ∈ F .

Let [n]p denote the random subset of [n] obtained by including every element indepen-
dently with probability p.

Theorem 4.2.2. Let F a nontrivial up-set of [n]. Then p 7→ P([n]p ∈ F) is a strictly
increasing function.

The first proof is by coupling. Coupling is powerful probabilistic idea. Given two random
variables X and Y with individually prescibed distributions, we “couple” them together
by considering a single probabilistic process that generates both X and Y in a way that
clarifies their relationship. More formally, we construct a joint distribution (X, Y ) whose
marginals agree with those of X and Y .

Proof 1. (By coupling) Let 0 ≤ p < q ≤ 1. Consider the following process to generate
two random subsets of [n]: pick a uniform random vector (x1, . . . , xn) ∈ [0, 1]n. Let
A = {i : xi ≤ p} and B = {i : xi ≤ q}. Then A has the same distribution as [n]p and B
has the same distribution as [n]q. Furthermore, we see that A ∈ F implies B ∈ F . Thus

P([n]p ∈ F) = P(A ∈ F) ≤ P(B ∈ F) = P([n]q ∈ F).

To see that the inequality strict, we simply have to observe that with positive probability,
one has A /∈ F and B ∈ F (e.g., A = ∅ and B = [n]).

The second proof is also uses coupling, but viewed somewhat differently. The idea is that
we can obtain [n]p as the union of several independent [n]p′ for some smaller values of p′.
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In other words, we are exposing the random subset in several rounds.

Proof 2. (By two-round exposure) Let 0 ≤ p < q ≤ 1. Note that B = [n]q has the same
distribution as the union of two independent A = [n]p and A′ = [n]p′ , where p′ is chosen
to satisfy 1− q = (1− p)(1− p′). Thus

P(A ∈ F) ≤ P(A ∪ A′ ∈ F) = P(B ∈ F).

Like earlier, to observe that the inequality is strict, one observes that with positive prob-
ability, one has A /∈ F and A ∪ A′ ∈ F .

The above technique (generalized from two round exposure to multiple round exposures)
gives a nice proof of the following theorem (originally proved using the Kruskal–Katona
theorem).

Theorem 4.2.3 (Bollobás and Thomason 1987). Every nontrivial monotone graph prop-
erty has a threshold function.

Proof. Note thatG(n, 1−(1−p)k) has the same distribution has the union of k independent
copies G1, . . . , Gk of G(n, p). Furthermore, by the monotonicity of the property, if G1 ∪
· · · ∪Gk /∈ P , then G1, . . . , Gk /∈ P . By independence,

P(G(n, 1− (1− p)k) /∈ P) = P(G1 ∪ · · · ∪Gk /∈ P) ≤ P(G1 /∈ P) · · ·P(Gk /∈ P)

To simplify notation, let us write

fp = fp(n) = P(G(n, p) ∈ P).

Since 1 − (1 − p)k ≤ kp (check by convexity), we have that for any monotone graph
property P , any positive integer k ≤ 1/p,

1− fkp ≤ 1− f1−(1−p)k ≤ (1− fp)k. (4.1)

Fix any large enough n (so that set of n-vertex graphs satisfying the property P is a
nontrival up-set). Since p 7→ fp(n) is a continuous strictly increasing function from 0 to
1 as p goes from 0 to 1 (in fact it is a polynomial in p for each fixed n), there is some
“critical” pc = pc(n) with fpc(n) = 1/2.

We claim that pc is a threshold function. Indeed, (4.1) implies, if p = p(n)� pc(n), then,
letting k = k(n) = bp/pcc → ∞,

1− fp ≤ (1− fpc)k = 2−k → 0
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so fp → 1. Likewise, if p� pc, then, letting k = bpc/pc → ∞, we have

1

2
= 1− fpc ≤ (1− fp)k,

and thus fp → 0 as n→∞. Thus pc(n) is a threshold function for P .

Remark 4.2.4. Note that, by definition, if p1(n) and p2(n) are both threshold functions
for the same property, then cp1(n) ≤ p2(n) ≤ Cp2(n) for some constants 0 < c < C.

Last section we identified the threshold for the property of containing a fixed subgraph.
Let us state the result (at least in the case of triangles, but similar results are known for
every subgraph) a bit more precisely, where we use the fact that for a constant c > 0, the
number of triangles in G(n, c/n) converges to a Poisson distribution with mean c3/6 (this
can be proved using the “method of moments” but we will not do it here). So

P
(
G
(
n,
cn
n

)
contains a triangle

)
→


0 if cn → 0

1− e−c3/6 if cn → c constant

1 if cn →∞

What about other graph properties? It turns out that we can sometimes identity the
transition very precisely.

Example 4.2.5. Here are some more examples of threshold functions. The first two
statements are in the original Erdős–Rényi (1959) paper on random graphs. The first is
an easy (and instructive) exercise in the second moment method.

• With p =
log n+ cn

n

P (G (n, p) has no isolated vertices)→


0 if cn → −∞
e−e

−c if cn → c

1 if cn →∞

• With p =
log n+ cn

n

P (G (n, p) is connected)→


0 if cn → −∞
e−e

−c if cn → c

1 if cn →∞
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Figure 4: Examples of coarse and sharp thresholds. The vertical axis is the probability
that G(n, p) satisfies the property.

In fact, a much stronger statement is true, connecting the above two examples: con-
sider a process where one adds an random edges one at a time, then with probability
1−o(1), the graph becomes connected as soon as there are no more isolated vertices.

• With p =
log n+ log log n+ cn

n

P(G(n, p) has a Hamiltonian cycle)→


0 if cn → −∞
e−e

−c if cn → c

1 if cn →∞

Like earlier, it is true that with high probability, a random graph becomes Hamil-
tonian as soon as its minimum degree reaches 2.

In the above examples, the probability that G(n, p) satisfies the property changes quickly
and dramatically as p crosses the threshold (physical analogy: similar to how the struc-
ture of water changes dramatically as the temperature drops below freezing). For ex-
ample, while for connectivity, while p = log n/n is a threshold function, we see that
G(n, 0.99 log n/n) is whp not connected and G(n, 1.01 log n/n) is whp connected, unlike
the situation for containing a triangle earlier. We call this the sharp threshold phe-
nomenon.

Definition 4.2.6 (Sharp thresholds). We say that rn is a sharp threshold for some
graph property P if, for every δ > 0,

P(G(n, pn) satisfies P)→

{
0 if pn ≤ (1− δ)rn,
1 if pn ≥ (1− δ)rn.

Equivalently, a graph property P exhibits a sharp threshold at rn if, for every ε > 0,
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for a given large n, as p increases from 0 to 1, the probability P(G(n, p) ∈ P) increases
from ε to 1 − ε over a short window of width o(rn) around rn. On the other hand, if
this transition window has width Ω(rn) for some ε > 0, then we say that it is a coarse
threshold. See Figure 4.

We saw coarse thresholds for the “local” property of containing some given subgraph,
whereas we saw sharp thresholds for “global” properties such as connectivity. It turns out
that this is a general phenomenon.

Friedgut’s sharp threshold theorem (1999), a deep and important result, roughly
says that:

All monotone graph properties with a coarse threshold may be approximated
by a local property.

In other words, informally, if a monotone graph property P has a coarse threshold, then
there is finite list of graph G1, . . . , Gm such that P is “close to” the property of containing
one of G1, . . . , Gm as a subgraph.

We need “close to” since the property could be “contains a triangle and has at least log n

edges”, which is not exactly local but it is basically the same as “contains a triangle.”

There is some subtlety here since we can allow very different properties depending on the
value of n. E.g., P could be the set of all n-vertex graphs that contain a K3 if n is odd
and K4 if n is even. Friedgut’s theorem tells us that if there is a threshold, then there is a
partition N = N1 ∪ · · · ∪Nk such that on each Ni, P is approximately the form described
in the previous paragraph.

In the last section, we derived that the property of containing some fixed H has threshold
n−1/m(H) for some rational number m(H). It follows as a corollary of Friedgut’s theorem
that every coarse threshold must have this form.

Corollary 4.2.7 (of Friedgut’s sharp threshold theorem). Suppose r(n) is a coarse thresh-
old function of some graph property. Then there is a partition of N = N1 ∪ · · · ∪ Nk and
rationals α1, . . . , αk > 0 such that r(n) � n−αj for every n ∈ Nj.

In particular, if (log n)/n is a threshold function of some monotone graph property (e.g.,
this is the case for connectivity), then we automatically know that it must be a sharp
threshold, even without knowing anything else about the property. Likewise if the thresh-
old has the form n−α for some irrational α.

The exact statement of Friedgut’s theorem is more cumbersome. We refer those who
are interested to Friedgut’s original 1999 paper and his later survey for details and ap-
plications. This topic is connected more generally to an area known as the analysis of
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boolean functions.

Also, it is known that the transition window of every monotone graph property is (log n)−2+o(1)

(Friedgut––Kalai (1996), Bourgain–Kalai (1997)).

Curiously, tools such as Friedgut’s theorem sometimes allow us to prove the existence of
a sharp threshold without being able to identify its exact location. For example, it is
an important open problem to understand where exactly is the transition for a random
graph to be k-colorable.

Conjecture 4.2.8 (k-colorability threshold). For every k ≥ 3 there is some real constant
dk > 0 such that for any constant d > 0,

P(G(n, d/n) is k-colorable)→

{
1 if d < dk,

0 if d > dk.

We do know that there exists a sharp threshold for k-colorability.

Theorem 4.2.9 (Achlioptas and Friedgut 2000). For every k ≥ 3, there exists a function
dk(n) such that for every ε > 0, and sequence d(n) > 0,

P
(
G
(
n, d(n)

n

)
is k-colorable

)
→

{
1 if d(n) < dk(n)− ε,
0 if d(n) > dk(n) + ε.

On the other hand, it is not known whether limn→∞ dk(n) exists, which would imply Con-
jecture 4.2.8. Further bounds on dk(n) are known, e.g. the landmark paper of Achlioptas
and Naor (2006) showing that for each fixed d > 0, whp χ(G(n, d/n) ∈ {kd, kd + 1} where
kd = min{k ∈ N : 2k log k > d}. Also see the later work of Coja-Oghlan and Vilenchik
(2013).

4.3 Clique number of a random graph

The clique number ω(G) of a graph is the maximum number of vertices in a clique of
G.

Question 4.3.1. What is the clique number of G(n, 1/2)?

Let X be the number of k-cliques of G(n, 1/2). We have

f(k) := EX =

(
n

k

)
2−(k2).
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Theorem 4.3.2. Let k = k(n) satisfy f(k)→∞. Then ω(G(n, 1/2)) ≥ k whp.

Proof. For each k-element subset S of vertices, let AS be the event that S is a clique. Let
XS be the indicator random variable for AS. Let X =

∑
S∈([n]

k )XS denote the number of
k-cliques.

For fixed k-set S, consider all k-set T with |S ∩ T | ≥ 2:

∆∗ =
∑

T∈([n]
k )

2≤|S∩T |≤k−1

P(AT |AS) =
k−1∑
i=2

(
k

i

)(
n− k
k − i

)
2(i2)−(k2)

omitted
� EX =

(
n

k

)
2−(k2).

It then follows from Lemma 4.1.13 that X > 0 (i.e., ω(G) ≥ k) whp.

Theorem 4.3.3 (Bollobás–Erdős 1976 and Matula 1976). There exists a k = k(n) ∼
2 log2 n such that ω(G(n, 1/2)) ∈ {k, k + 1} whp.

Proof. (Sketch) For k ∼ 2 log2 n,

f(k + 1)

f(k)
=
n− k
k + 1

2−k = n−1+o(1) = o(1).

So the value of f(k) drops rapidly for k ∼ 2 log2 n. Let k0 = k0(n) be the value with
f(k0) ≥ 1 > f(k0 + 1). If n is such that f(k0) → ∞ while f(k0 + 1) → 0 (it turns out
that this is true for most integers n), and thus ω(G) = k0 whp. When f(k0) = O(1), we
have f(k0 − 1)→∞ and f(k0 + 1)→ 0 so one has ω(G(n, 1/2)) ∈ {k0 − 1, k0} whp.

Remark 4.3.4. The result also implies the same about size of largest independent set in
G(n, 1/2) (take complement). Also extends to constant p: ω(G(n, p)) ∼ 2 log1/(1−p) n

whp.

Since the chromatic number satisfies χ(G) ≥ n/α(G), we have

χ(G(n, 1/2)) ≥ (1 + o(1))
n

2 log2 n
whp.

Later on, using more advanced methods, we will prove χ(G(n, 1/2)) ∼ n/(2 log2 n) whp
(Bollobás 1987).

Also, later, using martingale concentration, we know show that χ(G(n, p)) is tightly con-
centrated around its mean without a priori needing to know where the mean is located.
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4.4 Hardy–Ramanujan theorem on the number of prime divisors

Let ν(n) denote the number of primes p dividing n (do not count multiplicities).

The next theorem says that “almost all” n have (1 + o(1)) log log n prime factors

Theorem 4.4.1 (Hardy and Ramanujan 1917). For every ε > 0, there exists C such that
all but ε-fraction of x ∈ [n] satisfy

|ν(x)− log log n| ≤ C
√

log log n

The original proof of Hardy and Ramanujan was quite involved. Here we show a “proba-
bilistic” proof due to Turán (1934), which played a key role in the development of proba-
bilistic methods in number theory.

Proof. Choose x ∈ [n] uniformly at random. For prime p, let

Xp =

{
1 if p|x,
0 otherwise.

Set M = n1/10, and (the sum is taken over primes p).

X =
∑
p≤M

Xp

We have ν(x)−10 ≤ X(x) ≤ ν(x) since x cannot have more than 10 prime factors > n1/10.
So it suffices to analyze X. Since exactly bn/pc positive integers ≤ n are divisible by p,
we have

EXp =
bn/pc
n

=
1

p
+O

(
1

n

)
So

EX =
∑
p≤M

(
1

p
+O

(
1

n

))
= log log n+O(1)

Here we are applying Merten’s theorem from analytic number theory:
∑

p≤n 1/p =

log log n+O(1) (the O(1) error term converges to the Meissel–Mertens constant).

Next we compute the variance. The intuition is that distinct primes should be have
independently. Indeed, if pq divides n, then Xp and Xq are independent. Then pq does
not divide n, but n is large enough, then there is some small covariance contribution.
(Contrast to the earlier calculations in random graphs, where there are very few nonzero
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covariance terms, but each can be more significant.)

If p 6= q, then XpXq = 1 if and only if pq|x. Thus

|Cov[Xp, Xq]| = |E[XpXq]− E[Xp]E[Xq]|

=

∣∣∣∣bn/pqcn
− bn/pc

n

bn/qc
n

∣∣∣∣
= O

(
1

n

)
Thus ∑

p 6=q

|Cov[Xp, Xq]| .
M2

n
. n−4/5

Also, VarXp = E[Xp]− (EXp)
2 = (1/p)(1− 1/p) +O(1/n). Combining, we have

VarX =
∑
p≤M

VarXp +
∑
p 6=q

Cov[Xp, Xq]

=
∑
p≤M

1

p
+O(1) = log log n+O(1) ∼ EX

Thus by Chebyshev, for every constant λ > 0

P
(
|X − log log n| ≥ λ

√
log log n

)
≤ (VarX)2

λ2(log log n)
=

1

λ2
+ o(1).

Finally, recall that |X − ν| ≤ 10, so same asymptotic bound holds with X replaced by
ν.

Theorem 4.4.2 (Erdős and Kac 1940). With x ∈ [n] uniformly chosen at random, ν(x)

is asymptotically normal, i.e., for every λ ∈ R,

lim
n→∞

Px∈[n]

(
ν(x)− log log n√

log log n
≥ λ

)
=

1√
2π

∫ ∞
λ

e−t
2/2 dt

The intuition is that the number of prime divisors X =
∑

pXp (from the previous proof)
behaves like a sum of independent random variables, the central limit theorem should
imply an asymptotic normal distribution.

The original proof of Erdős and Kac verifies the above intuition using some more involved
results in analytic number theory. Simpler proofs have been subsequently given, and we
outline one below, which is based on computing the moments of the distribution. The
idea of computing moments for this problem was first used by Delange (1953), who was
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apparently not aware of the Erdős–Kacs paper. Also see a more modern account by
Granville and Soundararajan (2007).

The following tool from probability theory allows us to verify asymptotic normality from
convergence of moments.

Theorem 4.4.3 (Method of moments). Let Xn be a sequence of real valued random
variables such that for every positive integer k, limn→∞ E[Xk

n] equals to the k-th moment
of the standard normal distribution. Then Xn converges in distribution to the standard
normal, i.e., limn→∞ P(Xn ≤ a) = P(Z ≤ a) for every a ∈ R, where Z is a standard
normal.

Remark 4.4.4. The same conclusion holds for any probability distribution (other than
normal) that is “determined by its moments,” i.e., there are no other distributions sharing
the same moments. Many common distributions that arise in practice, e.g., the Poisson
distribution, satisfy this property. There are various sufficient conditions for guaranteeing
this moments property, e.g., Carleman’s condition tells us that any probability distribution
whose moments do not increase too quickly is determined by its moments.

Proof sketch of Erdős–Kacs Theorem 4.4.2. We compare higher moments of X = ν(x)

with that of an idealized Y treating the prime divisors as truly random variables.

SetM = n1/s(n) where s(n)→∞ sufficiently slowly. As earlier, ν(x)−s(n) ≤ ν(x) ≤ v(x).

We construct a “model random variable” mimicking X. Let Y =
∑

p≤M Yp, where Yp ∼
Bernoulli(1/p) independently for all primes p ≤M . We can compute:

µ := EY ∼ EX ∼ log log n

and
σ2 := VarY ∼ VarX ∼ log log n.

Let X̃ = (X − µ)/σ and Ỹ = (Y − µ)/σ.

By the central limit theorem (e.g., the Lindeberg CLT), Ỹ → N(0, 1) in distribution. In
particular, E[Ỹ k] ∼ E[Zk] (asymptotics as n→∞) where Z is a standard normal.

Let us compare X̃ and Ỹ . It suffices to show that for every fixed k, E[X̃k] ∼ E[Ỹ k].

For every set of distinct primes p1, . . . pr ≤M ,

E[Xp1 · · ·Xpr − Yp1 · · ·Ypr ] =
1

n

⌊
n

p1 · · · pr

⌋
− 1

p1 · · · pr
= O

(
1

n

)
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Comparing expansions of X̃k in terms of the Xp’s (no(1) terms), we get

E[X̃k − Ỹ k] = n−1+o(1) = o(1).

So the moments of X̃ approach those of N(0, 1). The method of moments theorem from
probability then implies that X̃ is asymptotically normally distributed.

4.5 Distinct sums

Question 4.5.1. Let S be a k-element subset of positive integers such that all 2k subset
sums of S. What is the minimum possible maxS?

E.g., S = {1, 2, 22, . . . , 2k−1} (the greedy choice).

We begin with an easy pigeonhole argument. On the other hand, since all 2k sums are
distinct and are at most kmaxS, we have 2k ≤ kmaxS, so maxS ≥ 2k/k.

Erdős offered $300 for a proof or disproof that maxS & 2k. This remains an interesting
open problem.

Let us use the second moment to give a modest improvement on the earlier pigeonhole
argument. The main idea here is that, by second moment, most of the subset sums
lie within an O(σ)-interval, so that we can improve on the pigeonhole estimate ignoring
outlier subset sums.

Theorem 4.5.2. Let S be a k-element subset of positive integers such that all 2k subset
sums of S. Then maxS & 2k/

√
k.

Proof. Let S = {x1, . . . , xk} and n = maxS. Set

X = ε1x1 + · · ·+ εkxk

where εi ∈ {0, 1} are chosen uniformly at random independently. We have

µ := EX =
x1 + · · ·+ xk

2

and
σ2 := VarX =

x2
1 + · · ·+ x2

k

4
≤ n2k

4
.

By Chebyshev,

P(|X − µ| < n
√
k) ≥ 3

4
.
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Since X takes distinct values for every (ε1, . . . , εk) ∈ {0, 1}k, we have P(X = x) ≤ 2−k for
all x, so we have the lower bound

P(|X − µ| < n
√
k) ≤ 2−k(2n

√
k + 1).

Putting them together, we get

2−k(2n
√
k + 1) ≤ 3

4
.

So n & 2k/
√
k.

Recently, this July, Dubroff–Fox–Xu gave another short proof of this result (with an
improved error term O(1)) by applying Harper’s vertex-isoperimetric inequality on the
cube (this is an example of “concentration of measure”, which we will explore more later
this course).

Here for the “n-dimensional boolean cube” we consider the graph on the vertex set {0, 1}n
with an edge between every pair of n-tuples that differ in exactly one coordinate. Given
A ⊆ {0, 1}n, let δA be the set of all vertices outside A that is adjacent to some vertex of
A.

Theorem 4.5.3 (Harper 1966). Every A ⊂ {0, 1}k with |A| = 2k−1 has |∂A| ≥
(

k
bk/2c

)
.

Remark 4.5.4. Harper’s theorem, more generally, gives the precise value of minA⊂{0,1}n:|A|=m |∂A|
for every (n,m). Basically, the minimum is achieved when A is a a Hamming ball (or, if
m is not exactly the size of some Hamming ball, then take the first m elements of {0, 1}n
when ordered lexicographically).

Theorem 4.5.5 (Dubroff–Fox–Xu). If S is a set of k positive integers with distinct subset
sums, then

maxS ≥
(

k

bk/2c

)
=

(√
2

π
+ o(1)

)
2k√
k
.

Remark 4.5.6. The above bound has the currently best known leading constant factor.

Proof. Let S = {x1, . . . , xk}. Let

A =

{
(ε1, . . . , εk) ∈ {0, 1}k : ε1x1 + · · ·+ ε1xk <

x1 + · · ·+ xk
2

}
.

Note that due to the distinct sum hypothesis, one can never have x1s1 + · · · + xnsn =

(s1 + · · ·+ sn)/2. It thus follows by symmetry that |A| = 2k−1.
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Note that every element of ∂A corresponds to some subset sum in the open interval(
x1 + · · ·+ xk

2
,
x1 + · · ·+ xk

2
+ maxS

)
Since all subset sums are distinct, we must have maxS ≥ |∂A| ≥

(
k
bk/2c

)
by Harper’s

theorem (Theorem 4.5.3).

4.6 Weierstrass approximation theorem

We finish off the chapter with an application to analysis.

Weierstrass approximation theorem every continuous real function on an interval can be
uniformly approximated by a polynomial.

Theorem 4.6.1 (Weierstrass approximation theorem 1885). Let f : [0, 1]→ R be a con-
tinuous function. Let ε > 0. Then there is a polynomial p(x) such that |p(x)− f(x)| ≤ ε

for all x ∈ [0, 1].

Proof. (Bernstein 1912) The idea is to approximate f by a sum of polynomials look like
“bumps”:

Pn(x) =
n∑
i=0

Ei(x)f(i/n)

where Ej(x) chosen as some polynomials peaks at x = i/n and then decaysaway from
x = i/n. To this end, set set

Ei(x) = P(Bin(n, x) = i) =

(
n

i

)
xi(1− x)n−i for 0 ≤ i ≤ n.

For each x ∈ [0, 1], the binomial distribution Bin(n, x) has mean nx and variance nx(1−
x) ≤ n. By Chebyshev’s inequality,∑

i:|i−nx|>n2/3

Ei(x) = P(|Bin(n, x)− nx| > n2/3) ≤ n−1/3.

Since [0, 1] is compact, f is uniformly continuous and bounded. By rescaling, assume that
|f(x)| ≤ 1 for all x ∈ [0, 1]. Also there exists δ > 0 such that |f(x) − f(y)| ≤ ε/2 for all
x, y ∈ [0, 1] with |x− y| ≤ δ.
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Take n > max{64ε−3, δ−3}. Then for every x ∈ [0, 1] (note that
∑n

j=0Ej(x) = 1),

|Pn(x)− f(x)| ≤
n∑
i=0

Ei(x)|f(i/n)− f(x)|

≤
∑

i:|i/n−x|<n−1/3<δ

Ei(x)|f(i/n)− f(x)|+
∑

i:|i−nx|>n2/3

2Ei(x)

≤ ε

2
+ 2n−1/3 ≤ ε.
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5 Chernoff bound

Chernoff bounds give us much better tail bounds than the second moment method when
applied to sums of independent random variables. This is one of the most useful bounds
in probabilistic combinatorics.

The proof technique of bounding the exponential moments is perhaps just as important
as the resulting bounds themselves. We will see this proof method come up again later
on when we prove martingale concentration inequalities. The method allows us to adapt
the proof of the Chernoff bound to other distributions. Let us give the proof in the most
basic case for simplicity and clarity.

Theorem 5.0.1. Let Sn = X1 + · · · + Xn where Xi ∈ {−1, 1} uniformly iid. Let λ > 0.
Then

P(Sn ≥ λ
√
n) ≤ e−λ

2/2

Note that in contrast, VarSn = n, so Chebyshev’s inequality would only give a tail bound
≤ 1/λ2

Proof. Let t ≥ 0. Consider the moment generating function

E
[
etSn

]
= E

[
et

∑
iXi
]

= E

[∏
i

etXi

]
=
∏
i

E
[
etXi

]
=

(
e−t + et

2

)n
.

We have (by comparing Taylor series coefficients 1
(2n)!
≤ 1

n!2n
), for all t ≥ 0,

e−t + et

2
≤ et

2/2.

By Markov’s inequality,

P(Sn ≥ λ
√
n) ≤

E
[
etS
]

etλ
√
n
≤ e−tλ

√
n+t2n/2

Set t = λ/
√
n gives the bound.

Remark 5.0.2. The technique of considering the moment generating function can be
thought morally as taking an appropriately high moment. Indeed, E[etS] =

∑
n≥0 E[Sn]tn/n!

contains all the moments data of the random variable.

The second moment method (Chebyshev + Markov) can be thought of as the first iter-
ation of this idea. By taking fourth moments (now requiring 4-wise independence of the
summands), we can obtain tail bounds of the form . λ−4. And similarly with higher
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moments.

In some applications, where one cannot assume independence, but can estimate high
moments, the above philosophy can allow us to prove good tail bounds as well.

Also by symmetry, P(Sn ≤ −λ
√
n) ≤ e−λ

2/2. Thus we have the following two-sided tail
bound.

Corollary 5.0.3. P(|Sn| ≥ λ
√
n) ≤ 2e−λ

2/2

Remark 5.0.4. It is easy to adapt the above proof so that each Xi is a mean-zero random
variable taking [−1, 1]-values, and independent (but not necessarily identical) across all
i. Indeed, by convexity, we have etx ≤ 1−x

2
e−t + 1+x

2
et for all x ∈ [−1, 1] by convexity, so

that E[etX ] ≤ et+e−t

2
. In particular, we obtain the following tail bounds on the binomial

distribution.

Theorem 5.0.5. Let each Xi be an independent random variable taking values in [−1, 1]

and EXi = 0. Then Sn = X1 + · · ·+Xn satisfies

P(Sn ≥ λ
√
n) ≤ e−λ

2/2.

Corollary 5.0.6. Let X be a sum of n independent Bernoulli’s (not necessarily the same
probability). Let µ = EX and λ > 0. Then Then

P(X ≥ µ+ λ
√
n) ≤ e−λ

2/2 and P(X ≤ µ− λ
√
n) ≤ e−λ

2/2

The quality the Chernoff compares well to that of the normal distribution. For the
standard normal Z ∼ N(0, 1), one has E[etZ ] = et

2/2 and so

P(Z ≥ λ) = P(etZ ≥ etλ) ≤ e−tλE[etX ] = e−tλ+t2/2

Set t = λ and get
P(Z ≥ λ) ≤ e−λ

2/2

And this is actually pretty tight, as, for λ→∞,

P(Z ≥ λ) =
1√
2π

∫ ∞
λ

e−t
2/2 dt ∼ e−λ

2/2

√
2πλ

The same proof method allows you to prove bounds for other sums of random variables,
suitable for whatever application you have in mind. See Alon–Spencer Appendix A for
some calculations.
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For example, for a sum of independent Bernoulli’s with small means, we can improve on
the above estimates as follows

Theorem 5.0.7. Let X be the sum of independent Bernoulli random variables (not
necessarily same probability). Let µ = EX. For all ε > 0,

P(X ≥ (1 + ε)µ) ≤ e−((1+ε) log(1+ε)−ε)µ ≤ e−
ε2

1+ε
µ

and
P(X ≤ (1− ε)µ) ≤ e−ε

2µ/2.

Remark 5.0.8. The bounds for upper and lower tails are necessarily asymmetric, when
the probabilities are small. Why? Think about what happens when X ∼ Bin(n, c/n),
which, for a constant c > 0, converges as n → ∞ to a Poisson distribution with mean c,
whose value at k is ckek/k! = e−Θ(k log k) and not e−Ω(k2) as one might naively predict by
an incorrect application of the Chernoff bound formula.

Nonetheless, both formulas tell us that both tails exponentially decay like ε2 for small
values of ε, say, ε ∈ [0, 1].

5.1 Discrepancy

Theorem 5.1.1. Let F be a collection of m subsets of [n]. Then there exists some
assignment [n] → {−1, 1} so that the sum on every set in F is at most 2

√
n logm in

absolute value.

Proof. Put ±1 iid uniformly at random on each vertex. On each edge, the probability that
the sum exceeds 2

√
n logm in absolute value is, by Chernoff bound, less than 2e−2 logm =

2/m2. By union bound over all m edges, with probability greater than 1 − 2/m ≥ 0, no
edge has sum exceeding 2

√
n logm.

Remark 5.1.2. In a beautiful landmark paper titled Six standard deviations suffice, Spencer
(1985) showed that one can remove the logarithmic term by a more sophisticated semi-
random assignment algorithm.

Theorem 5.1.3 (Spencer (1985)). Let F be a collection of n subsets of [n]. Then there
exists some assignment [n]→ {−1, 1} so that the sum on every set in F is at most 6

√
n

in absolute value.
More generally, if F be a collection of m ≥ n subsets of [n], then we can replace 6

√
n by

11
√
n log(2m/n).
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Remark 5.1.4. More generally, Spencer proves that the same holds if vertices have [0, 1]-
valued weights.

The idea, very roughly speaking, is to first generalize from {−1, 1}-valued assignments to
[−1, 1]-valued assignments. Then the all-zero vector is a trivially satisfying assignment.
We then randomly, in iterations, alter the values from 0 to other values in [−1, 1], while
avoiding potential violations (e.g., edges with sum close to 6

√
n in absolute value), and

finalizing a color of a color when its value moves to either −1 and 1.

Spencer’s original proof was not algorithmic, and he suspected that it could not be made
efficiently algorithmic. In a breakthrough result, Bansal (2010) gave an efficient algorithm
for producing a coloring with small discrepancy. Another very nice algorithm with another
beautiful proof of the algorithmic result was given by Lovett and Meka (2015).

Here is a famous conjecture on discrepancy.

Conjecture 5.1.5 (Komlós). There exists some absolute constant K so that for every
set of vectors v1, . . . , vm in the unit ball in Rn, there exists signs ε1, . . . , εm ∈ {−1, 1} such
that

ε1v1 + · · ·+ εmvm ∈ [−K,K]n.

Banaszczyk (1998) proved the bound K = O(
√

log n) in a beautiful paper using deep
ideas from convex geometry.

Spencer’s theorem’s implies the Komlós conjecture if all vectors vi have the form n−1/2(±1, . . . ,±1)

(or more generally when all coordinates are O(n−1/2)). The deduction is easy whenm ≤ n.
When m > n, we use the following observation.

Lemma 5.1.6. Let v1, . . . , vm ∈ Rn. Then there exists a1, . . . , am ∈ [−1, 1]m with
|{i : ai /∈ {−1, 1}}| ≤ n such that

a1v1 + · · ·+ amvm = 0

Proof. Find (a1, . . . , am) ∈ [−1, 1]m satisfying and as many ai ∈ {−1, 1} as possible. Let
I = {i : ai /∈ {−1, 1}}. If |I| > n, then we can find some nontrivial linear combination
of the vectors vi, i ∈ I, allowing us to to move (ai)i∈I ’s to new values, while preserving
a1v1 + · · ·+ amvm = 0, and end up with at one additional ai taking {−1, 1}-value.

Letting a1, . . . , am and I = {i : ai /∈ {−1, 1}} as in the Lemma, we then take εi = ai for
all i /∈ I, and apply a corollary of Spencer’s theorem to find εi ∈ {−1, 1}n, i ∈ I with∑

i∈I

(εi − ai)vi ∈ [−K,K]n,
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which would yield the desired result. The above step can be deduced from Spencer’s
theorem by first assuming that each ai ∈ [−1, 1] has finite binary length (a compactness
argument), and then rounding it off one digit at a time during Spencer’s theorem, starting
from the least significant bit (see Corollary 8 in Spencer’s paper for details).

5.2 Hajós conjecture counterexample

We begin by reviewing some classic result from graph theory. Recall some definitions:

• H is an induced subgraph of G if H can be obtained from G by removing vertices;

• H is a subgraph if G if H can be obtained from G by removing vertices and edges;

• H is a subdivision of G if H can be obtained from a subgraph of G by contracting
induced paths to edges;

• H is a minor of G if H can be obtained from a subgraph of G by by contracting
edges to vertices.

Kuratowski’s theorem (1930). Every graph without K3,3 and K5 as subdivisions as
subdivision is planar.

Wagner’s theorem (1937). Every graph free of K3,3 and K5 as minors is planar.

(There is a short argument shows that Kuratowski and Wagner’s theorems are equivalent.)

Four color theorem (Appel and Haken 1977) Every planar graph is 4-colorable.

Corollary: Every graph without K3,3 and K5 as minors is 4-colorable.

The condition on K5 is clearly necessary, but what about K3,3? What is the “real” reason
for 4-colorability.

Hadwidger posed the following conjecture, which is one of the biggest open conjectures
in graph theory.

Conjecture 5.2.1 (Hadwiger 1936). For every t ≥ 1, every graph without a Kt+1 minor
is t-colorable.

t = 1 trivial

t = 2 nearly trivial (if G is K3-minor-free, then it’s a tree)

t = 3 elementary graph theoretic arguments

t = 4 is equivalent to the 4-color theorem (Wagner 1937)
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t = 5 is equivalent to the 4-color theorem (Robertson–Seymour–Thomas 1994; this work
won a Fulkerson Prize)

t ≥ 6 remains open

Let us explore a variation of Hadwiger’s conjecture:

Hajós conjecture. (1961) Every graph without a Kt+1-subdivision is t-colorable.

Hajós conjecture is true for t ≤ 3. However, it turns out to be found in general. Catlin
(1979) constructed counterexamples for all t ≥ 6 (t = 4, 5 are still open).

It turns out that Hajós conjecture is not just false, but very false.

Erdős–Fajtlowicz (1981) showed that almost every graph is a counterexample (it’s a good
idea to check for potential counterexamples among random graphs!)

To be continued

Theorem 5.2.2. With probability 1 − o(1), G(n, 1/2) has no Kt-subdivision with t =

d10
√
ne.

From Theorem 4.3.3 we show that, with high probability, G(n, 1/2) has independence
number ∼ 2 log2 n and hence chromatic number ≥ (1 + o(1) n

2 log2 n
. Thus the above result

shows that G(n, 1/2) is whp a counterexample to Hajós conjecture.

Proof. If G had a Kt-subdivision, say with S ⊂ V , |S| = t, then at most n − t ≤ n of
the edges in the subdivision can be paths with at least two edges (since they must use
distinct vertices outside S). So S must induce at least

(
t
2

)
− n ≥ 3

4

(
t
2

)
edges in G.

By Chernoff bound, for fixed t-vertex subset S

P
(
e(S) ≥ 3

4

(
t

2

))
≤ e−t

2/10.

Taking a union bound over all t-vertex subsets S, and noting that(
n

t

)
e−t

2/10 < nte−t
2/10 ≤ e−10n+O(

√
n logn) = o(1)

we see that whp no such S exists, so that this G(n, 1/2) whp has no Kt-subdivision

Remark 5.2.3. One can ask the following quantitative question regarding Hadwidger’s
conjecture:

Can we show that every graph without a Kt+1-minor can be properly colored with a small
number of colors?

Wagner (1964) showed that every graph without Kt+1-minor is 2t−1 colorable.
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Here is the proof: assume that the graph is connected. Take a vertex v and let Li be
the set of vertices with distance exactly i from v. The subgraph induced on Li has no
Kt-minor, since otherwise such a Kt-minor would extend to a Kt+1-minor with v. Then
by induction Li is 2t−2-colorable (check base cases), and using alternating colors for even
and odd layers Li yields a proper coloring of G.

This bound has been improved over time. The best current bound was proved this past
summer. Postle (2020+) showed that if every graph with no Kt-minor is O(t(log log t)6)-
colorable.

For more on Hadwiger’s conjecture, see Seymour’s survey (2016).
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6 Lovász local lemma

The Lovász local lemma (LLL), introduced in the paper of Erdős and Lovász (1975) is a
powerful tool in the probabilistic method. It is some form of interpolation between the
following two extreme (easy) scenerios

• Complete independence: if we have an arbitrary number of independent bad events,
each occurring with probability < 1, then it is possible to avoid all of them (although
with tiny probability)

• Union bound: if we have a collection of bad events whose total probability is < 1

(but usually much smaller), then it is possible to avoid all of them (often with high
probability)

The local lemma deals with the case when each bad event is independent with most other
bad events, but possibly dependent with a small number of other events.

We saw an application of the Lovász local lemma back in Section 1.1, where we used it
to lower bound Ramsey numbers. This chapter we will explore the local lemma and its
applications in depth.

6.1 Statement and proof

Here is the setup for the local lemma:

• We have “bad events” A1, A2, . . . , An

• For each i there is some subset N(i) ⊆ [n] such that Ai is independent from {Aj :

j /∈ N(i) ∪ {i}}.

Here we say that event A0 is independent from {A1, . . . , Am} if A0 is independent of
every event of the form B1 ∧ · · · ∧Bm where each Bi is either Ai or Ai, i.e.,

P(A0B1 · · ·Bm) = P(A0)P(B1 · · ·Bm),

or, equivalently, using Bayes’s rule: P(A0|B1 · · ·Bm) = P(A0). (Here ∧ = ‘and’ and ∨ =
‘or’, and we may omit ∧ symbols, similar to multiplication)

We can represent the above relations by a dependency (di)graph whose vertices are
indexed by the events (or equivalently V = [n]), and the (out-)neighbors of i are N(i).
(Mostly we’ll just work with undirected dependency graphs for simplicity, but in general
it may be helpful to think of them as directed—hence digraphs.)
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Remark 6.1.1 (Important!). Independence 6= pairwise independence
The dependency graph is not made by joining i ∼ j whenever Ai and Aj are not inde-
pendent (i.e., P(AiAj) 6= P(Ai)P(Aj)).

Example: suppose one picks x1, x2, x3 ∈ Z/2Z uniformly and independently at random
and set, for each i = 1, 2, 3 (indices taken mod 3), Ai the event that xi+1 +xi+2 = 0. Then
these events are pairwise independent but not independent. So the empty graph on three
vertices is not a valid dependency graph (on the other hand, having at least two edges
makes it a valid dependency graph).

A related note: there could be more than one choices for dependency graphs. So we speak
of “a dependency graph” instead of “the dependency graph.”

Remark 6.1.2 (Random variable model / hypergraph coloring). Many common
applications of the local lemma can be phrased in the following form:

• A collection of independent random variables x1, . . . , xN

• Each event Ai only depends on {xj : j ∈ Si} for some subset Si ⊆ [N ]

In this case, valid dependency graph can be formed by placing an edge i ∼ j whenever
Si ∩ Sj 6= ∅.

We can also view the above as coloring a hypergraph with vertices labeled by [N ], using
independent random colors x1, . . . , xN for each vertex, so that various constraints on edges
S1, S2, · · · ⊆ [N ] are satisfied.

An example of such a problem is the satisfiability problem (SAT): given a CNF
formula (conjunctive normal norm = and-of-or ’s), e.g.,

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x4 ∨ x5) ∧ · · ·

the problem is to find a satisfying assignment with boolean variables x1, x2, . . . . Many
problems in computer science can be modeled using this way.

The following formulation of the local lemma is easiest to apply and is the most commonly
used.

Theorem 6.1.3 (Lovász local lemma; symmetric form). Let A1, . . . , An be events, with
P[Ai] ≤ p for all i. Suppose that each Ai is independent from a set of all other Aj except
for at most d of them. If

ep(d+ 1) ≤ 1,

then with some positive probability, none of the events Ai occur.
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Remark 6.1.4. The constant e is best possible (Shearer 1985).

Theorem 6.1.5 (Lovász local lemma; general form). Let A1, . . . , An be events. For
each i ∈ [n], let N(i) be such that Ai is independent from {Aj : j /∈ {i} ∪ N(i)}. If
x1, . . . , xn ∈ [0, 1) satisfy

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n],

then with probability ≥
∏n

i=1(1− xi), none of the events Ai occur.

Proof that the general form implies the symmetric form. Set xi = 1/(d+ 1) < 1 for all i.
Then

xi
∏

j∈N(i)

(1− xj) ≥
1

d+ 1

(
1− 1

d+ 1

)d
>

1

(d+ 1)e
≥ p

so the hypothesis of general local lemma holds.

Here is another corollary of the general form. It says that the local lemma works if the
total probability of any neighborhood in a dependency graph is small.

Corollary 6.1.6. In the setup of Theorem 6.1.5, if P(Ai) < 1/2 and
∑

j∈N(i) P(Aj) ≤ 1/4

for all i, then with positive probability none of the events Ai occur.

Proof. In Theorem 6.1.5, set xi = 2P(Ai) for each i. Then

xi
∏

j∈N(i)

(1− xj) ≥ xi

1−
∑
j∈N(i)

xj

 = 2P(Ai)

1−
∑
j∈N(i)

2P(Ai)

 ≥ P(Ai).

(The first inequality is by “union bound.”)

Proof of Lovász local lemma (general case). We will prove that

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ xi whenever i /∈ S ⊆ [n] (6.1)

Once (6.1) has been established, we then deduce that

P(A1 · · ·An) = P(A1)P
(
A2

∣∣ A1

)
P
(
A3

∣∣ A1A2

)
· · ·P

(
An
∣∣ A1 · · ·An−1

)
≥ (1− x1)(1− x2) · · · (1− xn),
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which is the conclusion of the local lemma.

Now we prove (6.1) by induction on |S|. The base case |S| = 0 is trivial.

Let i /∈ S. Let S1 = S ∩N(i) and S2 = S \ S1. We have

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
=

P
(
Ai
∧
j∈S1

Aj

∣∣∣ ∧j∈S2
Aj

)
P
(∧

j∈S1
Aj

∣∣∣ ∧j∈S2
Aj

) (6.2)

For the RHS of (6.2),

numerator ≤ P

(
Ai

∣∣∣∣∣ ∧
j∈S2

Aj

)
= P(Ai) ≤ xi

∏
j∈N(i)

(1− xi) (6.3)

and, writting S1 = {j1, . . . , jr},

denominator = P

(
Aj1

∣∣∣∣∣ ∧
j∈S2

Aj

)
P

(
Aj2

∣∣∣∣∣ Aj1 ∧
j∈S2

Aj

)
· · ·P

(
Ajr

∣∣∣∣∣ Aj1 · · ·Ajr−1

∧
j∈S2

Aj

)
≥ (1− xj1) · · · (1− xjr) [by induction hypothesis]

≥
∏

j∈N(i)

(1− xi)

Thus (6.2) ≤ xi, thereby finishing the induction proof of (6.1).

6.2 Algorithmic local lemma

The local lemma tells you that some good configuration exists, but the proof is non-
constructive. The probability that a random sample avoids all the bad events is often
very small (usually exponentially small, e.g., in the case of a set of independent bad
events). It had been an open problem for a long time whether there exists some efficient
algorithm to sample a good configuration in applications of the local lemma.

Moser (2009), during his PhD, achieved a breakthrough by coming up with the first
efficient algorithmic version of the local lemma. Later, in a beautiful paper by Moser and
Tardos (2010) extended the algorithm to a general framework for the local lemma.

The Moser–Tardos algorithm considers problems in the random variable model (Re-
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mark 6.1.2). The algorithm is surprisingly simple.

Algorithm: Moser–Tardos local lemma algorithm
Initialize all the random variables;
while there are violated events do

Pick an arbitrary violated event and resample its variables;

Theorem 6.2.1 (Moser and Tardos 2010). If there are x1, . . . , xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n],

then the above randomized algorithm resamples each Ai at most xi/(1 − xi) times in
expectation for each i.

Remark 6.2.2. The above theorem shows that the Moser–Tardos algorithm is an Las Vegas
algorithm with polynomial expected runtime. A Las Vegas algorithm is a randomized
algorithm that always terminates a successful result, but it might take a long time to
terminate. Contrast this to a Monte Carlo algorithm, which runs in bounded time but
may return a bad result with some small probability, and there may not be an efficient way
to check whether the output is correct–e.g., randomly 2-coloring the edges of Kn to avoid
a monochromatic 2 log2 n-clique. A Las Vegas algorithm can be converted into a Monte
Carlo algorithm by cutting off the algorithm after some time (significantly larger than
the expected running time) and applying Markov’s inequality to bound the probability of
failure. On the other hand, there is in general no way to convert a Monte Carlo algorithm
to a Las Vegas algorithm unless there is an efficient way to certify the correctness of the
output of the algorithm.

Remark 6.2.3. The Moser–Tardos algorithm assumes the random variable model. Some
assumption on the model is necessary since the problem can be computationally hard in
general.

For example, let q = 2k, and f : [q] → [q] be some fixed bijection. Let y ∈ [q] be given.
The goal is find x such that f(x) = y.

For each i ∈ [k], let Ai be the event that f(x) and y disagree on i-th bit. Then A1, . . . , Ak
independent (check!). Also, f(x) = y if and only if no event Ai occurs.

A trivial version of the local lemma (with empty dependency graph) guarantees the exis-
tence of some x such that f(x) = y.

However, finding x may be computationally hard for certain functions f . In fact, the
existence of such one-way functions (easy to compute but hard to invert) is the bedrock
of cryptography. A concrete example is f : Fq → Fq is given by f(0) = 0, and for x 6= 0, set
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f(x) = gx for some multiplicative generator. Then inverting f is the discrete logarithm
problem, which is believed to be computationally difficult.

6.3 Coloring hypergraphs

Previously, in Theorem 1.3.1, we saw that every k-uniform hypergraph with fewer than
2k−1 edges is 2-colorable. The next theorem gives a sufficient local condition for 2-
colorability.

Theorem 6.3.1. A k-uniform hypergraph is 2-colorable if every edge intersects at most
e−12k−1 − 1 other edges

Proof. For each edge f , let Af be the event that f is monochromatic. Then P(Af ) = p :=

2−k+1. Each Af is independent from all Af ′ where f ′ is disjoint from f . Since at most
d := e−12k−1− 1 edges intersect every edge, and e(d+ 1)p ≤ 1, so the local lemma implies
that with positive probability, none of the events Af occur.

Corollary 6.3.2. For k ≥ 9, every k-uniform k-regular hypergraph is 2-colorable. (Here
k-regular means that every vertex lies in exactly k edges)

Proof. Every edge intersects ≤ d = k(k − 1) other edges. And e(k(k − 1) + 1)2−k+1 < 1

for k ≥ 9.

Remark 6.3.3. The statement is false for k = 2 (triangle) and k = 3 (Fano plane) but
actually true for all k ≥ 4 (Thomassen 1992).

Here is an example where the asymmetric form of the local lemma is insufficient (why is
it insufficient? No bound on the the number of dependent events).

Theorem 6.3.4. Let H be a (non-uniform) hypergraph where every edge has size 3.
Suppose ∑

f∈E(H)\{e}:e∩f 6=

2−|f | ≤ 1

8
, for each edge e,

then H is 2-colorable.

Proof. Consider a uniform random 2-coloring of the vertices. Let Ae be the event that
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edge e is monochromatic. Then P(Ae) = 2−|e|+1 ≤ 1/4 since |e| ≥ 3. Also, also∑
f∈E(H)\{e}:e∩f 6=

P(Af ) =
∑

f∈E(H)\{e}:e∩f 6=

2−|f |+1 ≤ 1/4.

Thus by Corollary 6.1.6 one can avoid all events Ae, and hence H is 2-colorable.

Remark 6.3.5. A sign for when you should look beyond the symmetric local lemma is
when there are bad events of very different nature (in particular, they have very different
probabilities).

6.3.1 Compactness argument

Now we highlight an important compactness argument that allows us to deduce the
existence of an infinite object, even though the local lemma itself is only applicable to
finite systems.

Theorem 6.3.6. Let H be a (non-uniform) hypergraph on a possibly infinite vertex set,
such that each edges is finite, has at least k vertices, and intersect at most d other edges.
If e2−k+1(d+ 1) ≤ 1, then H has a proper 2-coloring.

Proof. From a vanilla application of the symmetric local lemma, we deduce that for any
finite subset X of vertices, there exists an 2-coloring X so that no edge contained in X is
monochromatic (color each vertex iid uniformly, and consider the bad event Ae that the
edge e ⊂ X is monochromatic).

Next we extend the coloring to the entire vertex set V by a compactness argument. The
set of all colorings is [2]V . By Tikhonov’s theorem (which says a product of a possibly
infinite collection of compact topological spaces is compact), [2]V is compact under the
product topology (so that open subsets are those defined by restriction to a finite set of
coordinates).

For each finite subset X, let CX ⊂ [2]V be the subset of colorings where no edge contained
in X is monochromatic. Earlier from the local lemma we saw that CX 6=. Furthermore,

CX1 ∩ · · · ∩ CX` ⊇ CX1∪···∪X` ,

so {CX : |X| < ∞} is a collection of closed subsets of [2]V with the finite intersection
property. Hence by compactness of [2]V , we have

⋂
X⊂V :|X|<∞ 6= ∅, and observe that any

element of this intersection is a valid coloring of the hypergraph.

Note that we may have P[
∧
iAi] = 0 while

∧
iAi 6= ∅.
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The same compactness argument tell us that: in the random variable model (Re-
mark 6.1.2), if it is possible to avoid every finite subset of bad events, then it is
possible to avoid all bad events simultaneously. (Again, one needs to be working
in the random variable model for the compactness argument to work.

The next application appears in the paper of Erdős and Lovász (1975) where the local
lemma originally appears.

Consider k-coloring the real numbers, i.e., a function c : R → [k]. We say that T ⊂ R is
multicolored with respect to c if all k colors appear in T

Question 6.3.7. For each k is there an m so that for every S ⊂ R with |S| = m, one
can k-color R so that every translate of S is multicolored?

The following theorem shows that this can be done whenever m > (3 + ε)k log k (and
k > k0(ε) sufficiently large).

Theorem 6.3.8. The answer to the above equation is yes if

e(m(m− 1) + 1)k

(
1− 1

k

)m
≤ 1.

Proof. By the compactness argument, it suffices to check the result for every finite X ⊂ R.

Each translate of S is not multicolored with probability p ≤ k(1 − 1/k)m, and each
translate of S intersects at most m(m − 1) other translates. Consider a bad event for
each translate of S contained in X, and conclude by the symmetric version of the local
lemma.

6.4 Decomposing coverings

We say that a collection of disks in Rd is a covering is their union is Rd. We say that it is
a k-fold covering if every point of Rd is contained in at least k disks (so 1-fold covering
is the same as a covering).

We say that a k-fold covering is decomposable if it can be partitioned into two coverings.

In Rd, is a every k-fold covering by unit balls decomposable if k is sufficiently large?

A fun exercise: in R1, every k-fold covering by intervals can be partitioned into k coverings.

Mani-Levitska and Pach (1986) showed that every 33-fold covering of R2 is decomposable.

What about higher dimensions?
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Surprising, they also showed that for every k, there exists a k-fold indecomposable covering
of R3 (and similarly for Rd for d ≥ 3).

However, it turns out that indecomposable coverings must cover the space quite unevenly:

Theorem 6.4.1 (Mani-Levitska and Pach 1986). Every k-fold nondecomposable covering
of R3 by open unit balls must cover some point & 2k/3 times.

Remark 6.4.2. In Rd, the same proof gives ≥ cd2
k/d.

We will need the following combinatorial geometric fact:

Lemma 6.4.3. A set of n ≥ 2 spheres in R3 cut R3 into at most n3 connected components.

Proof. Let us first consider the problem in one dimension lower. Let f(m) be the max-
imum number of connected regions that m circles on a sphere in R3 can cut the sphere
into.

We have f(m + 1) ≤ f(m) + 2m for all m ≥ 1 since adding a new circle to a set of m
circles creates at most 2m intersection points, so that the new circle is divided into at
most 2m arcs, and hence its addition creates at most 2m new regions.

Combined with f(1) = 2, we deduce f(m) ≤ m(m− 1) + 2 for all m ≥ 1.

Now let g(m) be the maximum number of connected regions that m spheres in R3 can cut
R3 into. We have g(1) = 2, and g(m + 1) ≤ g(m) + f(m) ≤ g(m) by a similar argument
as earlier. So g(m) ≤ f(m− 1) + f(m− 2) + · · ·+ f(1) + g(0) ≤ m3.

Proof. Suppose for contradiction that every point in R3 is covered by at most t ≤ c2k/3

unit balls from F (for some sufficiently small c that we will pick later).

Construct an infinite hypergraph H with vertex set being the set of balls and edges having
the form Ex = {balls containing x} for some x ∈ R3. Note that |Ex| ≥ k since we have a
k-fold covering.

Claim: every edge of intersects at most d = O(t3) other edges

Proof of claim: Let x ∈ R3. If Ex ∩ Ey 6= ∅, then |x − y| ≤ 2, so all the balls in Ey
lie in the radius-4 ball centered at x. The volume of the radius-4 ball is 43 times the
unit ball. Since every point lies in at most t balls, there are at most 43t balls appearing
among those Ey intersecting x, and these balls cut the radius-2 centered at x into O(t3)

connected regions by the earlier lemma, and two different y’s in the same region produce
the same Ey. So Ex intersects O(t3) other edges. �

With c sufficiently small, we have e2−k+1(d + 1) ≤ 1. It then follows by Theorem 6.3.6
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(local lemma + compactness argument) that this hypergraph is 2-colorable, which corre-
sponds to a decomposition of the covering, a contradiction.

6.5 Large independent sets

Every graph with maximum degree ∆ contains an independent set of size ≥ |V |/(∆ + 1)

(choose the independent set greedily). The following lemma shows that by decreasing
the desired size of the independent set by a constant factor, we can guarantee a certain
structure on the independent set.

Theorem 6.5.1. Let G = (V,E) be a graph with maximum degree ∆ and let V =

V1 ∪ · · · ∪ Vr be a partition, where each |Vi| ≥ 2e∆. Then there is an independent set in
G containing one vertex from each Vi.

This example is instructive because it is not immediately obvious what to choose as bad
events (even if you are already told to apply the local lemma).

We may assume that |Vi| = k := d2e∆e for each i, or else we can remove some vertices
from Vi.

Pick vi ∈ Vi uniformly at random, independently for each i.

What do we choose as bad events A•? It turns out that some choices work better than
others.

Attempt 1:
Ai,j = {vi ∼ vj} for each 1 ≤ i < j ≤ r where there is an edge between Vi and Vj
P(Ai,j) ≤ ∆/k

Dependency graph: Ai,j ∼ Ak,` if {i, j} ∩ {k, `} 6= ∅. Max degree ≤ 2∆k (starting from
(i, j), look at the neighbors of all vertices in Vi∪Vj). The max degree is too large compared
to the bad event probabilities.

Attempt 2:
Ae = {both endpoints of e are chosen} for each e ∈ E
P(Ae) = 1/k2

Dependency graph: Ae ∼ Af if some Vi intersects both e and f . Max degree ≤ 2k∆ (if e
is between Vi and Vj, then f must be incident to Vi ∪ Vj).
We have e(1/k2)(2k∆ + 1) ≤ 1, so the local lemma implies the with probability no bad
event occurs, and hence {v1, . . . , vr} is an independent set.
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6.6 Directed cycles of length divisible by k

Theorem 6.6.1 (Alon and Linial 1989). For every k there exists d so that every d-regular
directed graph has a directed cycle of length divisible by k.

(d-regular means in-degree and out-degree of every vertex is d)

Corollary 6.6.2. For every k there exists d so that every 2d-regular graph has a cycle of
length divisible by k.

Proof. Every 2d-regular graph can be made into a d-regular digraph by orientating its
edges according to an Eulerian tour. And then we can apply the previous theorem.

More generally they proved:

Theorem 6.6.3 (Alon and Linial 1989). Every directed graph with min out-degree δ and
max in-degree ∆ contains a cycle of length divisible by k ∈ N as long as

k ≤ δ

1 + log(1 + δ∆)
.

Proof. By deleting edges, can assume that every every vertex has out-degree exactly δ.

Assign every vertex v an element xv ∈ Z/kZ iid uniformly at random.

We will look for directed cycles where the labels increase by 1 (mod k) at each step.
These cycles all have length divisible by k.

For each vertex v, let Av be the event that there is nowhere to go from v (i.e., if no
outneighbor is labeled xv + 1 (mod k)). We have

P(Av) = (1− 1/k)δ ≤ e−δ/k.

The following is a valid dependency graph, noting that Av only depends on {xw : w ∈
{v} ∪ N+(v)}, where N+(v) denotes the out-neighbors of v and N−(v) the in-neighbors
of v:

Av ∼ Aw if {v} ∪N+(v) intersects {w} ∪N+(w).

The maximum degree in the dependency graph is at most ∆ + δ∆ (starting from v, there
are (1) at most ∆ choices stepping backward (2) δ choices stepping forward, and (3) at
most δ(∆−1) choices stepping forward and then backward to land somewhere other than
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v). So an application of the local lemma shows that, as long as e1−δ/k(1 + ∆ + δ∆), i.e.,

k ≤ δ/(1 + log(1 + ∆ + δ∆)),

then we are done. This is almost, but not quite the result (though, for most application,
we would be perfectly happy with such a bound).

The final trick is to notice that we actually have an even smaller dependency digraph:

Av is independent of all Aw where N+(v) is disjoint from N+(w) ∪ {w}.

Indeed, even if we fix the colors of all vertices outside N+(v), the conditional probability
that Av is still (1− 1/k)δ.

The number of w such that N+(v) intersects N+(w)∪{w} is at most δ∆ (no longer need
to consider (1) in the previous count). And we have

ep(δ∆ + 1) ≤ e1−δ/k(δ∆ + 1) ≤ 1.

So we are done by the local lemma.

6.7 Lopsided local lemma

In the dependency graph, intuitively, the neighbors of Ai consists of all the events depen-
dent on Ai (again, same warning as earlier: it is insufficient to simply check for pairwise
dependence). However, if the there is a positive dependence among the bad events—
avoiding some bad events make it easier to avoid others—then perhaps it would actually
make it easier to avoid all bad events. For example, in an extreme scenario, if several bad
events are identical, so that they are perfectly positively correlated, then it is much easier
to avoid them compared to avoiding independent bad events. In the opposite extreme,
if several bad events are disjoint, then it would be harder to avoid all of them. Thus,
intuitively, it seems reasonable that in the local lemma, we are primarily concerned about
negative dependencies and but not positive dependencies among bad events.

We can make this notion precise by re-examining the proof of the local lemma. Where
did we actually use the independence assumption in the hypothesis of the local lemma?
It was in the following step, Equation (6.3):

numerator ≤ P

(
Ai

∣∣∣∣∣ ∧
j∈S2

Aj

)
= P(Ai) ≤ xi

∏
j∈N(i)

(1− xi).

If we had changed the middle = to ≤, the whole proof would remain valid. This observa-
tion allows us to weaken the independence assumption. Therefore we have the following
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theorem.

Theorem 6.7.1 (Lopsided local lemma — Erdős and Spencer 1991). Let A1, . . . , An be
events. For each i, let N(i) ⊂ [n] be such that

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ P(Ai) ∀i ∈ [n] and S ⊆ [n] \ (N(i) ∪ {i}) (6.4)

Suppose there exist x1, . . . , xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

j∈N(i)

(1− xj) ∀i ∈ [n].

Then with probability ≥
∏n

i=1(1− xi) none of the event Ai occur.

Like earlier, we also have a symmetric version that is easier to apply.

Corollary 6.7.2 (Lopsided local lemma; symmetric version). In the previous theorem,
if |N(i)| ≤ d and P(Ai) ≤ p for every i ∈ [n], and ep(d + 1) ≤ 1, then with positive
probability none of the events Ai occur.

The (di)graph where N(i) is the set of (out-)neighbors of i is called a negative depen-
dency (di)graph. Erdős and Spencer called it the lopsidependency graph, though I
prefer “negative dependency graph” since it is more descriptive.
Remark 6.7.3. Here are several equivalent formulations of (6.4): for every i ∈ [n] and
S ⊆ [n] \ (N(i) ∪ {i}),

• P
(
Ai

∣∣∣ ∧j∈S Aj

)
≥ P(Ai)

• P
(
Ai
∧
j∈S Aj

)
≤ P(Ai)P

(∧
j∈S Aj

)
To put in words, each event is non-negatively dependent on its non-neighbors.

It may be slightly strange to think about at first, but to verify the validity of a nega-
tive dependency graph, we are actually checking nonnegative dependencies (against non-
neighbors). Likewise, earlier, to verify a dependency graph, we need to check independence
against non-neighbors.
Remark 6.7.4. From the proof of Theorem 6.7.1, we see that we can weaken the negative
dependency hypothesis to

P

(
Ai

∣∣∣∣∣ ∧
j∈S

Aj

)
≤ xi

∏
j∈N(i)

(1− xj) ∀i and S ⊆ [n] \N(i).
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Though negative dependency is often easier to argue.

6.7.1 Random permutations and positive dependencies

Just like how most applications of the local lemma can be cast in terms of the the random
variable model, which makes it easy to produce a valid dependency graph (by looking at
shared random variables), a natural setting for applications of the lopsided local lemma
is that of random permutations (and, by extending the domain, also random injections).

Here is a model problem: what is the probability that a random permutation π of [n] has
no fixed points? (Such permutations are called “derangements”)

This problem can be solved exactly: using inclusion-exclusion, one can deduce that prob-
ability to be

∑n
i=0(−1)i/i! = e−1 + o(1). Suppose that we did not know this answer.

Let Ai be the event that π(i) = i. It is easy to see that P(Ai) = 1/n. If the events
A1, . . . , An were independent, then we would deduce that with probability (1 − 1/n)n =

1/e+ o(1) none of the Ai occur. But these events are not independent.

Intuitively, these events are positively dependent: having some fixed points makes it likes
to see other fixed points. The next theorem makes this rigorous, so that we can deduce
P(A1 . . . An) ≥ P(A1) · · ·P(An) = (1 − 1/n)n = 1/e − o(1), a lower bound that matches
the truth.

It may be easier to visualize permutations as perfect matchings in the complete bipartite
graph Kn,n. We will use these two interpretations interchangeably.

Theorem 6.7.5 (Positive dependence for random perfect matchings). LetM be a perfect
matching of Kn,n chosen uniformly at random. For each matching F , let AF denote the
event that F ⊆M .
Let F0, F1, . . . , Fk be matchings such that no edge of F0 shares a vertex with any edge
from F1 ∪ · · · ∪ Fk. Then

P
(
AF0

∣∣ AF1 · · ·AFk
)
≤ P(AF0).

In other words, if F is a set of matchings in Kn,n, then the following if a valid negative
dependency graph on the events {AF : F ∈ F}: AF1 ∼ AF2 if F1 and F2 touch (i.e., some
two edges coincide or share an endpoint).

Proof. By relabeling, we may assume that the edges of F0 are (1, 1), (2, 2), . . . , (t, t).

For each injection τ : [t]→ [n] (also viewed as a matching with edges (1, τ(1)), . . . , (t, τ(t))),
letMτ denote the set of perfect matchings in Kn,n containing τ but not containing any
of F1, . . . , Fk.
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Let τ0 : [t] → [n] be the map sending i to i (i.e., the matching F0). Then the LHS and
RHS of the desired inequality P

(
AF0

∣∣ AF1 · · ·AFk
)
≤ P(AF0) can be rewritten as

|Mτ0|∑
τ |Mτ |

≤ 1

n(n− 1) · · · (n− t+ 1)
,

where the sum is taken over all n(n − 1) · · · (n − t + 1) injections τ : [t] → [n]. Thus it
suffices to prove that

|Mτ0| ≤ |Mτ | for every injection τ : [t]→ [n].

To show this inequality, we construct an injectionMτ0 →Mτ . Intuitively, this injection is
obtained by permuting some of the vertices on the right-half of Kn,n so that the matching
τ0 to taken to τ . Let us illustrate this idea in a simple case when τ(i) = t + i for each
i ∈ [t]: we constructMτ0 →Mτ by swapping, in Kn,n, the i-th vertex on the right-half
with the (t+ i)-th vertex on the right-half, for each i ∈ [n].

More generally, extend τ : [t]→ [n] to a permutation σ on [n] sending τ([t])\[t] to [t]\τ([t])

and otherwise leaving [n] \ ([t] ∪ τ([t])) fixed as identity.

Then σ acts on the set of matchings in Kn,n by permuting the right-endpoints. In partic-
ular, σ sends τ0 to τ . Also σ permutes the set of perfect matchings of Kn,n.

It remains to show that if M ∈ Mτ0 , then its image σM lies in Mτ . By construction
τ ⊂ σM . Suppose Fi ⊂ σM for some i ∈ [k]. Since Fi does not share any vertex with
F0, all the left-endpoints in Fi lie in [n] \ [t]. Since (i, τ(i)) is an edge of σM , all the
right-endpoints in Fi lie in [n] \ ([t] ∪ τ([t])). It follows that τFi = Fi, so that Fi ⊂ M ,
which contradicts M ∈Mτ0 .

Thus σ induces an injection fromMτ0 toMτ .

6.7.2 Latin square transversals

A Latin square of order n is an n× n array filled with n symbols so that every symbol
appears exactly once in every row and column. Example:

1 2 3
2 3 1
3 1 2

(Name origin: The name Latin square was inspired by mathematical papers by Leonhard
Euler (1707–1783), who used Latin characters as symbols)

Given an n×n array, a transversal is a set of n entries with one in every row and column.
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A Latin transversal is a transversal with distinct entries. Example:

1 2 3
2 3 1
3 1 2

Here is a famous open conjecture about Latin transversals. (Can you see why “odd” is
necessary?)

Conjecture 6.7.6. Every odd order Latin square has a transversal.

The next result is the original application of the lopsided local lemma.

Theorem 6.7.7 (Erdős and Spencer 1991). Every n×n array where every entry appears
at most n/(4e) times has a Latin transversal.

Proof. Let (mij) be the array. Pick a transversal uniformly at random. For each pair
of equal entries mij = mkl in the array in distinct rows and distinct columns, consider
the event Aijkl = Aklij that the transversal contains both locations (i, j) and (k, l). Then
P(Aijkl) = 1/(n(n − 1)). (By reinterpreting in the earlier language of matchings, Aijkl
is the event that the random perfect matchings contains the two edges (i, j) and (k, l),
which are assigned identical edge-labels.)

By the earlier theorem, the following is a negative dependency graph: two pairs of entries
are adjacent if they share some row or column, i.e., Aijkl ∼ Ai′j′k′l′ unless |{i, k, i′, k′}| =
|{j, l, j′, l′}| = 4.

Let us count neighbors in this negative dependency graph. Given Aijkl, there are at most
4n−4 additional locations (x, y) that share a column or row with either of the two chosen
entries (i, j) and (k, l). Once we have chosen (x, y), there are at most n/(4e)−1 choices for
another (z, w) with mxy = mzw. Thus the maximum degree in this negative dependence
graph is at most (4n−4)

(
n
4e
− 1
)
≤ n(n−1)

e
−1. We can now apply the symmetric lopsided

local lemma to conclude that with positive probability, none of the events Aijkl occur.
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7 Correlation inequalities

Consider an Erdős–Rényi random graph G(n, p). If we condition on it having a Hamilto-
nian cycle, intuitively, it seems that this conditioning would cause us to have more edges
and thereby decreasing the likelihood that the random graph is planar. The main theorem
of this chapter, the Harris–FKG inequality, makes this notion precise.

7.1 Harris–FKG inequality

Setup. We have n independent Bernoulli random variables x1, . . . , xn (not necessarily
identical, but independence is important).

An increasing event (or increasing property) A is defined by an upward closed subset
of {0, 1}n (an up-set), i.e.,

x ∈ A and x ≤ y (coordinatewise) =⇒ y ∈ A.

Examples in increasing properties of graphs:

• Having a Hamiltonian cycle

• Connected

• Average degree ≥ 4 (or: min degree, max degree, etc.)

• Having a triangle

• Not 4-colorable

Similarly, a decreasing event is defined by a downward closed collection of subset of
{0, 1}n.

Note that A ⊂ {0, 1}n is increasing if and only if its complement A ⊂ {0, 1}n is decreasing

The main theorem of this chapter is the following, which tells us that

increasing events of independent variables are positively correlated

Theorem 7.1.1 (Harris 1960). If A and B are increasing events of independent boolean
random variables, then

P(A ∧B) ≥ P(A)P(B)

Equivalently, we can write P (A | B) ≥ P(A).
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Remark 7.1.2. Many of such inequalities were initially introduced for the problem of
percolations, e.g., if we keep each edge of the infinite grid graph with vertex set Z2 with
probability p, what is the probability that the origin is part of an infinite component (in
which case we say that there is “percolation”). Harris showed that with probability 1,
percolation does not occur for p ≤ 1/2. A later breakthrough of Kesten (1980) shows that
percolation occurs with probability for all p > 1/2. Thus the “bond percolation threshold”
for Z2 is exactly 1/2. Such exact results are extremely rare.

We state and prove a more general result, which says that independent random variables
possess positive association.

Let each Ωi be a linearly ordered set (i.e., {0, 1}, R) and xi ∈ Ωi with respect to some
probability distribution independent for each i. We say that a function f(x1, . . . , xn) is
monotone increasing if

x ≤ y (coordinatewise) =⇒ f(x) ≤ f(y).

Theorem 7.1.3 (Harris). If f and g are monotone increasing functions of independent
random variables, then

E[fg] ≥ (Ef)(Eg).

This version of Harris inequality implies the earlier version by setting f = 1A and g = 1B.

Remark 7.1.4. The inequality is often called the FKG inequality, attributed to Fortuin,
Kasteleyn, Ginibre (1971), who proved a more general result in the setting of distributive
lattices, which we will not discuss here.

Proof. We use induction on n by integrating out the inequality one variable at a time.
For n = 1, for independent x, y ∈ Ω1, we have

0 ≤ E[(f(x)− f(y)(g(x)− g(y)] = 2E[fg]− 2(Ef)(Eg),

so E[fg] ≥ E[f ]E[g] (this is sometimes called Chebyshev’s inequality/rearrangement in-
equality).

Now assume n ≥ 2. Let h = fg. Define marginals f1, g1, h1 : Ω1 → R by

f1(y1) = E[f |x1 = y1] = E(x2,...,xn)∈Ω2×···×Ωn [f(y1, x2, . . . , xn)],

g1(y1) = E[g|x1 = y1] = E(x2,...,xn)∈Ω2×···×Ωn [g(y1, x2, . . . , xn)],

h1(y1) = E[h|x1 = y1] = E(x2,...,xn)∈Ω2×···×Ωn [h(y1, x2, . . . , xn)],

Then f1 and g1 are 1-variable monotone increasing functions on Ω1 (check!).
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For every fixed y1 ∈ Ω1, the function (x2, . . . , xn) 7→ f(y1, x2, . . . , xn) is monotone increas-
ing, and likewise with g. So applying the induction hypothesis for n− 1, we have

h1(y1) ≥ f1(y1)g1(y1). (7.1)

Thus

E[fg] = E[h] = E[h1]

≥ E[f1g1] [by (7.1)]

≥ (Ef1)(Eg1) [by the n = 1 case]

= (Ef)(Eg).

Corollary 7.1.5. Let A and B be events on independent random variables.

(a) If A and B are decreasing, then P(A ∧B) ≥ P(A)P(B).

(b) If A is increasing and B is decreasing, then P(A ∧B) ≤ P(A)P(B).

If A1, . . . , Ak are all increasing (or all decreasing) events on independent random variables,
then

P(A1 · · ·Ak) ≥ P(A1) · · ·P(Ak).

Proof. For the second inequality, note that the complement B is increasing, so

P(AB) = P(A)− P(AB)
Harris
≤ P(A)− P(A)P(B) = P(A)P(B).

The proof of the first inequality is similar. For the last inequality we apply the Harris
inequality repeatedly.

7.2 Applications to random graphs

7.2.1 Triangle-free probability

Question 7.2.1. What’s the probability that G(n, p) is triangle-free?

Harris inequality will allow us to prove a lower bound. In the next chapter, we will use
Janson inequalities to derive upper bounds.
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Theorem 7.2.2. P(G(n, p) is triangle-free) ≥ (1− p3)(
n
3)

Proof. For each triple of distinct vertices i, j, k ∈ [n], let Aijk be the event that ijk is a
triangle in G(n, p). Then Aijk is increasing, and

P(G(n, p) is triangle-free) ≥ P

( ∧
i<j<k

Aijk

)
≥
∏
i<j<k

P(Aijk) = (1− p3)(
n
3).

Remark 7.2.3. How good is this bound? For p ≤ 0.99, we have 1 − p3 = e−Θ(p3), so the
above bound gives

P(G(n, p) is triangle-free) ≥ e−Θ(n3p3).

Here is another lower bound

P(G(n, p) is triangle-free) ≥ P(G(n, p) is empty) = (1− p)(
n
2) = e−Θ(n2p).

The bound from Harris is better when p� n−1/2. Putting them together, we obtain

P(G(n, p) is triangle-free) &

{
e−Θ(n3p3) if p . n−1/2

e−Θ(n2p) if n−1/2 . p ≤ 0.99

(note that the asymptotics agree at the boundary p � n−1/2. In the next chapter, we will
prove matching upper bounds using Janson inequalities.

7.2.2 Maximum degree

Question 7.2.4. What’s the probability that the maximum degree of G(n, 1/2) is at
most n/2?

For each vertex v, deg(v) ≤ n/2 is a decreasing event with probability just slightly over
1/2. So by Harris inequality, the probability that every v has deg(v) ≤ n/2 is at least
≥ 2−n.

It turns out that the appearance of high degree vertices is much more correlated than the
independent case. The truth is exponentially more than the above bound.

Theorem 7.2.5 (Riordan and Selby 2000).

P(maxdegG(n, 1/2) ≤ n/2) = (0.6102 · · ·+ o(1))n
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Instead of giving a proof, we consider an easier continuous model of the problem that
motivates the numerical answer. Turning this continuous model paper into a rigorous
proof about random graphs is more technical.

In a random graphs, we assign independent Bernoulli random variables on edges of a
complete graph. Instead, let us assign independent standard normal random variables
Zuv to each edge uv of Kn.

Let Wv =
∑

u6=v Zuv, which models how much the degree of vertex v deviates from its
expectation. In particular Wv is symmetric and mean 0, and P(Wv ≤ 0).

The problem of estimating the probability that maxdegG(n, 1/2) ≤ n/2 then should be
modeled as

P(max
v∈[n]

Wv ≤ 0)

(Of course, other than intuition, there is no justification here that these two models
actually mimic each other.)

Observe that (Wv)v∈[n] is a joint normal distribution, each coordinate has variance n− 1

and pairwise covariance 1. So (Wv)v∈[n] has the same distribution as

√
n− 2(Z ′1, Z

′
2, . . . , Z

′
n) + Z ′0(1, 1, . . . , 1)

where Z ′0, . . . , Z ′n are iid standard normals.

Let Φ be the pdf and cdf of the standard normal N(0, 1).

Thus

P(max
v∈[n]

Wv ≤ 0) = P
(

max
i∈[n]

Z ′i ≤ −
Z ′0√
n− 2

)
=

1√
2π

∫ ∞
−∞

e−z
2/2Φ

(
−z√
n− 2

)n
dz

where the final step is obtained by conditioning on Z ′0. Substituting z = y
√
n, the above

quantity equals to

=

√
n

2π

∫ ∞
−∞

enf(y) dy where f(y) = −y
2

2
+ log Φ

(
y

√
n

n− 2

)
.

We can estimate the above integral for large n using the Laplace method (which can be
justified rigorously by considering Taylor expansion around the maximum of f). We have

f(y) ≈ g(y) := −y
2

2
+ log Φ (y)
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and we can deduce that

lim
n→∞

1

n
logP(max

v∈[n]
Wv ≤ 0) = lim

n→∞

1

n
log

∫
enf(y) dy = max g = log 0.6102 · · · .
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8 Janson inequalities

We present a collection of inequalities, known collectively as Janson inequalities (Janson
1990). These tools allow us to estimate lower tail large deviation probabilities.

8.1 Probability of non-existence

Question 8.1.1. What is the probability that G(n, p) is triangle-free?

As in indicated in the previous chapter, Janson inequalities will allow us upper bound
such probabilities.

The following setup should be a reminiscent of both the second moment method as well
as Lovász local lemma (the random variable model).

Setup 8.1.2. Let R be a random subset of [N ] with each element included independently
(possibly with different probabilities).

Let S1, . . . , Sk ⊆ [N ]. Let Ai be the event that Si ⊆ R. Let

X =
∑
i

1Ai

be the number of events that occur. Let

µ = E[X] =
∑
i

P(Ai).

Write i ∼ j if i 6= j and Si ∩ Sj 6= ∅. Let (as in the second moment method)

∆ =
∑

(i,j):i∼j

P(Ai ∧ Aj)

(note that (i, j) and (j, i) is each counted once).

The following inequality was proved by Janson, Łuczak, and Ruciński (1990).

Theorem 8.1.3 (Janson inequality I). Assuming Setup 8.1.2,

P(X = 0) ≤ e−µ+∆/2.
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Remark 8.1.4. When P(Ai) = o(1), Harris inequality gives us

P(X = 0) = P(A1 · · ·Ak) ≥ P(A1) · · ·P(Ak) =
k∏
i=1

(1−P(Ai)) = e−(1+o(1))
∑k
i=1 P(Ai) = e−(1+o(1))µ.

If furthermore ∆ = o(µ), then two bounds match to give P(X = 0) = e−(1+o(1)µ.

(Not Janson’s original proof, which was by analytic interpolation. The following proof is
by Boppana and Spencer (1989), with a modification by Warnke1. It has some similarities
to the proof of Lovász local lemma)

Proof. Let
ri = P(Ai|A1 · · ·Ai−1).

We have

P(X = 0) = P(A1 · · ·Ak)
= P(A1)P(A2|A1) · · ·P(Ak|A1 · · ·Ak−1)

= (1− r1) · · · (1− rk)
≤ e−r1−···−rk

It suffices now to prove that:

Claim. For each i ∈ [k]

ri ≥ P(Ai)−
∑

j<i:j∼i

P(AiAj).

Summing the claim over i ∈ [k] would then yield

k∑
i=1

ri ≥
∑
i

P(Ai)−
1

2

∑
i

∑
j∼i

P(AiAj) = µ− ∆

2

and thus

P(X = 0) ≤ exp

(
−
∑
i

ri

)
≤ exp

(
−µ+

∆

2

)
Proof of claim. Let

D0 =
∧

j<i:j 6∼i

Aj and D1 =
∧

j<i:j∼i

Aj

1Personal communication
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Then

ri = P(Ai|A1 · · ·Ai−1) = P(Ai|D0D1) =
P(AiD0D1)

P(D0D1)

≥ P(AiD0D1)

P(D0)

= P(AiD1|D0)

= P(Ai|D0)− P(AiD1|D0)

= P(Ai)− P(AiD1|D0) [by independence]

Since Ai and D1 are both increasing events, and D0 is a decreasing event, by Harris
inequality (Corollary 7.1.5),

P(AiD1|D0) ≤ P(AiD1) = P

(
Ai ∧

∨
j<i:j∼i

Aj

)
≤
∑

j<i:j∼i

P(AiAj)

And the claim follows.

In Setup 8.1.2 (as well as subsequent Janson inequalities by extension), one can actually
allow Ai to be any increasing events, not simply events of the form Si ⊆ R (known as
“principal up-sets”).

Theorem 8.1.5 (Riordan and Warnke 2015). Theorem 8.1.3 remains true if Setup 8.1.2
is modified as follows. The events Ai are allowed to any increasing events independent
boolean random variables. We write i ∼ j if Ai and Aj are not independent (this is
initially a pairwise condition, though see lemma below).

In most applications of Janson inequalities, it is easiest to work with principal up-sets.
Note that Janson’s inequality is false for general events.

Here to how to modify the above proof for work for arbitrary increasing events Ai. The
only place we used independence is the “by independence” step above. The next statement
shows that the this step remains valid for general up-sets.

Proposition 8.1.6. Let A and B1, . . . , Bk be increasing events of independent boolean
random variables. If A is independent of Bi for every i ∈ [k], then A is independent of
{B1, . . . , Bk}.

Proof. We first prove the statement for k = 2. Writing B = B1 and C = B2, we have

P(A ∩ (B ∩ C)) + P(A ∩ (B ∪ C)) = P(A ∩B) + P(A ∩ C) = P(A)(P(B) + P(C))
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By Harris inequality, since B ∩ C and B ∪ C are increasing,

P(A ∩ (B ∩ C)) ≥ P(A)P(B ∩ C) and P(A ∩ (B ∪ C)) ≥ P(A)P(B ∪ C)

Summing the above two gives the previous equality, so the above two inequalities must
be equalities. In particular, A is independent of B ∩ C.

Since the intersection of two up-sets is an up-set, we see that A is independent of the
intersection of any subset of {B1, . . . , Bk}, which then implies that A is independent of
{B1, . . . , Bk}.

Now let us return to the probability that G(n, p) is triangle-free. In Setup 8.1.2, let [N ]

with N =
(
n
2

)
be the set of edges of Kn, and let S1, . . . , S(n3)

be 3-element sets where each
Si is the edge-set of a triangle. As in the second moment calculation in Section 4.1, we
have

µ =

(
n

3

)
p3 � n3p3 and ∆ � n4p5.

(where ∆ is obtained by considering all appearances of a pair of triangles glued along an
edge).

If p � n−1/2, then ∆ = o(µ), in which case Janson inequality I (Theorem 8.1.3 and
Remark 8.1.4) gives the following.

Theorem 8.1.7. If p = o(n−1/2) , then

P(G(n, p) is triangle-free) = e−(1+o(1))µ = e−(1+o(1))n3p3/6.

Corollary 8.1.8. For a constant c > 0,

lim
n→∞

P(G(n, c/n) is triangle-free) = e−c
3/6.

In fact, the number of triangles in G(n, c/n) converges to a Poisson distribution with
mean c3/6. On the other hand, when p� 1/n, the number of triangles is asymptotically
normal.

What about if p � n−1/2, so that ∆ � µ. Janson inequality I does not tell us anything
nontrivial. Do we still expect the triangle-free probability to be e−(1+o(1))µ, or even ≤ e−cµ?

As noted earlier in Remark 7.2.3, another way to obtain a lower bound on the probability
triangle-freeness is to consider the probability the G(n, p) is empty (or contained in some
fixed complete bipartite graph), in which case we obtain

P(G(n, p) is triangle-free) ≥ (1− p)Θ(n2) = e−Θ(n2p)
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(the second step assumes that p is bounded away from 1. If p� n−1/2, so the above lower
bound better than the previous one: e−Θ(n2p) � e−(1+o(1))µ.

Nevertheless, we’ll still use Janson to bootstrap an upper bound on the triangle-free
probability. More generally, the next theorem works in the complement region of the
Janson inequality I, where now ∆ ≥ µ.

Theorem 8.1.9 (Janson inequality II). Assuming Setup 8.1.2, if ∆ ≥ µ, then

P(X = 0) ≤ e−µ
2/(2∆).

The proof idea is to applying the first Janson inequality on a randomly sampled subset of
events. This sampling technique might remind you of some earlier proofs, e.g., the proof
of the crossing number inequality (Theorem 2.4.2), where we first proved a “cheap bound”
that worked in a more limited range, and then used sampling to obtain a better bound.

Proof. For each T ⊆ [k], let XT :=
∑

i∈T Ai denote the number of occurring events in T .
We have

P(X = 0) ≤ P(XT = 0) ≤ e−µT+∆T /2

where
µT =

∑
i∈T

P(Ai)

and
∆T =

∑
(i,j)∈T 2:i∼j

P(AiAj)

Choose T ⊂ [k] randomly by including every element with probability q ∈ [0, 1] indepen-
dently. We have

EµT = qµ and E∆T = q2∆

and so
E(−µT + ∆T/2) = −qµ+ q2∆/2.

By linearity of expectations, thus there is some choice of T ⊆ [k] so that

−µT + ∆T/2 ≤ −qµ+ q2∆/2

so that
P(X = 0) ≤ e−qµ+q2∆/2

for every q ∈ [0, 1]. Since ∆ ≥ µ, we can set q = µ/∆ ∈ [0, 1] to get the result.
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To summarize, the first two Janson inequalities tell us that

P(X = 0) ≤

{
e−µ+∆/2 if ∆ < µ

e−µ
2/(2∆) if ∆ ≥ µ.

Remark 8.1.10. If µ→∞ and ∆� µ2, then Janson inequality II implies P(X = 0) = o(1),
which we knew from second moment method. However Janson’s inequality gives an
exponentially decaying tail bound, compared to only a polynomially decaying tail via
the second moment method. The exponential tail will be important in an application
below to determining the chromatic number of G(n, 1/2).

Let us revisit the example of estimating the probability that G(n, p) is triangle-free, now
in the regime p� n−1/2. We have

n3p3 � µ� ∆ � n4p5.

So so for large enough n, Janson inequality II tells us

P(G(n, p) is triangle-free) ≤ e−µ
2/(2∆) = e−Θ(n2p)

Since

P(G(n, p) is triangle-free) ≥ P(G(n, p) is empty) ≥ (1− p)(
n
2) = e−Θ(n2p)

where the final step assumes that p is bounded away from 1, we conclude that

P(G(n, p) is triangle-free) = e−Θ(n2p)

We summarize the results below (strictly speaking we have not yet checked the case
p � n−1/2, which we can verify by applying Janson inequalities; note that the two regimes
below match at the boundary).

Theorem 8.1.11. Suppose p = pn ≤ 0.99. Then

P(G(n, p) is triangle-free) =

{
exp (−Θ(n2p)) if p & n−1/2

exp (−Θ(n3p3)) if p . n−1/2

Remark 8.1.12. Sharper results are known. Here are some highlights.

1. The number of triangle-free graphs on n vertices is 2(1+o(1))n2/4. In fact, an even
stronger statement is true: almost all (i.e., 1− o(1) fraction) n-vertex triangle-free
graphs are bipartite (Erdős, Kleitman, and Rothschild 1976).
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2. If m ≥ Cn3/2
√

log n for any constant C >
√

3/4 (and this is best possible), then
almost all all n-vertex m-edge triangle-free graphs are bipartite (Osthus, Prömel,
and Taraz 2003). This result has been extended to Kr-free graphs for every fixed r
(Balogh, Morris, Samotij, and Warnke 2016).

3. For n−1/2 � p� 1, (Łuczak 2000)

− logP(G(n, p) is triangle-free) ∼ − logP(G(n, p) is bipartite) ∼ n2p/4.

This result was generalized to general H-free graphs using the powerful recent
method of hypergraph containers (Balogh, Morris, and Samotij 2015).

8.2 Lower tails

Previously we looked at the probability of non-existence. Now we would like to estimate
lower tail probabilities. Here is a model problem.

Question 8.2.1. Fix a constant 0 < δ ≤ 1. Let X be the number of triangles of G(n, p).
Estimate

P(X ≤ (1− δ)EX).

We will bootstrap Janson inequality I, P(X = 0) ≤ exp(−µ + ∆/2), to an upper bound
on lower tail probabilities.

Theorem 8.2.2 (Janson inequality III). Assume Setup 8.1.2. For any 0 ≤ t ≤ µ,

P(X ≤ µ− t) ≤ exp

(
−t2

2(µ+ ∆)

)

Note that setting t = µ we basically recover the first two Janson inequalities (up to an
unimportant constant factor in the exponent):

P(X = 0) ≤ exp

(
−µ2

2(µ+ ∆)

)
. (8.1)

(Note that this form of the inequality conveniently captures Janson inequalities I & II.)

Proof. (Lutz Warnke2) Let q ∈ [0, 1]. Let T ⊂ [k] where each element is included with
probability q independently.

LetXT =
∑

i∈T 1Ai . Note that this is the same as
∑

i 1AiWi where eachWi ∼ Bernoulli(q).

2Personal communication
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We have
P(XT = 0|X) = (1− q)X

Taking expectation and applying Janson inequality I to XT , we obtain

E[(1− q)X ] = P(XT = 0) ≤ e−µ
′+∆′/2 = e−qµ+q2∆/2

where
µ′ = qµ and ∆′ = q2∆.

By Markov’s inequality,

P(X ≤ µ− t) = P
(
(1− q)X ≤ (1− q)µ−t

)
≤ (1− q)−µ+tE[(1− q)X ]

≤ (1− q)−µ+te−qµ+q2∆/2.

It remains to show that there is a choice of q so that RHS ≤ exp
(
−t2

2(µ+∆)

)
.

Let 1− q = e−λ, λ ≥ 0. Then

λ− λ2

2
≤ q ≤ λ

So

P(X ≤ −µ+ t) ≤ (1− q)µ−te−qµ+q2∆/2

≤ exp

(
λ(µ− t)−

(
λ− λ2

2

)
µ+ λ2 ∆

2

)
= exp

(
λt− λ2

2
(µ+ ∆)

)
Setting λ = 1/(µ+ ∆) yields the result.

Example 8.2.3 (Lower tails for triangle counts). Let X be the number of triangles in
G(n, p). We have µ � n3p3 and ∆ � n4p5. Fix a constant δ ∈ (0, 1]. Let t = δEX. We
have

P(X ≤ (1− δ)EX) ≤ exp

(
−Θ

(
−δ2n6p6

n3p3 + n4p5

))
=

{
exp (−Θδ(n

2p)) if p & n−1/2,

exp (−Θδ(n
3p3)) if p . n−1/2.

The bounds are tight up to a constant in the exponent, since

P(X ≤ (1− δ)EX) ≥ P(X = 0) =

{
exp (−Θ(n2p)) if p & n−1/2,

exp (−Θ(n3p3)) if p . n−1/2.
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Example 8.2.4 (No corresponding Janson inequality for upper tails). Continuing with
X being the number of triangles of G(n, p), abased on the above lower tails, naively we
might expect P(X ≥ (1 + δ)EX) ≤ exp(−Θδ(n

2p)), but actually this is false!

By planting a clique of size Θ(np), we can force X ≥ (1 + δ)EX. Thus

P(X ≥ (1 + δ)EX) ≥ pΘδ(n
2p2)

which is much bigger than exp (−Θ(n2p)). The above is actually the truth (Kahn–
DeMarco 2012 and Chatterjee 2012):

P(X ≥ (1 + δ)EX) = pΘδ(n
2p2) if p &

log n

n
,

but the proof is much more intricate. Recent results allow us to understand the exact
constant in the exponent though new developments in large deviation theory. The current
state of knowledge is summarized below.

Theorem 8.2.5 (Harel, Mousset, Samotij 2019+). Let X be the number of triangles in
G(n, p) with p = pn satisfying n−1/2 � p� 1,

− logP(X ≥ (1 + δ)X) ∼ min

{
δ

3
,
δ2/3

2

}
n2p2 log(1/p),

and for n−1 log n� p� n−1/2,

− logP(X ≥ (1 + δ)X) ∼ δ2/3

2
n2p2 log(1/p).

Remark 8.2.6. The leading constants were determined by Lubetzky and Zhao (2017) by
solving an associated variational problem. Earlier results, starting with Chatterjee and
Varadhan (2011) and Chatterjee and Dembo (2016) prove large deviation frames that
gave the above theorem for sufficiently slowly decaying p ≥ n−c.

For the corresponding problem for lower tails, the exact leading constant is known only
for sufficiently small δ > 0, where the answer is given by “replica symmetry”, meaning
that the exponential rate is given by a uniform decrement in edge densities for the random
graph. In contrast, for δ close to 1, we expect (though cannot prove) that the typical
structure of a conditioned random graph is close to a two-block model (Zhao 2017).
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8.3 Clique and chromatic number of G(n, 1/2)

In Section 4.3, we used the second moment method to find the clique number ω of
G(n, 1/2). We saw that, with probability 1 − o(1), the clique number is concentrated
on two values, and

ω(G(n, 1/2)) ∼ 2 log2 n whp.

Let use recall the proof using the second moment method. Let X denote the number of
k-cliques in G(n, 1/2). Then

µ := µk = E[X] =

(
n

k

)
2−(k2).

Here k = kn depends on n.

If µ→ 0, then Markov gives X = 0 whp.

If µ → ∞, then one checks that ∆ � µ2, so that Chebyshev’s inequality gives X > 0

whp.

Let k0 = k0(n) be the largest possible k so that µk ≥ 1. We have µk0 ≥ 1 > µk0+1 and

k0 ∼ 2 log2 n.

We have
µk+1

µk
= n−1+o(1) for k ∼ 2 log2 n

Thus ω(G(n, 1/2)) ∼ 2 log2 n whp. In fact, this proof gives more, namely that the clique
number is concentrated on at most two values

ω(G(n, 1/2)) ∈ {k0 − 1, k0} whp.

Can two point concentration of ω(G(n, 1/2)) really occur? (As opposed to being
always concentrated on a single value with high probability.) It turns out that the answer
is yes.
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Theorem 8.3.1. Fix λ ∈ (−∞,∞). Let n0(k) be the minimum n satisfying
(
n
k

)
2−(k2) ≥ 1.

Then, as k →∞, and for

n = n0(k)

(
1 +

λ+ o(1)

k

)
,

one has

P(ω(G(n, 1/2)) = k − 1) = e−e
λ

+ o(1)

and P(ω(G(n, 1/2)) = k) = 1− e−eλ + o(1).

Proof. LetX denote the number of k-cliques inG(n, 1/2). Using the notation of Setup 8.1.2
for Janson inequalities, one can check that

µ =

(
n

k

)
2−(k2) ∼

(
1 +

λ+ o(1)

k

)k
= eλ + o(1)

and (details omitted)

∆ ∼ µ2 k
4

n2
+ µ

2kn

2k
= o(1).

Then, by Harris inequality (lower bound) and Janson inequality I (upper bound), we have

e−(1+o(1))µ = (1− 2−(k2))(
n
k) ≤ P(X = 0) ≤ e−µ+∆/2 = e−(1+o(1))µ.

Thus
P(ω(G(n, 1/2)) < k) = P(X = 0) = e−(1+o(1))µ = e−e

λ

+ o(1).

At this point, we can use two-point concentration to conclude. Alternatively, note that
n0(k) = 2(1+o(1))k/2, and thus n = n0(k − 1)(1 + λ′

k−1
) for some λ′ → ∞, and so that the

above bound also gives

P(ω(G(n, 1/2)) < k − 1) ≤ e−e
λ′

+ o(1) = o(1).

This again proves two-point concentration, and hence the conclusion.

Thus one has genuine two-point concentration (i.e., with P(ω(G(n, 1/2)) = k0) bounded
away from 0 and 1) if

n = n0(k)

(
1 +

O(1)

k

)
for some k. Noting that n0(k) = 2(1+o(1))k/2. The intervals [n0(k) (1−K/k) , n0(k) (1 +K/k)]

are disjoint for large enough k. We see that the number of integers n up to N with two-
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points concentration is asymptotically

∑
k:n0(k)≤N

O

(
n0(k)

k

)
= O

(
N

logN

)
.

Thus for almost all integers we actually have one-point concentration.

The next statement tells us we have an exponentially small probability of having cliques
of size ∼ 2 log2 n. This estimate will be important in the following theorem where we
determine the chromatic number of G(n, 1/2).

Theorem 8.3.2. Let k0 = k0(n) be the largest possible k so that µk :=
(
n
k

)
2−(k2) ≥ 1.

Then
P(ω(G(n, 1/2)) < k0 − 3) ≤ e−n

2−o(1)

Note that there is a trivial lower bound of 2−(n2) coming from an empty graph.

Proof. We have µk+1/µk = n−1+o(1) whenever k ∼ k0(n) ∼ 2 log2 n.

Writing k = k0 − 3 and using the notation of Setup 8.1.2 for Janson inequalities for X
being the number of k-cliques, we have

µ = µk > n3−o(1).

One can check that (again details omitted on ∆; the second step uses 2k = n2+o(1)),

∆ ∼ µ2 k
4

n2
+ µ

2kn

2k
∼ µ2 k

4

n2

So ∆ > µ for sufficiently large n, and we can apply Janson inequality II:

P(X = 0) = P(ω(G(n, 1/2)) < k) ≤ e−µ
2/(2∆) < e−(1/2+o(1))n2/k4 = e−Ω(n2/(logn)4).

Since G(n, 1/2) and its graph complement are identically distributed, and ω(G) = α(G),
the independence number α satisfies

α(G(n, 1/2)) ∼ 2 log2 n whp.

It follows that the chromatic number of G ∼ G(n, 1/2) satisfies

χ(G) ≥ n

α(G)
≥ (1 + o(1))

n

2 log2 n
whp.
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The following landmark remark of Bollobás pins down the asymptotics of the chromatic
number of the random graph.

Theorem 8.3.3 (Bollobás 1988). With probability 1− o(1),

χ(G(n, 1/2)) ∼ n

2 log2 n
.

Proof. The lower bound proof was discussed before the theorem statement. For the upper
bound we will give a strategy to properly color the graph with not too many colors. We
will proceed by taking out independent sets of size ∼ 2 log2 n iteratively until o(n/ log n)

vertices remain, at which point we can use a different color for each remaining vertex.

Note that after taking out the first independent set of size ∼ 2 log2 n, we cannot claim
that the remaining graph is still distributed as G(n, 1/2). It is not. Our selection of
the vertices was dependent on the random graph. We are not allowed to “resample” the
edges after the first selection. Instead, we will use the previous theorem to tell us that, in
G(n, 1/2), with high probability, every not-too-small subset of vertices has an independent
set of size ∼ 2 log2 n.

Let G ∼ G(n, 1/2). Let m = bn/(log n)2c, say. For any set S of m vertices, the induced
subgraph G[S] has the distribution of G(m, 1/2). By Theorem 8.3.2, for

k = k0(m) ∼ 2 log2m ∼ 2 log2 n,

we have
P(α(G[S]) < k) = e−m

2−o(1)
= e−n

2−o(1)
.

Taking a union bound over all
(
n
m

)
< 2n such sets S,

P(∃ an m-vertex subset S with α(G[S]) < k) < 2ne−n
2−o(1)

= o(1).

Thus, with probability 1 − o(1) every m-vertex subset contains a k-vertex independent
set. Assume that G has this property. Now we execute our strategy at the beginning of
the proof:

• While ≥ m vertices remain:

– Find an independent set of size k, and let it form its own color class

– Remove these k vertices

• Color the remaining < m vertices each with a new color.
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Thus we obtain a proper coloring using at most

n

k
+m = (1 + o(1))

n

2 log2 n

colors.
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9 Concentration of measure

Recall that Chernoff bound allows to prove exponential tail bounds for sums of inde-
pendent random variables. For example, if Z is a sum of n Bernoulli random variables,
then

P(|Z − EZ| ≥ t
√
n) ≤ 2e−2t2/n.

As a matter of terminology (which is convenient though we will largely not use), random
variables Z that satisfy P(|Z| ≥ t) ≤ 2e−ct

2 for all t ≥ 0 and constant c > 0 are called
sub-gaussian. We usually are not too concerned about optimizing the constant c in the
exponent of bound.

In this chapter, we develop tools for proving similar sub-gaussian tail bounds for other
random variables that do not necessarily arise as a sum of independent random variables.

Here is the general principle:

A Lipschitz function of many independent random variables is con-
centrated.

We will prove the following important and useful result, known by several names: Mc-
Diarmid’s inequality, Azuma–Hoeffding inequality, and bounded differences
inequality.

Theorem 9.0.1 (Bounded differences inequality). Let X1 ∈ Ω1, . . . , Xn ∈ Ωn be inde-
pendent random variables. Suppose f : Ω1 × · · · × Ωn → R satisfies

|f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ 1 (9.1)

whenever (x1, . . . , xn) and (x′1, . . . , x
′
n) differ on exactly one coordinate. Then the random

variable Z = f(X1, . . . , Xn) satisfies, for every λ ≥ 0,

P(Z − EZ ≥ λ) ≤ e−2λ2/n and P(Z − EZ ≤ −λ) ≤ e−2λ2/n.

In particular, we can apply the above inequality to f(x1, . . . , xn) = x1 + · · ·+xn to recover
the Chernoff bound. The theorem tells us that the window of fluctuation of Z has length
O(
√
n).

Example 9.0.2 (Coupon collector). Let s1, . . . , sn ∈ [n] chosen uniformly and indepen-
dently at random. Let

Z = |[n] \ {s1, . . . , sn}|.
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Then
EZ = n

(
1− 1

n

)n
∈
[
n

e
,
n− 1

e

]
.

Note that changing one of the s1, . . . , sn changes Z by at most 1, so we have

P
(
|Z − n/e| ≥ λ

√
n+ 1

)
≤ P

(
|Z − EZ| ≥ λ

√
n
)
≤ 2e−2λ2 .

Definition 9.0.3 (Lipschitz functions). Given two metric spaces (X, dX) and (Y, dY ), we
say that a function f : X → Y is C-Lipschitz if

dY (f(x), f(x′)) ≤ CdX(x, x′) for all x, x′ ∈ X.

Then (9.2) says that f : Ω1 × · · · × Ωn → R is 1-Lipschitz with respect to the Hamming
distance on Ω1 × · · · × Ωn.

Note that while it may be tempting to think about the cases Ωi = {0, 1}, it will be crucial
for us to consider more general Ωi for our applications.

Theorem 9.0.1 holds more generally allowing the bounded difference to depend on the
coordinate.

Theorem 9.0.4 (Bounded differences inequality). Let X1 ∈ Ω1, . . . , Xn ∈ Ωn be inde-
pendent random variables. Suppose f : Ω1 × · · · × Ωn → R satisfies

|f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ ci (9.2)

whenever (x1, . . . , xn) and (x1, . . . , xn) differ only on the i-th coordinate. Then the random
variable Z = f(X1, . . . , Xn) satisfies, for every λ ≥ 0,

P(Z − EZ ≥ λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
and

P(Z − EZ ≤ −λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

We will prove these inequality using martingales.
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9.1 Martingales concentration inequalities

Definition 9.1.1. Amartingale is a random real sequence Z0, Z1, . . . such that for every
Zn, E|Zn| <∞ and

E[Zn+1|Z0, . . . , Zn] = Zn.

(To be more formal, we should talk about filtrations of a probability space . . . )

Example 9.1.2 (Random walks with independent steps). If (Xi)i≥0 is a sequence of
independent random variables with EXi = 0 for all i, then the partial sums Zn =

∑
i≤nXi

is a Martingale.

Example 9.1.3 (Betting strategy). Betting on a sequence of fair coin tosses. After round,
you are allow to change your bet. Let Zn be your balance after the n-th round. Then Zn
is always a martingale regardless of your strategy.

Originally, the term “martingale” referred to the betting strategy where one doubles the
bet each time until the first win and then stop betting. Then, with probability 1, Zn = 1

for all sufficiently large n. (Why does this “free money” strategy not actually work?)

The next example is especially important to us.

Example 9.1.4 (Doob martingale). Given some underlying random variables X1, . . . , Xn

(not necessarily independent, though they often are independent in practice), and a
function f(X1, . . . , Xn). Let Zi be the expected value of f after “revealing” (exposing)
X1, . . . , Xi, i.e.,

Zi = E[f(X1, . . . , Xn)|X1, . . . , Xi].

So Zi is the expected value of the random variable Z = f(X1, . . . , Xn) after seeing the
first i arguments, and letting the remaining arguments be random. Then Z0, . . . , Zn is
a martingale (why?). It satisfies Z0 = EZ (a non-random quantity) and Zn = Z (the
random variable that we care about), and thereby offering a way to interpolate between
the two.

Example 9.1.5 (Edge-exposure martingale). We can reveal the random graph G(n, p)

by first fixing an order on all unordered pairs of [n] and then revealing in order whether
each pair is an edge. For any graph parameter f(G) we can produce a martingale
X0, X1, . . . , X(n2)

where Zi is the conditional expectation of f(G(n, p)) after revealing
whether there are edges for first i pairs of vertices. See Figure 5 for an example.

Example 9.1.6 (Vertex-exposure martingale). Similar to the previous example, except
that we now first fix an order on the vertex set, and, at the i-th step, with 0 ≤ i ≤ n, we
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Figure 5: The edge-exposure martingale (left) and vertex-exposure martingale (right) for
the chromatic number of G(n, 1/2) with n = 3. The martingale is obtained by starting
at the leftmost point, and splitting at each branch with equal probability.

reveal all edges whose endpoints are contained in the first i vertices. See Figure 5 for an
example.

Sometimes it is better to use the edge-exposure martingale and sometimes it is better to
use the vertex-exposure martingale. It depends on the application. There is a trade-off
between the length of the martingale and the control on the bounded differences.

The main result is that a martingale with bounded differences must be concentrated.
The following fundamental result is called Azuma’s inequality or the Azuma–Hoeffding
inequality.

Theorem 9.1.7 (Azuma’s inequality). Let Z0, Z1, . . . , Zn be a martingale satisfying

|Zi − Zi−1| ≤ 1 for each i ∈ [n].

Then for every λ > 0,
P(Zn − Z0 ≥ λ

√
n) ≤ e−λ

2/2.

Note that this is the same bound that we derived in Section 5 for Zn = X1 + · · ·Xn where
Xi ∈ {−1, 1} uniform and iid.

More generally, allowing different bounds on different steps of the martingale, we have
the following.
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Theorem 9.1.8 (Azuma’s inequality). Let Z0, Z1, . . . , Zn be a martingale satisfying

|Zi − Zi−1| ≤ ci for each i ∈ [n].

For any λ > 0,

P(Zn − Z0 ≥ λ) ≤ exp

(
−λ2

2(c2
1 + · · ·+ c2

n)

)
.

The above formulations of Azuma’s inequality recovers the bounded differences inequality
Theorems 9.0.1 and 9.0.4 up to a (usually unimportant) constant in the exponent (de-
tails shortly). To obtain the exact statement of Theorem 9.0.4, we state the following
strengthening of Azuma’s inequality.

Theorem 9.1.9 (Azuma’s inequality). Let Z0, Z1, . . . , Zn be a martingale such that, for
each i ∈ [n], conditioned on (Z0, . . . , Zi−1), the random variable Zi lies inside an interval
of length ci (the location of the interval may depend on Z0, . . . , Zi−1). Then for any λ > 0,

P(Zn − Z0 ≥ λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

Remark 9.1.10. Applying the inequality to the martingale with terms −Zn, we obtain the
following lower tail bound:

P(Zn − Z0 ≤ −λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

And we can put them together as

P(|Zn − Z0| ≥ λ) ≤ 2 exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

Lemma 9.1.11 (Hoeffding). Let X be a real random variable contained in an interval of
length `. Suppose EX = 0. Then

E[eX ] ≤ e`
2/8.

Proof. Suppose X ∈ [a, b] with a ≤ 0 ≤ b and b− a = `. Then since ex is convex, using a
linear upper bound on the interval [a, b], we have

ex ≤ b− x
b− a

ea +
x− a
b− a

eb, ∀x ∈ [a, b].
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Thus
EeX ≤ b

b− a
ea +

−a
b− a

eb.

Let p = −a/(b− a). then a = −p` and b = (1− p)`, we have

logEeX ≤ log
(
(1− p)e−p` + pe(1−p)`) = −p`+ log(1− p+ pe`).

Fix p ∈ [0, 1]. Let
ϕ(`) := −p`+ log(1− p+ pe`).

It remains to show that ϕ(`) ≤ `2/8 for all ` ≥ 0, which follows from ϕ(0) = ϕ′(0) = 0

and ϕ′′(`) ≤ 1/4 for all ` ≥ 0, as

ϕ′′(`) =

(
p

(1− p)e−p` + p

)(
1− p

(1− p)e−p` + p

)
≤ 1

4
,

since t(1− t) ≤ 1/4 for all t ∈ [0, 1].

Proof of Theorem 9.1.9. By adding a constant to the sequence, we may assume that Z0 =

0. Let
Xi = Zi − Zi−1

be the martingale difference. Let t ≥ 0. Then the hypothesis together with Lemma 9.1.11
imply that

E[etXi |Z0, . . . , Zi−1] ≤ et
2c2i /8.

Then the moment generating function satisfies

E[etZn ] = E
[
et(Xn+Zn−1)

]
= E

[
E
[
etXn

∣∣ Z0, . . . , Zn−1

]
etZn−1

]
= et

2c2n/8E[etZn−1 ].

Iterating, we obtain
E[etZn ] ≤ et

2(c21+···c2n)/8.

By Markov,
P(Zn ≥ λ) ≤ e−tλE[etZn ] ≤ e−tλ+ t2

8
(c21+···c2n).

Setting t = 4λ/(c2
1 + · · ·+ c2

n) yields the theorem.

Let us use Azuma’s inequality to prove the bounded difference inequality (Theorem 9.0.4),
whose statement is copied below:

Let Z0, Z1, . . . , Zn be a martingale such that, for each i ∈ [n], conditioned on
(Z0, . . . , Zi−1), the random variable Zi lies inside an interval of length ci (the
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location of the interval may depend on Z0, . . . , Zi−1). Then for any λ > 0,

P(Zn − Z0 ≥ λ) ≤ exp

(
−2λ2

c2
1 + · · ·+ c2

n

)
.

Proof of the Theorem 9.0.4. Consider the Doob martingale Zi = E[Z|X1, . . . , Xi].

By the Lipschitz condition, we see that for every i ∈ [n] and fixed x1 ∈ Ω1, . . . , xi−1 ∈ Ωi−1,
we have

max
xi∈Ωi

f(x1, . . . , xi−1, xi, Xi+1, . . . , Xn)− min
xi∈Ωi

f(x1, . . . , xi−1, xi, Xi+1, . . . , Xn) ≤ ci

for every possible Xi+1, . . . , Xn, so that taking expectation of these random values shows
that, conditioned on the values of X1, . . . , Xi−1, there is an interval (possibly depending
on X1, . . . , Xi−1) of length ci that Zi lies in.

Since Z0 = EZ and Zn = Z, the desired bound follows from Azuma’s inequality (Theo-
rem 9.1.9).3

9.2 Chromatic number of random graphs

9.2.1 Concentration of chromatic number

Even before Bollobás (1988) showed that χ(G(n, 1/2)) ∼ n
2 log2 n

whp (Theorem 8.3.3),
using the bounded difference inequality, it was already known that the chromatic number
of a random graph must be concentrated in a ω(

√
n) window around its mean. The

following application shows that one can prove concentration around the mean without
even knowing where is the mean!

Theorem 9.2.1 (Shamir and Spencer 1987). For every λ ≥ 0, Z = χ(G(n, p) satisfies

P(|Z − EZ| ≥ λ
√
n− 1) ≤ 2e−2λ2 .

Proof. Let V = [n], and consider each vertex labeled graph as an element of Ω2×· · ·×Ωn

where Ωi = {0, 1}i−1 and its coordiantes correspond to edges whose larger coordinate is i
(cf. the vertex-exposure martingale Example 9.1.6). If two graphs G and G′ differ only
in edges incident to one vertex v, then |χ(G)− χ(G′)| ≤ 1 since, given a proper coloring
of G using χ(G) colors, one can obtain a proper coloring of G′ using χ(G) + 1 colors by
using a new color for v. Theorem 9.0.4 implies the result.

3We are cheating somewhat here, since multiple instance of (X1, . . . , Xi) can correspond to the same
(Z0, . . . , Zi). To be more correct, we should restate Theorem 9.1.9 instead of a filtration based on the
Doob martingale.
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Remark 9.2.2 (Non-concentration of the chromatic number). Recently, a surprising break-
through of Heckel (2019+) showed that the χ(G(n, 1/2)) is not concentrated on any in-
terval of length n1/4−ε for any constant ε > 0. This was the opposite of what most experts
believed in. Given the new realization, it seems reasonable to suspect that the length of
the window of concentrations fluctuates between n1/4+o(1) to n1/2+o(1) depending on n.

9.2.2 Clique number, again

Previously in Section 8.3, we used Janson inequalities to prove the following exponentially
small bound on the probability that G(n, 1/2) has small clique number. This was a crucial
step in the proof of Bollobás’ theorem (Theorem 8.3.3) that χ(G(n, 1/2)) ∼ n/(2 log2 n)

whp. Here we give a different proof using the bounded difference inequality instead of
Janson inequalities. The proof below in fact was the original approach of Bollobás (1988).

Theorem 9.2.3 (Same as Theorem 8.3.2). Let k0 = k0(n) ∼ 2 log2 n be the largest
positive integer so that

(
n
k0

)
2−(k02 ) ≥ 1. Then

P(ω(G(n, 1/2)) < k0 − 3) = e−n
2−o(1)

.

A naive approach might be to estimate the number of k-cliques in G (this is the approach
taken with Janson inequalities. Here, instead, we use a very clever and non-obvious choice
of a Lipschitz function of graphs.

Proof. Let k = k0 − 3. Let Y = Y (G) be the maximum number of edge-disjoint set of
k-cliques in G. Then as a function of G, Y changes by at most 1 if we change G by one
edge. (Note that the same does not hold if we change G by one vertex, e.g., when G

consists of many k-cliques glued along a common vertex.)

So by the bounded differences inequality, for G ∼ G(n, 1/2),

P(ω(G) < k) = P(Y = 0) ≤ P(Y − EY ≤ −EY ) ≤ exp

(
−2(EY )2(

n
2

) )
. (9.3)

It remains to show that EY ≥ n2−o(1). Create an auxiliary graph H whose vertices are
the k-cliques in G, with a pair of k-cliques adjacent if they overlap in at least 2 vertices.
Then Y = α(H). We would like to lower bound the independence number of this graph
based on its average degree. Here are two ways to proceed:

1. Recall the Caro–Wei inequality (Corollary 2.3.5): for every graph H with average
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degree d, we have

α(H) ≥
∑

v∈V (H)

1

1 + dv
≥ |V (H)|

1 + d
=

|V (H)|2

|V (H)|+ 2 |E(H)|
.

2. Let H ′ be the induced subgraph obtained from H by keeping every vertex indepen-
dently with probability q. We have

α(H) ≥ α(H ′) ≥ |V (H ′)| − |E(H ′)| .

Taking expectations of both sides, and noting that E |V (H ′)| = q |V (H)| and
E |E(H ′)| = q2 |E(H)| by linearity of expectations, we have

α(H) ≥ qE |V (H)| − q2 |E(H)| for every q ∈ [0, 1].

Provided that |E(H)| ≥ |V (H)| /2, we can take q = |V (H)| /(2 |E(H)|) ∈ [0, 1] and
obtain

α(H) ≥ |V (H)|2

4 |E(H)|
if |E(H)| ≥ 1

2
|V (H)| .

(This method allows us to recover Turán’s theorem up to a factor of 2, whereas the
Caro–Wei inequality recovers Turán’s theorem exactly. For the present application,
we do not care about these constant factors.)

We have, with probability 1− o(1), the number of k-cliques |V (H)| satisfies

|V (H)| ∼ µ := E |V (H)| =
(
n

k

)
2−(k2) ≥ n3−o(1)

and the number of pairs of edge-overlapping k-cliques |E(H)| satisfies

E |E(H)| =:
∆

2
∼ µ2k4

2n2
� µ

(details again omitted; this is the same first and second moment calculation as in Sec-
tion 4.3 and Theorem 8.3.2.) Thus, with probability 1− o(1), we can apply either of the
above lower bounds on independent sets to obtain

EY & E
µ2

|E(H)|
&
µ2

∆
∼ n2

k4
.
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Thus by (9.3), we obtain

P(ω(G) < k) ≤ exp

(
−2(EY )2(

n
2

) )
≤ exp

(
−Ω

(
n2

k8

))
= exp

(
−Ω

(
n2

(log n)8

))
.

9.2.3 Chromatic number of sparse random graphs

Let us show that G(n, p) is concentrated on a constant size window if p is small enough.

Theorem 9.2.4 (Shamir and Spencer 1987). Let α > 5/6 be fixed. Then for p < n−α,
χ(G(n, p)) is concentrated in four values with probability 1 − o(1), i.e., there exists u =

u(n, p) such that, as n→∞,

P(u ≤ χ(G(n, p)) ≤ u+ 3) = 1− o(1).

Proof. Let ε = εn > 0 and ε → 0 (we’ll later choose it to be arbitrarily small). Let
u = u(n, p, ε) be the least integer so that

P(χ(G(n, p)) ≤ u) > ε.

Now we make a clever choice of a random variable.

Let G ∼ G(n, p). Let Y = Y (G) denote the minimum size of a subset S ⊂ V (G)

such that G− S is u-colorable. Note that Y changes by at most 1 if we change the edges
around one vertex of G. Thus, by applying Theorem 9.0.1 with respect to vertex-exposure
(Example 9.1.6), we have

P(Y ≤ EY − λ
√
n) ≤ e−2λ2

and P(Y ≥ EY + λ
√
n) ≤ e−2λ2 .

We choose λ = λ(ε) > 0 so that e−2λ2 = ε.

First, we use the lower tail bound to show that EY must be small. We have

e−2λ2 = ε < P(χ(G) ≤ u) = P(Y = 0) = P(Y ≤ EY − EY ) ≤ exp

(
−2(EY )2

n

)
so

EY ≤ λ
√
n.
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Next, we apply the upper tail bound to show that Y is rarely large. We have

P(Y ≥ 2λ
√
n) ≤ P(Y ≥ EY + λ

√
n) ≤ e−2λ2 = ε.

Each of the following three events occur with probability at least 1− ε, for large enough
n,

• By the above argument, there is some S ⊂ V (G) with |S| ≤ 2λ
√
n and G− S may

be properly u-colored.

• By the next lemma, one can properly 3-color G[S].

• χ(G) ≥ u (by the minimality of u at the beginning of the proof).

Thus, with probability at least 1− 3ε, all three events occur, and so we have u ≤ χ(G) ≤
u+ 3.

Lemma 9.2.5. Fix α > 5/6 and C. Let p ≤ n−α. Then with probability 1− o(1) every
subset of at most C

√
n vertices of G(n, p) can be properly 3-colored.

Proof. Let G ∼ G(n, p). Assume that G is not 3-colorable. Choose minimum size T ⊂
V (G) so that the induced subgraph G[T ] is not 3-colorable.

We see that G[T ] has minimum degree at least 3, since if degG[T ](x) < 3, then T − x

cannot be 3-colorable either (if it were, then can extend coloring to x), contradicting the
minimality of T .

Thus G[T ] has at least 3|T |/2 edges. The probability that G has some induced subgraph
on t ≤ C

√
n vertices and ≥ 3t/2 edges is, by a union bound, (recall

(
n
k

)
≤ (ne/k)k)

≤
C
√
n∑

t=4

(
n

t

)( (t
2

)
3t/2

)
p3t/2 ≤

C
√
n∑

t=4

(ne
t

)t(te
3

)3t/2

n−3tα/2

≤
C
√
n∑

t=4

(
O(n1−3α/2

√
t)
)t
≤

C
√
n∑

t=4

(
O(n1−3α/2+1/4)

)t
the sum is o(1) provided that α > 5/6.

Remark 9.2.6. Theorem 9.2.4 was subsequently improved (by a refinement of the above
techniques) by Łuczak (1991) and Alon and Krivelevich (1997), who showed two-point
concentration for all α > 1/2.
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9.3 Isoperimetric inequalities: a geometric perspective

The bounded differences inequality (Theorem 9.0.1) tells that if f : {0, 1}n → R is 1-
Lipschitz (with respect to the Hamming distance on {0, 1}n), it must be concentrated
around its mean:

P(|f − Ef | ≥ λ
√
n) ≤ 2e−2λ2 .

Given that the maximum possible variation in f is n, the above concentration inequality
says that f is almost constant, which should be somewhat counterintuitive.

It turns out that similar phenomenon occurs in other spaces not just the Hamming cube.
In fact, it is really a general high dimensional geometric phenomenon. In this section, we
explore this concentration of phenomenon from a geometric perspective, and explain how
it relates to isoperimetric inequalities.

Recall the classic isoperimetric theorem in Rn It says that among all subset of Rn of given
volume, the ball has the smallest surface volume. (The word “isoperimetric” refers to
fixing the perimeter; equivalently we fix the surface area and ask to maximize volume.)

Here is a slightly stronger formulation. Given a metric space (X, dX) and a set A ⊂ X,
we write

At := {x ∈ X : dX(x,A) := min
a∈A

dX(x, a) ≤ t} (9.4)

for set of all points within distance t from A. One can visualize by “expanding” A by
distance t.

Theorem 9.3.1 (Isoperimetric inequality in Euclidean space). Let A ⊂ Rn be a measur-
able set, and let B ⊂ Rn be a ball vol(A) = vol(B). Then, for all t ≥ 0,

vol(At) ≥ vol(Bt).

Remark 9.3.2. One can recover the classic inequality on surface volumes voln−1(δA) ≥
voln−1(δB) by noting that

voln−1(δA) =
d

dt

∣∣
t=0

voln(At). lim
t→0

vol(At)− vol(A)

t
≥ lim

t→0

vol(Bt)− vol(B)

t
= voln−1(δB).

We have an analogous result in the {0, 1}n with respect to Hamming distance.In Hamming
cube, Harper’s theorem gives the exact result. Below, for A ⊂ {0, 1}n, we write At as
in (9.4) for X = {0, 1}n and dX being the Hamming distance.
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Theorem 9.3.3 (Isoperimetic inequality in the Hamming cube; Harper 1966). Let A ⊂
{0, 1}n. Let B ⊂ {0, 1}n be a Hamming ball with |A| ≥ |B|. Then for all t ≥ 0,

|At| ≥ |Bt|.

Remark 9.3.4. The above statement is tight when A has the same size as a Hamming
ball, i.e., when |A| =

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
k

)
for some integer k. Actually, more is true. For

any value of |A| and t, the size of At is minimized by taking A to be an initial segment of
{0, 1}n according to the simplicial ordering : first sort by Hamming weight, and for ties,
sort by lexicographic order.

It is worth examining the sizes of the Hamming ball as a function of its radius.

Let
B(r) = {x ∈ {0, 1}n : weight(x) ≤ r}

denote the Hamming ball of radius r. Using the central limit theorem, we find that, for
every fixed z ∈ R, as n→∞.

1

2n

∣∣∣∣B(n2 +
z
√
n

2

)∣∣∣∣ =
1

2n

∑
0≤i≤n

2
+ z
√
n

2

(
n

i

)
∼ PZ∼N(0,1)(Z ≤ t) =

1√
2π

∫ z

0

e−x
2/2 dx.

Also, by Chernoff bound, we have

1

2n

∣∣∣∣B(n2 +
z
√
n

2

)∣∣∣∣ ≤ e−z
2/2 if z ≤ 0

and
1

2n

∣∣∣∣B(n2 +
z
√
n

2

)∣∣∣∣ ≥ 1− e−z2/2 if z ≥ 0.

Combined with the isoperimetic inequality on the cube, we obtain the following surprising
consequence. Suppose we start with just half of the cube, and then expand it by a bit
(recall that the diameter of the cube is n, and we will be expanding it by o(n)), then
resulting expansion occupies nearly all of the cube.

Theorem 9.3.5. Let t > 0. For every A ⊂ {0, 1}n with |A| ≥ 2n−1, we have

|At| > (1− e−2t2/n)2n.

Proof. Let B = {x ∈ {0, 1}n : weight(x) < n/2}, so that |B| ≤ 2n−1 ≤ |A|. Then by
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Harper’s theorem (Theorem 9.3.3),

|At| ≥ |Bt| = |{x ∈ {0, 1}n : weight(x) < n/2 + t}| > (1− e−2t2/n)2n

by the Chernoff bound.

In fact, using the above, we can deduce that even if we start with a small fraction (e.g.,
1%) of the cube, and expand it slightly, then we would cover most of the cube.

Theorem 9.3.6. Let ε > 0. If A ⊂ {0, 1}n with |A| ≥ ε2n, then∣∣∣A√
2 log(1/ε)n

∣∣∣ ≥ (1− ε)2n.

First proof via isoperimetric inequality. Let t =
√

log(1/ε)n/2 so that e−2t2/n = ε. Ap-
plying Theorem 9.3.5 to A′ = {0, 1}n \At, we see that |A′| < 2n−1 (or else |A′t| > (1−ε)2n,
so A′t would intersect A, which is impossible since the distance between A and A′ is greater
than t). Thus |At| ≥ 2n−1, and then applying Theorem 9.3.5 yields |A2t| ≥ (1− ε)2n.

Let us give another proof of Theorem 9.3.6 without using Harper’s exact isoperimetric
theorem in the Hamming cube, and instead use the bounded differences inequality that
we proved earlier.

Second proof via the bounded differences inequality. Pick random x ∈ {0, 1}n and letX =

dist(x,A). Note that X changes by at most 1 if a single coordinate of x is changed.
Applying the bounded differences inequality, Theorem 9.0.1, we have the lower tail

P(X − EX ≤ −t) ≤ e−2t2/n.

We have X = 0 if and only if x ∈ A, so

ε ≤ P(x ∈ A) = P(X − EX ≤ −EX) ≤ e−2(EX)2/n.

Thus

EX ≤
√

log(1/ε)n

2
.

Now we apply the upper tail

P(X − EX ≥ t) ≤ e−2t2/n

with
t =

√
2(log(1/ε)n ≥ 2EX
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to yield

P(x /∈ At) = P(X > t) < P

(
X ≥ EX +

√
log(1/ε)n

2

)
≤ ε.

The above expansion/isoperimetry properties turn out to be actually equivalent to the
concentration of Lipschitz function phenomenon we discussed earlier, as we show next.
Milman recognized the importance of this concentration of measure phenomenon,
which he heavily promoted in the 1970’s. The subject was have been since then extensively
developed. It plays a central role in probability theory, the analysis of Banach spaces,
and it also has been influential in theoretical computer science.

Theorem 9.3.7 (Equivalence between notions of concentration of measure). Let t, ε ≥ 0.
In a probability space (Ω,P) equipped with a metric. The following are equivalent:

1. (Expansion/approximate isoperimetry) If A ⊂ Ω with P(A) ≥ 1/2, then

P(At) ≥ 1− ε.

2. (Concentration of Lipschitz functions) If f : Ω → R is 1-Lipschitz and m ∈ R
satisfies P(f ≥ m) ≥ 1/2 and P(f ≤ m) ≥ 1/2 (i.e., m is a median of f), then

P(f > m+ t) ≤ ε.

Remark 9.3.8. There always exists a median, but it might not be unique. For example,
for the uniform distribution on {0, 1}, any real number in the interval [0, 1] is a valid
median.

Proof. (a) =⇒ (b): Let A = {x ∈ Ω : f(x) ≤ m}. So P(A) ≥ 1/2. Since f is 1-Lipschitz,
we have f(x) ≤ m+ t for all x ∈ At. Thus by (a)

P(f > m+ ε) ≤ P(At) ≤ ε.

(b) =⇒ (a): Let f(x) = distance(x,A) and m = 0. Since P(f ≤ 0) = P(A) ≥ 1/2 and
P(f ≥ 0) = 1, m is a median. Also f is 1-Lipschitz. So by (b),

P(At) = P(f > m+ t) ≤ ε.

Informally, we say that a space (or rather, a sequence of spaces), has concentration of
measure if ε decays rapidly as a function of t in the above theorem (the notion of “Lévy
family” makes this precise). Earlier we saw that the Hamming cube exhibits has con-
centration of measure. Other notable spaces with concentration of measure include the
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sphere, Gauss space, orthogonal and unitary groups, postively-curved manifolds, and the
symmetric group.

Mean versus median. For a sub-gaussian random variable, very tight concentration
(e.g., sub-gaussian), one can deduce that the mean and the median must be very close to
each other.

Indeed, suppose there exist constants C, σ > 0 such that P(At) ≤ Ce−(t/σ)2 for all A with
P(A) ≥ 1/2 and t > 0. Then for all 1-Lipschitz function f on Ω and m a median of f ,
one has

|Ef −m| ≤ E|f −m| =
∫ ∞

0

P(|f −m| ≥ t) dt ≤
∫ ∞

0

2Ce−(t/σ)2 dt = C
√
πσ

It follows that, for all t ≥ 0,

P(f ≥ Ef + (t+ C
√
π)σ) ≥ P(f ≥ m+ tσ) ≤ Ce−(t/σ)2

and
P(f ≤ Ef − (t+ C

√
π)σ) ≥ P(f ≤ m− tσ) ≤ Ce−(t/σ)2 .

Similarly, if we know that P(|f − Ef | ≥ t) ≤ Ce−(t/σ) for all t > 0, then P(|f − Ef | ≥
t) < 1/2 for all t >

√
log(2C)σ, from which we deduce that every median m satisfies

|Ef −m| ≤
√

log(2C)σ.

There can indeed exist an order σ difference between the mean and the median in the
setup above. For example, treating the cube as {−1, 1}n, and taking

f(x1, . . . , xn) = max{x1 + · · ·+ xn, 0},

we see that by the central limit theorem

lim
n→∞

|Ef −median(f)|√
n

= EZ∼N(0,1)[max{Z, 0}] =
1√
2π
.

9.3.1 The sphere and Gauss space

We discuss analogs of the concentration of measure phenomenon in high dimensional
geometry. This is rich and beautiful subject. An excellent introductory to this topic is
the survey An Elementary Introduction to Modern Convex Geometry by Ball (1997).

Recall the isoperimetric inequality in Rn says:

If A ⊂ Rn has the same measure as ball B, then vol(At) ≥ vol(Bt) for all
t ≥ 0.
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Analogous exact isoperimetric inequalities are known in several other spaces. We already
saw it for the boolean cube (Theorem 9.3.3). The case of sphere and gaussian space are
particularly noteworthy. The following theorem is due to Lévy.

Theorem 9.3.9 (Spherical isopeimetric inequality). Inside Sn−1 (equipped with the nat-
ural measure and distance), let A be a subset and B a spherical cap with voln−1(A) =

voln−1(B). Then for all t ≥ 0,

voln−1(At) = voln−1(Bt).

Suppose C is a hemisphere in Sn−1 ⊂ Rn. Let us estimate voln−1(C). As in the dia-
gram below, in the planar cross-section, the chord of length t subtends an angle of θ =

2 arcsin(t/2), so the vertical bolded segment has length cos θ = 1− 2 sin2(θ/2) = 1− t2/2.

t

1− t2

2

C Ct

By considering the fraction of the ball subtended by Ct (i.e., the shaded wedge-sector
above), which is contained in the smaller dashed ball or radius 1− t2/2, we see that

1− voln−1(Ct)

voln−1(Sn−1)
=

voln−1(Ct)

voln−1(Sn−1)
≤
(

1− t2

2

)n
≤ e−nt

2/2.
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Corollary 9.3.10 (Concentration of measure on a sphere). There exists some constant
c > 0 so that

• If A ⊆ Sn−1 has voln−1(A)/ voln−1(Sn−1) ≥ 1/2, then

voln−1(At)

voln−1(Sn−1)
≥ 1− e−t2n/2.

• If f : Sn−1 → R is 1-Lipschitz, then there is some real m (e.g., a median) so that

P(|f −m| > t) ≤ 2e−nt
2/2.

Second statement may be interpreted as “every Lipschitz function on a high dimensional
sphere is nearby constant almost everywhere”

Another related setting is theGauss space, which is Rn equipped with the the probability
measure induced by the Gaussian random vector whose coordinates are n iid standard
normals, i.e., the normal random vector in Rn with covariance matrix In. Its probability
density function (2π)−ne−|x|

2/2 for x ∈ Rn. Let λ denote the Gaussian measure on Rn.
The metric on Rn is the usual Euclidean metric.

What would an isoperimetric inequality in Gauss space look like?

A naive guess, inspired by Rn, may be that disks minimize perimeter. But this is actually
not the case. It turns out that the Hamming cube is a better model for the Gauss space.
Indeed, consider {−1, 1}mn, where both m and n are large. Let us group the coordinates
of {−1, 1}mn into block of length m. The sum of entries in each block (after normalizing
by
√
m) approximates normal random variable by the central limit theorem.

In the Hamming cube, Harper’s theorem tells us Hamming balls are isoperimetric optimiz-
ers. Since a Hamming ball in {−1, 1}mn is given by all points whose sum of coordinates
is below a certain threshold, we should look at the analogous subset in the Gauss space,
which would then consist of all points whose sum of coordinates is below a certain thresh-
old.

Note that the Gaussian measure is radially symmetric. So the above heuristic (which can
be made rigorous) suggests that for the Gaussian isoperimetric inequality, we should look
for half-spaces, i.e., points on one side of some hyperplane. This is indeed the case, as
first shownindependently by Borell (1975) and Sudakov and Tsirel’son (1974).

Theorem 9.3.11 (Gaussian isoperimetric inequality). If A,H ⊂ Rn, H a half-space, and
λ(A) = λ(H), then λ(At) ≥ λ(Ht) for all t ≥ 0, where λ is the Gauss measure.
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Consequently, if P(A) ≥ 1/2, then P(At) ≤ P(Z1 > t) ≤ e−t
2/2. And, if f : Rn → R is

1-Lipschitz, and z is a vector of iid standard normals, then X = f(z) satisfies

P(|X − EX| ≥ t) ≤ 2e−t
2/2

The sphere as approximately a sum of independent Gaussians. The gauss space
is a nice space to work with because a standard normal vector simultaneously possesses
two useful properties (and it is essentially the only such random vector to have both
properties):

(a) Rotational invariance

(b) Independence of coordinates

Furthermore, the length of a random gaussian vector is given by
√
Z2

1 + · · ·+ Z2
n for iid

Z1, . . . , Zn ∈ N(0, 1), which is concentrated around
√
n (e.g., by a straight forward adap-

tation of Chernoff bound. In fact, since
√
n+O(

√
n) =

√
n+O(1), the length of gaussian

vector has a O(1)-length window of typical fluctation). So most of the distribution in the
gauss space lies lie to a sphere of radius

√
n. Due to rotational invariance, we see that

a gaussian distribution approximates the uniform distribution on sphere of radius
√
n in

high dimensions. Random gaussian vectors give us a convenient method to analyze the
concentration of measure phenomenon on the sphere. (It should now be satisfying to
see how half-spaces in the gauss space intersect the sphere in a spherical cap, and both
objects are isoperimetric optimzers in their respective spaces).

9.3.2 Johnson–Lindenstrauss Lemma

The next theorem is a powerful in many areas. For example, it is widely used in computer
science as a means of dimension reduction.

Theorem 9.3.12 (Johnson and Lindenstrauss 1982). Let s1, . . . , sN ∈ Rn. Then there
exists s′1, . . . , s′N ∈ Rm where m = O(ε−2 logN) and such that, for every i 6= j,

(1− ε)|si − sj| ≤ |s′i − s′j| ≤ (1 + ε)|si − sj|.

Remark 9.3.13. Here m is optimal up to a constant factor (Larsen and Nelson 2017).

The theorem is proved by obtaining the new points s′j ∈ Rm by taking a projection onto
a uniform random m-dimensional subspace (and the scaling by

√
n/m). We would like

to know that these projects roughly preserve the length of vectors. Once we have the
following lemma, set s′i =

√
m/nPsi, and we can apply the lemma to z = si−sj for every
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pair (i, j) and apply the union bound to use that, with probability at least 1−CN2e−cε
2m,

one has (1− ε)|si − sj| ≤ |s′i − s′j| ≤ (1 + ε)|si − sj| for all (i, j).

Lemma 9.3.14 (Random projection). Let P be a projection from Rn onto a random
m-dimensional subspace. Let z ∈ Rn (fixed) and y = Pz. Then

E[|y|2] =
m

n
|z|2

and, with probability ≥ 1− 2e−cε
2m for some constant c > 0,

(1− ε)
√
m

n
|z| ≤ |y| ≤ (1 + ε)

√
m

n
|z| .

Proof. By rescaling we may assume that |z| = 1.

The distribution of Y = |y| does not change if we instead fix P to be the orthogonal pro-
jection onto the subspace spanned by the first m coordinate vectors, and z vary uniformly
over the unit sphere.

Writing z = (z1, . . . , zn), by symmetry we have E[z2
1 ] = · · · = E[z2

n]. Since z2
1 +· · ·+z2

n = 1,
we have E[z2

i ] = 1/n for each i. Thus

E[Y 2] = E[z2
1 + · · ·+ z2

m] =
m

n
.

Since the map z 7→ |y| is 1-Lipschitz, by Lévy concentration (Corollary 9.3.10),

P (|Y − EY | ≥ t) ≤ 2e−nt
2/2, for all t ≥ 0.

In particular, we have that

E[Y 2]− (EY )2 = VarY =

∫ ∞
0

P
(
|Y − EY |2 ≥ t

)
dt ≤

∫ ∞
0

2e−nt/2 dt =
4

n
.

So √
m− 4

n
≤ EY ≤

√
m

n
.

This implies that, for some constants c > 0,

P
(∣∣∣∣Y −√m

n

∣∣∣∣ ≥ t

)
≤ 2e−cnt

2

, for all t ≥ 0.

Setting t = ε
√
m/n yields the result.
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A cute application of Johnson–Lindenstrauss (this was a starred homework exercise where
you were asked to prove it using the Chernoff bound).

Corollary 9.3.15. There is a constant c > 0 so that for every positive integer m, there
is a set of ecε2m points in Rm whose pairwise distances are in [1− ε, 1 + ε].

Proof. Applying Theorem 9.3.12 to the the N coordinate vectors in RN yields a set of N
points in Rm for m = O(ε−2 logN) with pairwise distances in [1− ε, 1 + ε].

9.4 Talagrand inequality

9.4.1 Convex Lipschitz functions of independent random variables

Problem 9.4.1. Let V be a fixed d-dimensional subspace. Let x ∼ Unif{−1, 1}n. How
well is dist(x, V ) concentrated?

Let P = (pij) ∈ Rn×n be the matrix giving the orthogonal projection onto V ⊥. We have
trP = dimV ⊥ = n− d. Then

dist(x, V )2 = |x · Px| =
∑
i,j

xixjpij.

So
E[dist(x, V )2] =

∑
i

pii = trP = n− d.

How well is dist(x, V ) concentrated around
√
n− d?

We say that a random variable X is K-subgaussian if

P(|X − EX| ≥ t) ≤ 2e−t
2/K2

.

Note that a K-subgaussian random variable typically has O(K)-fluctuation around its
mean.

Let us start with some examples.

If V is some coordinate subspace, then dist(x, V ) is a constant not depending on x.

If V = (1, 1, . . . , 1)⊥, then dist(x, V ) = |x1 + · · · + xn|/
√
n which converge |Z| for Z ∼

N(0, 1). In particular, it is O(1)-subgaussian.

More generally, if for a hyperplane V = α⊥ for some unit vector α = (α1, . . . , αn) ∈ Rn,
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one has dist(x, V ) = |α · x|. Note that flipping xi changes |α · x| by at most 2|αi|. So So
the bounded differences inequality Theorem 9.0.4, for every t ≥ 0,

P(|dist(x, V )− E dist(x, V )| ≥ t) ≤ 2 exp

(
−2t2

4(α2
1 + · · ·+ α2

n)

)
≤ 2e−t

2/2.

So again dist(x, V ) is O(1)-subgaussian.

What about higher codimensional subspaces V ? Then

dist(x, V ) = sup
α∈V ⊥
|α|=1

|α · x| .

It is not clear how to apply the bounded difference inequality to all such α in the above
supremum simultaneously.

On the other hand, if we were to ignore the α’s and simply apply the bounded difference
inequality to the function x ∈ {−1, 1}n 7→ dist(x, V ), then, since this function is 2-
Lipschitz (with respect to Hamming distance), we obtain

P (|dist(x, V )− E dist(x, V )| ≥ t) ≤ 2e−nt
2/2,

showing that dist(x, V ) isO(
√
n)-subgaussian—but this is a pretty bad result, as |dist(x, V )| ≤√

n (half the length of the longest diagonal of the cube).

Perhaps the reason why the above bound is so poor is that the bounded difference in-
equality is measuring distance in {−1, 1}n using the Hamming distance (`1) whereas we
really care about the Euclidean distance (`2).

Instead of sampling x ∈ {−1, 1}n, if we had taking x to be a uniformly random point on
the radius

√
n sphere in Rn (which contains {−1, 1}n), then Lévy concentration would

imply that

Px∼Uniform(
√
nSn−1)(|dist(x, V )− E dist(x, V )| ≥ t) ≤ 2e−t

2/2.

So dist(x, V ) is O(1)-subgaussian if x is chosen from the radius
√
n sphere. Perhaps a

similar bound holds when x is chosen from {−1, 1}n?

Talagrand (1995) developed a powerful inequality that allows us to answer the above
question. The most general form of Talagrand’s inequality can be somewhat hard to
grasp at first, though it has important combinatorial consequences. We begin with more
concrete geometric special cases.
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Theorem 9.4.2. Let V be a fixed d-dimensional subspace in Rn. For uniformly random
x ∈ {−1, 1}n, one has

P(| dist(x, V )−
√
n− d| ≥ t) ≤ 2e−ct

2

where c > 0 is some constant.

Previously, the bounded differences inequality tells us that a Lipschitz function on {−1, 1}n
is O(

√
n)-subgaussian.

Talagrand inequality tells us that a convex Lipschitz function in Rn is O(1)-subgaussian
when restricted to the boolean cube. We give the precise statement below. We omit
the proof of Talagrand’s inequality (see Alon–Spencer textbook or Tao’s blog post) and
instead focus on explaining the theorem and how to apply it.

Below dist(·, ·) means Euclidean distance. And At = {x : dist(x,A) ≤ t}.

Theorem 9.4.3 (Talagrand). Let A ⊂ Rn be convex, and let x ∼ Unif{0, 1}n. Then for
any t > 0,

P(x ∈ A)P(dist(x,A) ≥ t) ≤ e−ct
2

where c > 0 is some absolute constant.

Remark 9.4.4. (1) Note that A is a convex body in Rn and not simply a set of points in
A. It may be useful to think of A as the convex hull of a set of points in {−1, 1}n.
Then distance to A is not the distance to these vertices of the boolean cube, but
rather distance to the convex body A.

(2) The bounded differences inequality gives us an upper bound of the form e−ct
2/n,

which is much better than Talagrand’s bound.

Example 9.4.5 (Talagrand’s inequality fails for nonconvex sets). Let

A =
{
x ∈ {0, 1}n : wt(x) ≤ n

2
−
√
n
}

(here A is a discrete set of points and not their convex hull). Then for every y ∈ {0, 1}n
with wt(y) ≥ n/2, one has dist(y, A) ≥ n1/4. Using the central limit theorem, we have,
for some constant c > 0 and sufficiently large n, for x ∼ Uniform({−1, 1}n), P(x ∈ A) ≥ c

and P(wt(x) ≥ n/2) ≥ 1/2, so the above inequality is false for t = n1/4.

By an argument similar to our proof of Theorem 9.3.7 (the equivalence of notions of
concentration of measure), one can deduce the following consequence.
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Corollary 9.4.6. Let f : Rn → R be convex and 1-Lipschitz (with respect to Euclidean
distance on Rn). Then for any r ∈ R and t > 0, for x ∼ Unif{0, 1}n

P(f(x) ≤ r)P(f(x) ≥ r + t) ≤ e−ct
2

.

where c > 0 is some absolute constant.

Remark 9.4.7. The proof below shows that the assumption that f is convex can be weak-
ened to f being quasiconvex, i.e., {f ≤ a} is convex for every a ∈ R.

The versions of Talagrand inequality, Theorem 9.4.3 and Corollary 9.4.6, are equivalent:

• Theorem 9.4.3 implies Corollary 9.4.6: take A = {x : f(x) ≤ r}. We have f(x) ≤
r+ t whenever dist(a,A) ≤ t since f is 1-Lipschitz. So P(f(x) ≤ r) = P(x ∈ A) and
P(f(x) ≥ r + t) ≤ P(dist(x,A) ≥ t).

• Corollary 9.4.6 implies Theorem 9.4.3: take f(x) = dist(x,A) which is convex since
A is convex.

Let us write MX to be a median for the random variable X, i.e., a non-random real so
that P(X ≥MX) ≥ 1/2 and P(X ≤MX) ≥ 1/2.

Corollary 9.4.8. Let f : Rn → R be convex and 1-Lipschitz (with respect to Euclidean
distance on Rn). Let x ∼ Unif({0, 1}n). Then

P(|f(x)−Mf(x)| ≥ t) ≤ 2e−ct
2

where c > 0 is an absolute constant.

Proof. Setting r = Mf(x) in Corollary 9.4.6 yields

P(f(x) ≥Mf(x) + t) ≤ 2e−ct
2

,

and setting r = Mf(x) in Corollary 9.4.6 yields

P(f(x) ≥Mf(x)− t) ≤ 2e−ct
2

.

Putting the two inequalities together, and changing the constant c, yields the corollary.

As an immediate corollary, we deduce Theorem 9.4.2 regarding the distance from a random
point x ∈ {−1, 1}n to a d-dimensional subspace. The above corollary shows that dist(x, V )

(which is a convex 1-Lipschitz function of x ∈ Rn) is O(1)-subgaussian, which immediately
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implies the result (see Lemma 9.3.14 for an example of how to argue the omitted step
where we replaced MX by EX and then by (EX2)1/2).

Example 9.4.9 (Operator norm of a random matrix). Let A be a random matrix whose
entries are uniform iid from {−1, 1}. Viewing A 7→ ‖A‖op as a function Rn2 → R, we
see that it is convex (since the operator norm is a norm) and 1-Lipschitz (using that
‖·‖op ≤ ‖·‖HS, where the latter is the Hilbert–Schmidt norm, also known as the Frobe-
nius norm, i.e., the `2-norm of the matrix entries). It follows by Talagrand’s inequality
(Corollary 9.4.8) that f is O(1)-subgaussian.

9.4.2 Convex distance

Talagrand’s inequality if much more general than what we saw earlier and can be applied
to a wide variety of combinatorial applications. We need a define a more subtle notion of
distance.

We consider Ω = Ω1×· · ·×Ωn with product probability measure (i.e., independent random
variables).

Weighted hamming distance: given α = (α1, . . . , αn) ∈ Rn
≥0, x, y ∈ Ω, we set

dα(x, y) =
n∑
i=1

αi1xi 6=yi .

and for A ⊂ Ω,
dα(x,A) = inf

y∈A
dα(x, y)

Talagrand’s convex distance between x ∈ Ω and A ⊂ Ω is defined by

dT (x,A) = sup
α∈Rn≥0

|α|=1

dα(x,A)

(here |α|2 = α2
1 + · · ·+ α2

n).

Example 9.4.10. If A ⊂ {0, 1}n and x ∈ {0, 1}n, then dT (x,A) is the Euclidean distance
from x to the convex hull of A.

To see why this is called a convex distance, note that to compute dT (x,A), we can convert
Ω to {0, 1}n based on their agreement with x, i.e., let φx(y) ∈ {0, 1}n be the vector whose
i-th coordinate is 1 iff xi 6= yi. Then, dα(x,A) in Ω equals to dα(~0, φx(A)) = φx(A) · α in
{0, 1}n. Taking the supremum over α, we see, using the Example 9.4.10,

dT (x,A) = dist(~0,ConvexHullφx(A)).
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The general form of Talagrand’s inequality says the following. Note that it reduces to the
earlier special case Theorem 9.4.3 if Ω = {0, 1}n.

Theorem 9.4.11 (General form of Talagrand’s inequality). Let A ⊆ Ω = Ω1 × · · · ×Ωn,
with Ω equipped with a product probability measure. Let t ≥ 0. We have

P(A)P(x ∈ Ω : dT (x,A) ≥ t) ≤ e−t
2/4.

Let us see how Talagrand’s inequality recovers a more general form of our geometric
inequalities from earlier, extending from independent boolean random variables to inde-
pendent bounded random variables.

Lemma 9.4.12 (Convex distance upper bounds Euclidean distance). Let A ⊂ [0, 1]n and
x ∈ [0, 1]n. Then dist(x,ConvexHullA) ≤ dT (x,A).

Proof. For any α ∈ Rn, and any y ∈ [0, 1]n, we have

|(x− y) · α| ≤
n∑
i=1

|αi| |xi − yi| ≤
n∑
i=1

|αi| 1xi 6=yi .

First taking the infimum over all y ∈ A, and then taking the supremum over unit vectors
α, the LHS becomes dist(x,ConvexHullA) and the RHS becomes dT (x,A).

Corollary 9.4.13 (Convex functions of independent bounded random variables). Let
x = (x1, . . . , xn) ∈ [0, 1] be independent random variables (not necessarily identical). Let
t ≥ 0. Let A ⊂ [0, 1]n be a convex set. Then

P(x ∈ A)P(dist(x,A) ≥ t) ≤ e−t
2/4

where dist is Euclidean distance. Also, if f : [0, 1]n → R is a convex 1-Lipschitz function,
then

P(|f −Mf | ≥ t) ≤ 4e−t
2/4.
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9.4.3 How to apply Talagrand’s inequality

Theorem 9.4.14. Let Ω = Ω1 × · · · × Ωn equipped with the product measure. Let
f : Ω → R be a function. Suppose for every x ∈ Ω, there is some α(x) ∈ Rn

≥0 such that
for every y ∈ Ω,

f(x) ≤ f(y) + dα(x)(x, y).

Then, for every t ≥ 0,

P(|f −Mf | ≥ t) ≤ 4 exp

(
−t2

4 supx∈Ω |α(x)|2

)
.

Remark 9.4.15. Note that we can use a different weight α(x) for each x. This will be
important for applications. Intuitively, it says that the smallness (or, equivalently the
largeness) of f(x) can be “certified” using α(x).

Remark 9.4.16. By considering −f instead of f , we can change the hypothesis on f to

f(x) ≥ f(y)− dα(x)(x, y).

Note that x and y play asymmetric roles.

Remark 9.4.17 (Talagrand recovers bounded differences). By choosing a fixed α ∈ Rn
≥0

(not varying with x), we see that Theorem 9.4.14 recovers the bounded differences inequal-
ity Theorem 9.0.4 up to an unimportant constant factor in the exponent of the bound.
The power of Talagrand’s inequality is that we are allowed to vary α(x).

Proof. Let r ∈ R. Let A = {y ∈ Ω : f(y) ≤ r − t}. For any x ∈ Ω, by hypothesis, there
is some α(x) ∈ Rn

≥0 such that, for all y ∈ A,

f(x) ≤ f(y) + dα(x)(x, y) ≤ r − t+ dα(x)(x, y).

Taking infimum over y ∈ A, we find

f(x) ≤ r − t+ dα(x)(x,A) ≤ r − t+ |α(x)| dT (x,A).

Thus, if f(x) ≥ r, then

dT (x,A) ≥ t

|α(x)|
≥ t

supx |α(x)|
=: s

And hence by Talagrand’s inequality Theorem 9.4.11,

P(f ≤ r − t)P(f ≥ r) ≤ P(A)P(x ∈ Ω : dT (x,A) ≥ s) ≤ e−s
2/4.
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Taking r = Mf + t yields
P(f ≥Mf + t) ≤ 2e−s

2/4

and taking r = Mf yields
P(f ≤M− t) ≤ 2e−s

2/4.

Putting them together yields the final result.

9.4.4 Largest eigenvalue of a random matrix

Theorem 9.4.18. Let A = (aij) be an n×n symmetric random matrix with independent
entries in [−1, 1]. Let λ1(X) denote the largest eigenvalue of A. Then

P(|λ1(A)−Mλ1(A)| ≥ t) ≤ 4e−t
2/32.

Proof. We shall verify the hypotheses of Theorem 9.4.14. We would like to come up with
a good choice of a weight vector α(A) for each matrix A so that for any other symmetric
matrix B with [−1, 1] entries,

λ1(A) ≤ λ1(B) +
∑
i≤j

αi,j1aij 6=bij . (9.5)

(note that in a random symmetric matrix we only have n(n + 1)/2 independent random
entries: the entries below the diagonal are obtained by reflecting the upper diagonal
entries). Let v = v(A) be the unit eigenvector of A corresponding to the eigenvalue
λ1(A). Then, by the Courant–Fischer characterization of eigenvalues,

vᵀAv = λ1(A) and vᵀBv ≤ λ1(B).

We have

λ1(A) = vᵀAv = vᵀBv + vᵀ(A−B)v ≤ λ1(B) +
∑
i,j

2 |vi| |vj| 1aij 6=bij

(since |aij − bij| ≤ 2). Thus (9.5) holds for the vector α(A) = (αij)i≤j defined by

αij =

{
4 |vi| |vj| if i < j

2 |vi|2 if i = j.
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We have ∑
i≤j

α2
ij ≤ 8

∑
i,j

|vi|2 |vj|2 = 8

(∑
i

|vi|2
)2

= 8.

So Theorem 9.4.14 yields the result.

Remark 9.4.19. The above method can be adapted to prove concentration of the k-th
largest eigenvalue, which is not a convex function of A, so the previous method in Exam-
ple 9.4.9 does not apply.

Remark 9.4.20. If A has mean zero entries, then a moments computation shows that
Eλ1(A) = O(

√
n) (the constant can be computed as well). A much more advanced fact

is that, say for uniform {−1, 1} entries, the true scale of fluctuation is n−1/6, and when
normalized, the distribution converges to something called a Tracy–Widom distribution.

9.4.5 Certifiable functions and longest increasing subsequence

An increasing subsequence of a permutation σ = (σ1, . . . , σn) is defined to be some
(σi1 , . . . , σi`) for some i1 < · · · < i`.

Question 9.4.21. How well is the length X of the longest increasing subsequence (LIS)
of uniform random permutation concentrated?

While the entries of σ are not independent, we can generate a uniform random permutation
by taking iid uniform x1, . . . , xn ∼ Unif[0, 1] and let σ record the ordering of the xi’s. This
trick converts the problem into one about independent random variables.

The probability that there exists an increasing subsequence of length k is, by union bound,
at most

P(X ≥ k) ≤ 1

k!

(
n

k

)
≤
( e
k

)k (ne
k

)k
≤
(
e2n

k2

)k
.

It follows that MX = O(
√
n).

Changing one of the xi’s changes LIS by at most 1, so the bounded differences inequality
tells us that X is O(

√
n)-subgaussian. Can we do better?

The assertion that a permutation has an increasing permutation of length s can be checked
by verifying s coordinates of the permutation. Talagrand’s inequality tells us that in such
situations the typical fluctuation should be on the order O(

√
MX), or O(n1/4) in this

case.
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Definition 9.4.22. Let Ω = Ω1 × · · · × Ωn. Let A ⊆ Ω. We say that A is s-certifiable
for every x ∈ A, there exists a set I(x) ⊆ [n] with |I| ≤ s such that for every y ∈ Ω with
xi = yi for all i ∈ I(x), one has y ∈ A.

Theorem 9.4.23. Let Ω = Ω1 × · · · × Ωn be equipped with a product measure. Let
f : Ω→ R be 1-Lipschitz with respect to Hamming distance on Ω. Suppose that {f ≥ r}
is s-certifiable. Then, for every t ≥ 0,

P(f ≤ r − t)P(f ≥ r) ≤ e−t
2/(4s).

Proof. Let A,B ⊂ Ω be given by A = {x : f(x) ≤ r − t} and B = {y : f(y) ≥ r}. To
apply Talagrand’s inequality, Theorem 9.4.11, it suffices to show that for every y ∈ B,
one has dT (y, A) ≥ t/

√
s, i.e., there is some α(y) ∈ Rn

≥0 so that

dα(x, y) ≥ t|α(y)|/
√
s ∀x ∈ A.

Indeed, let y ∈ B, and let I(y) be a set of s coordinates that certify f(y) ≥ r. Let α(y)

be the indicator vector for I(y). Note that

dα(x, y) = |{i ∈ I(y) : xi 6= yi}| .

Every x ∈ A disagrees with y on at least t coordinates of I(y), or else one can change x
by fewer than t coordinates to get x′ that agrees with y on I, so that f(x′) ≥ r, which
contradicts f being 1-Lipschitz as f(x) ≤ r − t. It follows that

dα(x, y) ≥ t = t|α(y)|/
√
s.

Corollary 9.4.24. Let Ω = Ω1 × · · · × Ωn be equipped with a product measure. Let
f : Ω → R be 1-Lipschitz with respect to Hamming distance on Ω. Suppose {f ≥ r} is
r-certifiable for every r. Then for every t ≥ 0,

P(f ≤Mf − t) ≤ 2 exp

(
−t2

4Mf

)
.

and
P(f ≥Mf + t) ≤ 2 exp

(
−t2

4(Mf + t)

)
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Proof. Applying the previous theorem, we have, for every r ∈ R and every t ≥ 0,

P(f ≤ r − t)P(X ≥ r) ≤ exp

(
−t2

4r

)
.

Setting r = Mf , we obtain the lower tail.

P(f ≤Mf − t) ≤ 2 exp

(
−t2

4m

)
.

Setting r = m+ t, we obtain the upper tail

P(X ≥Mf + t) ≤ 2 exp

(
−t2

4(Mf + t)

)
.

Corollary 9.4.25. Let X be the length of the longest increasing subsequence of a random
permutation of [n]. Then for every ε > 0 there exists C > 0 so that

P(|X −MX| ≤ Cn1/4) ≥ 1− ε.

Remark 9.4.26. The distribution of the length X of longest increasing subsequence of a
uniform random permutation is now well understood through some deep results.

Vershik and Kerov (1977) showed that EX ∼ 2
√
n.

Baik, Deift, and Johansson (1999) showed that the correcting scaling is n1/6, and, after
under this normalization, n−1/6(X − 2

√
n) converges to the Tracy–Widom distribution,

the same distribution for the top eigenvalue of a random matrix.
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10 Entropy method

My greatest concern was what to call it. I thought of calling it “information,”
but the word was overly used, so I decided to call it “uncertainty.” When I
discussed it with John von Neumann, he had a better idea. Von Neumann told
me, “You should call it entropy, for two reasons. In the first place your uncer-
tainty function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, nobody knows
what entropy really is, so in a debate you will always have the advantage.”

Claude Shannon, 1971

For more information theory, see the textbook by Cover and Thomas.

10.1 Basic properties

We define the (binary) entropy of a discrete random variable as follows.

Definition 10.1.1. Given a discrete random variable X taking values in S, with ps :=

P(X = s), its entropy is defined to be

H(X) :=
∑
s∈S

−ps log2 ps

(by convention if ps = 0 then the corresponding summand is set to zero).

Intuitively, H(X) measures the amount of “surprise” in the randomness of X. Note that
we always have

H(X) ≥ 0.

A more rigorous interpretation of this intuition is given by the Shannon noiseless coding
theorem, which says that the minimum number of bits needed to encode n iid copies of
X is nH(X) + o(n).

Here are some basic properties.

Lemma 10.1.2 (Uniform bound).

H(X) ≤ log2 | support(X)|,

with equality if and only if X is uniformly distributed.
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Proof. Let function f(x) = −x log2 x is concave for x ∈ [0, 1]. Let S = support(X). Then

H(X) =
∑
s∈S

f(ps) ≤ |S| f

(
1

|S|
∑
s∈S

ps

)
= |S| f

(
1

|S|

)
= log2 |S| .

We write H(X, Y ) for the entropy of the joint random variables (X, Y ), i.e., letting
Z = (X, Y ),

H(X, Y ) := H(Z) =
∑
(x,y)

−P(X = x, Y = y) log2 P(X = x, Y = y).

Note that
H(X, Y ) = H(X) +H(Y ) if X and Y are independent.

Definition 10.1.3 (Conditional entropy). Given jointly distributed random variables X
and Y , define

H(X|Y ) := Ey[H(X|Y = y)]

=
∑
y

P(Y = y)H(X|Y = y)

=
∑
y

P(Y = y)
∑
x

−P(X = x|Y = y) log2 P(X = x|Y = y)

(each line unpacks the previous line. In the summations, x and y range over the supports
of X and Y respectively).

Lemma 10.1.4 (Chain rule). H(X, Y ) = H(X) +H(Y |X)

Proof. Writing p(x, y) = P(X = x, Y = y), etc., we have by Bayes’s rule

p(x|y)p(y) = p(x, y),
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and so

H(X|Y ) := Ey[H(X|Y = y)] =
∑
y

−p(y)
∑
x

p(x|y) log2 p(x|y)

=
∑
x,y

−p(x, y) log2

p(x, y)

p(y)

=
∑
x,y

−p(x, y) log2 p(x, y) +
∑
y

p(y) log2 p(y)

= H(X, Y )−H(Y ).

Intuitively, the conditional entropy H(X|Y ) measures the amount of additional informa-
tion in X not contained in Y .

Some important special cases:

• if X = Y , or X = f(Y ), then H(X|Y ) = 0.

• If X and Y are independent, then H(X|Y ) = H(X)

• If X and Y are conditionally independent on Z, then H(X|Y, Z) = H(X|Z).

Lemma 10.1.5 (Subadditivity). H(X, Y ) ≤ H(X) +H(Y ), and more generally,

H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn).

Proof.

H(X) +H(Y )−H(X, Y ) =
∑
x,y

(−p(x, y) log2 p(x)− p(x, y) log2 p(y) + p(x, y) log2 p(x, y))

=
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)

=
∑
x,y

p(x)p(y)f

(
p(x, y)

p(x)p(y)

)
≥ f(1) = 0

where f(t) = t is convex.
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More generally, by iterating the above inequality for two random variables, we have

H(X1, . . . , Xn) ≤ H(X1, . . . , Xn−1) +H(Xn)

≤ H(X1, . . . , Xn−2) +H(Xn−1) +H(Xn)

≤ · · · ≤ H(X1) + · · ·+H(Xn).

Remark 10.1.6. The nonnegative quantity

I(X;Y ) := H(X) +H(Y )−H(X, Y )

is called mutual information. Intuitively, it measures the amount of common information
between X and Y .

Lemma 10.1.7 (Dropping conditioning). H(X|Y ) ≤ H(X) and H(X|Y, Z) ≤ H(X|Z)

Proof. By chain rule and subadditivity, we have

H(X|Y ) = H(X, Y )−H(Y ) ≤ H(X).

The inequality conditioning on Z follows since the above implies that

H(X|Y, Z = z) ≥ H(X|Z = z)

holds for every z, and taking expectation of z yields H(X|Y, Z) ≤ H(X|Z).

Remark 10.1.8. The above inequality is often equivalently (why?) rephrased as the data
processing inequality : H(X|f(Y )) ≥ H(X|Y ) for any function f .

Here are some simple applications of entropy to tail bounds.

Let us denote the entropy of a Bernoulli random variable by

H(p) := H(Bernoulli(p)) = −p log2 p− (1− p) log2(1− p).

0 p 1
0

1

H(p)
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Theorem 10.1.9. If k ≤ n/2, then

∑
0≤i≤k

(
n

i

)
≤ 2H(k/n)n.

Equivalently, the above inequality says that for X ∼ Binomial(n, 1/2), we have P(X ≤
k) ≤ 2(H(k/n)−1)n. This bound can be established using our proof technique for Chernoff
bound by applying Markov’s inequality to the moment generating function:

∑
0≤i≤k

(
n

i

)
≤ (1 + x)n

xk
∀x ∈ [0, 1].

The infimum of the RHS over x ∈ [0, 1] is precisely 2(H(k/n)−1)n.

Now let us give a purely information theoretic proof. We can use the above theorem but
let’s do it from scratch to practice with entropy.

Proof. Let (X1, . . . , Xn) ∈ {0, 1}n be chosen uniformly conditioned on X1 + · · ·+Xn ≤ k.
Then

log2

∑
0≤i≤k

(
n

i

)
= H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn).

Each Xi is a Bernoulli with probability P(Xi = 1). Note that conditioned on X1 + · · ·+
Xn = m, one has P(Xi = 1) = m/n. Varying overm ≤ k ≤ n/2, we find P(Xi = 1) ≤ k/n,
so H(Xi) ≤ H(k/n). Hence

log2

∑
0≤i≤k

(
n

i

)
≤ H(k/n)n.

Remark 10.1.10. One can extend the above proof to bound the tail of Binomial(n, p) for
any p. The result can be expressed in terms of the relative entropy (also known as the
Kullback–Leibler divergence between two Bernoulli random variables). More concretely,
for X ∼ Binomial(n, p), one has

logP(X ≤ nq)

n
≤ −q log

q

p
− (1− q) log

1− q
1− p

∀0 ≤ q ≤ p

and
logP(X ≥ nq)

n
≤ −q log

q

p
− (1− q) log

1− q
1− p

∀p ≤ q ≤ 1.
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10.2 Upper bound on the permanent and the number of perfect
matchings

We define the permanent of n× n matrix A by

perA :=
∑
σ∈Sn

n∏
i=1

ai,σ(i).

Formula for the permanent is simply that of the determinant without the extra sign factor:

detA :=
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσi .

We’ll consider {0, 1}-valued matrices. If A is the bipartite adjacency matrix of a bipartite
graph, then perA is its number of perfect matchings.

The following theorem gives an upper bound on the number of perfect matchings of a
bipartite graph with a given degree distribution. It was conjectured by Minc (1963) and
proved by Brégman (1973).

Theorem 10.2.1 (Brégman). Let A = (aij) ∈ {0, 1}n×n, whose i-th row has sum di.
Then

perA ≤
n∏
i=1

(di!)
1/di

Note that equality is attained when A consists diagonal blocks of 1’s (corresponding to
perfect matchings in a bipartite graph of the form Kd1,d1 t · · · tKdt,dt).

Proof. (Radhakrishnan 1997) Let σ be a uniform random permutation of [n] conditioned
on aiσi = 1 for all i ∈ [n]. Then

log2 perA = H(σ) = H(σ1, . . . , σn) = H(σ1) +H(σ2|σ1) + · · ·+H(σn|σ1, . . . , σn−1).

We could have bounded H(σi|σ1, . . . , σi−1) ≤ H(σi) ≤ log2 |supportσi| = log2 di, but this
step would be too lossy.

Here is a useful trick: reveal the chosen entries in a uniform random order.

Let (τ1, . . . , τn) be a uniform random permutation of [n]. We have

H(σ) = H(στ1) +H(στ2|στ1) + · · ·+H(στn|στ1 , . . . , στn−1).

For now, consider the i-th row for a fixed i. Let k ∈ [n] be the index with τk = i.
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After seeing στ1 , . . . , στk−1
, the expected number of remaining choices for σi is uniformly

distributed in [di] (since τ is uniform), so applying the uniform bound we have

H(σi|στ1 , . . . , στk−1
) ≤ E[log2 support(σi|στ1 , . . . , στk−1

)] =
log2 1 + · · · log2 di

di
=

log2(di!)

di
.

It follows that

log2 perA = H(σ) ≤
n∑
i=1

log2(di!)

di

and the conclusion follows.

Corollary 10.2.2 (Kahn and Lovász). Let G be a graph. Let dv denote the degree of v.
Then the number pm(G) of perfect matchings of G satisfies

pm(G) ≤
∏

v∈V (G)

(dv!)
1/(2dv) =

∏
v∈V (G)

pm(Kdv ,dv)
1/(2dv).

Proof. (Alon and Friedland 2008) Brégman’s theorem implies the statement for bipartite
graphs G (by considering a bipartition on G tG). For the extension of non-bipartite G,
one can proceed via a combinatorial argument that pm(G tG) ≤ pm(G×K2), which is
left as an exercise.

10.2.1 The maximum number of Hamilton paths in a tournament

Question 10.2.3. What is the maximum possible number of directed Hamilton paths in
an n-vertex tournament?

Earlier we saw that a uniformly random tournament has n!/2n−1 Hamilton paths in ex-
pectation, and hence there is some tournament with at least this many Hamilton paths.
This result, due to Szele, is the earliest application of the probabilistic method.

Using Brégman’s theorem, Alon proved a nearly matching upper bound.

Theorem 10.2.4 (Alon 1990). Every n-vertex tournament has at most O(n3/2 · n!/2n)

Hamilton paths.

Remark 10.2.5. The upper bound has been improved to O(n3/2−γn!/2n) for some small
constant γ, while the lower bound n!/2n−1 has been improved by a constant factor. It
remains open to close this nO(1) factor gap.

We first prove an upper bound on the number of Hamilton cycles.
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Theorem 10.2.6 (Alon 1990). Every n-vertex tournament has at most O(
√
n · n!/2n)

Hamilton cycles.

Proof. Let A be an n×nmatrix whose (i, j) entry is 1 if i→ j is an edge of the tournament
and 0 otherwise. Let di be the sum of the i-th row. Then perA counts the number of 1-
factors (spanning disjoint unions of directed cycles) of the tournament. So by Brégman’s
theorem, we have

number of Hamilton cycles ≤ perA ≤
n∏
i=1

(di!)
1/d1 .

One can check (omitted) that the function g(x) = (x!)1/x is log-concave, i.e, g(n)g(n+2) ≥
g(n + 1)2 for all n ≥ 0. Thus, by a smoothing argument, among sequences (d1, . . . , dn)

with sum
(
n
2

)
, the RHS above is maximized when all the di’s are within 1 of each other,

which, by Stirling’s formula, gives O(
√
n · n!/2n).

Theorem 10.2.4 then follows by applying the above bound with the following lemma.

Lemma 10.2.7. Given an n-vertex tournament with P Hamilton paths, one can add a
new vertex to obtain a (n+ 1)-vertex tournament with at least P/4 Hamilton cycles.

Proof. Add a new vertex and orient its incident edges uniformly at random. For every
Hamilton path in the n-vertex tournament, there is probability 1/4 that it can be closed
up into a Hamilton cycle through the new vertex. The claim then follows by linearity of
expectation.

10.3 Sidorenko’s inequality

Given graphs F andG, a graph homomorphism from F toG is a map φ : V (F )→ V (G)

of vertices that sends edges to edges, i.e., φ(u)φ(v) ∈ E(G) for all uv ∈ E(F ).

Let
hom(F,G) = the number of graph homomorphisms from F to G.

Define the homomorphism density (the H-density in G) by

t(F,H) =
hom(F,G)

v(G)v(F )

= P(a uniform random map V (F )→ V (G) is a graph homomorphism F → G)
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In this section, we are interested in the regime of fixed F and large G, in which case
almost all maps V (F )→ V (G) are injective, so that there is not much difference between
homomorphisms and subgraphs. More precisely,

hom(F,G) = aut(F )(#copies of F in G as a subgraph) +OF (v(G)v(F )).

where aut(F ) is the number of automorphisms of F .

Question 10.3.1. Given a fixed graph F and constant p ∈ [0, 1], what is the minimum
possible F -density in a graph with edge density at least p?

The F -density in the random graph G(n, p) is pe(F ) + o(1). Here p is fixed and n→∞.

Can one do better?

If F is non-bipartite, then the complete bipartite graph Kn/2,n/2 has F -density zero. (The
problem of minimizing F -density is still interesting and not easy; it has been solved for
cliques.)

Sidorenko’s conjecture (1993) (also proposed by Erdős and Simonovits (1983)) says for
any fixed bipartite F , the random graph asymptotically minimizes F -density. This is an
important and well-known conjecture in extremal graph theory.

Conjecture 10.3.2 (Sidorenko). For every bipartite graph F , and any graph G,

t(F,G) ≥ t(K2, G)e(F ).

The conjecture is known to hold for a large family of graphs F .

The entropy approach to Sidorenko’s conjecture was first introduced by Li and Szegedy
(2011) and later further developed in subsequent works. Here we illustrate the entropy
approach to Sidorenko’s conjecture with several examples.

Theorem 10.3.3 (Blakey and Roy 1965). Sidorenko’s conjecture holds if F is a tree.

Proof. We will construct a probability distribution µ on Hom(F,G), the set of all graph
homomorphisms F → G. Unlike earlier applications of entropy, here we are trying to
prove a lower bound on hom(F,G) instead of an upper bound. So instead of taking µ to
be a uniform distribution (which automatically has entropy log2 hom(F,G)), we actually
take µ to be carefully constructed distribution, and apply the upper bound

H(µ) ≤ log2 |supportµ| = log2 hom(F,G).
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We are trying to show that

hom(F,G)

v(G)v(F )
≥
(

2e(G)

v(G)2

)e(F )

.

So we would like to find a probability distribution µ on Hom(F,G) satisfying

H(µ) ≥ e(F ) log2(2e(G))− (2e(F )− v(F )) log2 v(G). (10.1)

Let us explain the proof when F is a path on 4 vertices. The same proof extends to all
trees F .

We choose randomly a walk XY ZW in G as follows:

• XY is a uniform random edge of G (by this we mean first choosing an edge of G
uniformly at random, and then let X be a uniformly chosen endpoint of this edge,
and then Y the other endpoint);

• Z is a uniform random neighbor of Y ;

• W is a uniform random neighbor of Z.

Key observation: Y Z is distributed as a uniform random edge of G, and likewise with
ZW

Indeed, conditioned on the choice of Y , the vertices X and Z are both independent and
uniform neighbors of Y , so XY and Y Z are uniformly distributed.

Also, the conditional independence observation implies that

H(Z|X, Y ) = H(Z|Y ) and H(W |X, Y, Z) = H(W |Z)

and futhermore both quantities are equal to H(Y |X) since XY, Y Z, ZW are each dis-
tributed as a uniform random edge.

Thus

H(X, Y, Z,W ) = H(X) +H(Y |X) +H(Z|X, Y ) +H(W |X, Y, Z) [chain rule]

= H(X) +H(Y |X) +H(Z|Y ) +H(W |Z) [conditional independence]

= H(X) + 3H(Y |X)

= 3H(X, Y )− 2H(X) [chain rule]

≥ 3 log2(2e(G))− 2 log2 v(G)

In the final step we used H(X, Y ) = log2(2e(G)) since XY is uniformly distributed
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among edges, and H(X) ≤ log2 |support(X)| = log2 v(G). This proves (10.1) and hence
the theorem for a path of 4 vertices. (As long as the final expression has the “right form”
and none of the steps are lossy, the proof should work out.)

This proof easily generalizes to all trees.

Remark 10.3.4. See this MathOverflow discussions for the history as well as alternate
proofs: https://mathoverflow.net/q/189222/

Theorem 10.3.5. Sidorenko’s conjecture holds for all complete bipartite graphs.

Proof. Following the same framework as earlier, let us demonstrate the result for F = K2,2.
The same proof extends to all Ks,t.

We will pick a random tuple (X1, X2, Y1, Y2) ∈ V (G)4 with XiYj ∈ E(G) for all i, j as
follows.

• X1Y1 is a uniform random edge;

• Y2 is a uniform random neighbor of X1;

• X2 is a conditionally independent copy of X1 given (Y1, Y2).

The last point deserves more attention. Note that we are not simply uniformly randomly
choosing a common neighbor of Y1 and Y2 as one might naively attempt. Instead, one
can think of the first two steps as generating a distribution for (X1, Y1, Y2)—according to
this distribution, we first generate (Y1, Y2) according to its marginal, and then produce
two conditionally independent copies of X1.

From the previous proof (applied to a 2-edge path), we see that

H(X1, Y1, Y2) ≥ 2H(X1, Y1)−H(X1) ≥ 2 log2(2e(G))− log2 v(G).

So we have

H(X1, X2, Y1, Y2)

= H(Y1, Y2) +H(X1, X2|Y1, Y2) [chain rule]

= H(Y1, Y2) + 2H(X1|Y1, Y2) [conditional independence]

= 2H(X1, Y1, Y2)−H(Y1, Y2) [chain rule]

≥ 2(2 log2(2e(G))− log2 v(G))− 2 log2 v(G). [prev. ineq. and uniform bound]

= 4 log(2e(G))− 4 log2 v(G).

So we have verified (10.1) for K2,2.
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Theorem 10.3.6 (Conlon, Fox, Sudakov 2010). Sidorenko’s conjecture holds for a bipar-
tite graph that has a vertex adjacent to all vertices in the other part.

Proof. Let us illustrate the proof for the following graph. The proof extends to the general
case.

x0

y1

y2

y3

x1

x2

Let us choose a random tuple (X0, X1, X2, Y1, Y2, Y3) ∈ V (G)6 as follows:

• X0Y1 is a uniform random edge;

• Y2 and Y3 are independent uniform random neighbors of X0;

• X1 is a conditionally independent copy of X0 given (Y1, Y2);

• X2 is a conditionally independent copy of X0 given (Y2, Y3).

(as well as other symmetric versions.) Some important properties of this distribution:

• X0, X1, X2 are conditionally independent given (Y1, Y2, Y3);

• X1 and (X0, Y3, X2) are conditionally independent given (Y1, Y2);

• The distribution of (X0, Y1, Y2) is identical to the distribution of (X1, Y1, Y2).

We have

H(X0, X1, X2, Y1, Y2, Y3)

= H(X0, X1, X2|Y1, Y2, Y3) +H(Y1, Y2, Y3) [chain rule]

= H(X0|Y1, Y2, Y3) +H(X1|Y1, Y2, Y3) +H(X2|Y1, Y2, Y3) +H(Y1, Y2, Y3) [conditional independence]

= H(X0|Y1, Y2, Y3) +H(X1|Y1, Y2) +H(X2|Y2, Y3) +H(Y1, Y2, Y3) [conditional independence]

= H(X0, Y1, Y2, Y3) +H(X1, Y1, Y2) +H(X2, Y2, Y3)−H(Y1, Y2)−H(Y2, Y3). [chain rule]

The proof of Theorem 10.3.3 actually lower bounds the first three terms:

H(X0, Y1, Y2, Y3) ≥ 3 log2(2e(G))− 2 log2 v(G)

H(X1, Y1, Y2) ≥ 2 log2(2e(G))− log2 v(G)

H(X2, Y2, Y3) ≥ 2 log2(2e(G))− log2 v(G).

135

https://mathscinet.ams.org/mathscinet-getitem?mr=2738996


10 Entropy method Probabilistic Methods in Combinatorics — Yufei Zhao

We can apply the uniform support bound on the remaining terms.

H(Y1, Y2) = H(Y2, Y3) ≤ 2 log2 v(G).

Putting everything together, we have

H(X0, X1, X2, Y1, Y2, Y3) ≥ 7 log2(2e(G))− 8 log2 v(G),

thereby verifying (10.1).

To check that you understand the above proof, where did we use the assumption that F
has vertex complete to the other part?

Many other graphs can be proved by extending this method.

The “smallest” open case of Sidorenko conjecture is when F is the following graph, often
called the “Möbius graph”, which is K5,5 with a Hamilton cycle removed. (I think it is
called the “Möbius graph” because it is the face-vertex incidence graph of the simplicial
complex structure of the Möbius strip, built by gluing a strip of five triangles.)

Möbius graph = K5,5 \ C10 =

10.4 Shearer’s lemma

Shearer’s entropy lemma extends the subadditivity property of entropy. Befpre stating it
in full generality, let us first see the simplest instance of Shearer’s lemma.

Theorem 10.4.1 (Shearer’s lemma, special case).

2H(X, Y, Z) ≤ H(X, Y ) +H(X,Z) +H(Y, Z)

Proof. Using the chain rule and conditioning dropping, we have

H(X, Y ) = H(X) +H(Y |X)

H(X,Z) = H(X) +H(Z|X)

H(Y, Z) = H(Y ) +H(Z|Y )

Applying conditioning dropping, we see that their sum is at at least

2H(X, Y, Z) = 2H(X) + 2H(Y |X) + 2H(Z|X, Y ).
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Question 10.4.2. What is the maximum volume of a body in R3 that has area at most
1 when projected to each of the three coordinate planes?

The cube [0, 1]3 satisfies the above property and has area 1. It turns out that this is the
maximum.

To prove this claim, first let us use Shearer’s inequality to prove a discrete version.

Theorem 10.4.3. Let S ⊂ R3 be a finite set, and πxy(S) be its projection on the xy-plane,
etc. Then

|S|2 ≤ |πxy(S)| |πxz(S)| |πyz(S)|

Proof. Let (X, Y, Z) be a uniform random point of S. Then

2 log2 |S| = 2H(X, Y, Z) ≤ H(X, Y )+H(X,Z)+H(Y, Z) ≤ log2 πxy(S)+log2 πxz(S)+log2 πyz(S).

By approximating a body using cubes, we can deduce the following corollary.

Corollary 10.4.4. Let S be a body in R3. Then

vol(S)2 ≤ area(πxy(S)) area(πxz(S)) area(πyz(S)).

Let us now state the general form of Shearer’s lemma. (Chung, Graham, Frankl, and
Shearer 1986)

Theorem 10.4.5 (Shearer’s lemma). Let A1, . . . , As ⊂ [n] where each i ∈ [n] appears in
at least k sets Aj’s. Writing XA := (Xi)i∈A,

kH(X1, . . . , Xn) ≤
∑
j∈[s]

H(XAj).

The proof of the general form of Shearer’s lemma is a straightforward adaptation of the
proof of the special case earlier.

Like earlier, we can deduce an inequality about sizes of projections. (Loomis and Whitney
1949)
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Corollary 10.4.6 (Loomis–Whitney inequality). Writing πi for the projection from Rn

onto the hyperplane xi = 0, we have for every S ⊂ Rn,

|S|n−1 ≤
n∏
i=1

|πi(S)|

Corollary 10.4.7. Let A1, . . . , As ⊂ Ω where each i ∈ Ω appears in at least k sets Aj.
Then for every family F of subsets of Ω,

|F|k ≤
∏
j∈[s]

∣∣F|Aj ∣∣
where F|A := {F ∩ A : F ∈ F}.

Proof. Each subset of Ω corresponds to a vector (X1, . . . , Xn) ∈ {0, 1}n. Let (X1, . . . , Xn)

be a random vector corresponding to a uniform element of F . Then

k log2 |F| = kH(X1, . . . , Xn) ≤
∑
j∈[s]

H(XAj) = log2

∣∣F|Aj ∣∣ .
10.4.1 Triangle-intersecting families

We say that a set G of labeled graphs on the same vertex set is triangle-intersecting if
G ∩G′ contains a triangle for every G,G′ ∈ G.

Question 10.4.8. What is the largest triangle-intersecting family of graphs on n labeled
vertices?

The set of all graphs that contain a fixed triangle is triangle-intersecting, and they form
a 1/8 fraction of all graphs.

An easy upper bound: the edges form an intersecting family, so a triangle-intersecting
family must be at most 1/2 fraction of all graphs.

The next theorem improves this upper bound to < 1/4. It is also in this paper that
Shearer’s lemma was introduced.

Theorem 10.4.9 (Chung, Graham, Frankl, and Shearer 1986). Every triangle-
intersecting family of graphs on n labeled vertices has size < 2(n2)−2.

Proof. Let G be a triangle-intersecting family of graphs on vertex set [n] (viewed as a
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collection of subsets of edges of Kn)

For S ⊆ [n] with |S| = bn/2c, let AS =
(
S
2

)
∪
(

[n]\S
2

)
(i.e., AS is the union of the clique on

S and the clique on the complement of S). Let

r = |AS| =
(
bn/2c

2

)
+

(
dn/2e

2

)
≤ 1

2

(
n

2

)
.

For every S, every triangle has an edge in AS, and thus G restricted to AS must be an
intersecting family. Hence

|G|AS | ≤ 2|AS |−1 = 2r−1.

Each edge of Kn appears in at least

k =
r(
n
2

)( n

bn/2c

)
different AS with |S| = bn/2c (by symmetry and averaging). Applying Corollary 10.4.7,
we find that

|G|k ≤
(
2r−1

)( n
bn/2c) .

Therefore

|G| ≤ 2(n2)−
(n2)
r < 2(n2)−2.

Remark 10.4.10. A tight upper bound of 2(n2)−3 (matching the construction of taking all
graphs containing a fixed triangle) was conjectured by Simonovits and Sós (1976) and
proved by Ellis, Filmus, and Friedgut (2012) using Fourier analytic methods.

10.4.2 The number of independent sets in a regular bipartite graph

Question 10.4.11. Fix d. Which d-regular graph on a given number of vertices has the
most number of independent sets? Which graph G maximizes i(G)1/v(G)?

(Note that the number of independent sets is multiplicative: i(G1 tG2) = i(G1)i(G2).)

Alon and Kahn conjectured that for graphs on n vertices, when n is a multiple of 2d, a
disjoint union of Kd,d’s maximizes the number of independent sets.

Alon (1991) proved an approximate version of this conjecture. Kahn (2001) proved it
assuming the graph is bipartite. Zhao (2010) proved it in general.
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Theorem 10.4.12 (Kahn, Zhao). Let G be an n-vertex d-regular graph. Then

i(G) ≤ i(Kd,d)
n/(2d) = (2d+1 − 1)n/(2d)

where i(G) is the number of independent sets of G.

Proof assuming G is bipartite. (Kahn) Let us first illustrate the proof for

G =

x1

x2

x3

y1

y2

y3

Among all independent sets ofG, choose one uniformly at random, and let (X1, X2, X3, Y1, Y2, Y3) ∈
{0, 1}6 be its indicator vector. Then

2 log2 i(G) = 2H(X1, X2, X3, Y1, Y2, Y3)

= 2H(X1, X2, X3) + 2H(Y1, Y2, Y3|X1, X2, X3) [chain rule]

≤ H(X1, X2) +H(X1, X3) +H(X2, X3)

+ 2H(Y1|X1, X2, X3) + 2H(Y2|X1, X2, X3) + 2H(Y3|X1, X2, X3) [Shearer]

= H(X1, X2) +H(X1, X3) +H(X2, X3)

+ 2H(Y1|X1, X2) + 2H(Y2|X1, X3) + 2H(Y3|X2, X3) [conditional independence]

Here we are using that (a) Y1, Y2, Y3 are conditionally independent given (X1, X2, X3)

and (b) Y1 and (X3, Y2, Y3) are conditionally independent given (X1, X2). A more general
statement is that if S ⊂ V (G), then the restrictions to the different connected components
of G− S are conditionally independent given XS.

It remains to prove that

H(X1, X2) + 2H(Y1|X1, X2) ≤ log2 i(K2,2)

and two other analogous inequalities. Let Y ′1 be conditionally independent copy of Y1

given (X1, X2). Then (X1, X2, Y1, Y
′

1) is the indictor vector of an independent set of K2,2

(though not necessarily chosen uniformly).

x1

x2

y1

y′1
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Thus we have

H(X1, X2) + 2H(Y1|X1, X2) = H(X1, X2) +H(Y1|X1, X2) +H(Y ′1 |X1, X2)

= H(X1, X2, Y1, Y
′

1) [chain rule]

≤ log2 i(G) [uniform bound]

This concludes the proof for G = K2,2, which works for all bipartite G. Here are the
details.

Let V = A∪B be the vertex bipartition of G. Let X = (Xv)v∈V be the indicator function
of an independent set chosen uniformly at random. Write XS := (Xv)v∈S. We have

d log2 i(G) = dH(X) = dH(XA) + dH(XB|XA) [chain rule]

≤
∑
b∈B

H(XN(b)) + d
∑
b∈B

H(Xb|XA) [Shearer]

≤
∑
b∈B

H(XN(b)) + d
∑
b∈B

H(Xb|XN(b)) [drop conditioning]

For each b ∈ B, we have

H(XN(b)) + dH(Xb|XN(b)) = H(XN(b)) +H(X
(1)
b , . . . , X

(d)
b |XN(b))

= H(X
(1)
b , . . . , X

(d)
b , XN(b))

≤ log2 i(Kd,d)

where X(1)
b , . . . , X

(d)
b are conditionally independent copies of Xb given XN(b). Summing

over all b yields the result.

Now we give the argument from Zhao (2010) that removes the bipartite hypothesis. The
following combinatorial argument reduces the problem for non-bipartite G to that of
bipartite G.

Starting from a graph G, we construct its bipartite double cover G×K2 (see Figure 6),
which has vertex set V (G) × {0, 1}. The vertices of G ×K2 are labeled vi for v ∈ V (G)

and i ∈ {0, 1}. Its edges are u0v1 for all uv ∈ E(G). Note that G × K2 is always a
bipartite graph.

Lemma 10.4.13. Let G be any graph (not necessarily regular). Then

i(G)2 ≤ i(G×K2).

Once we have the lemma, Theorem 10.4.12 then reduces to the bipartite case, which we
already proved. Indeed, for a d-regular G, since G×K2 is bipartite, the bipartite case of
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2G G×K2 G×K2

Figure 6: The bipartite swapping trick in the proof of Lemma 10.4.13: swapping the
circled pairs of vertices (denoted A in the proof) fixes the bad edges (red and bolded),
transforming an independent set of 2G into an independent set of G×K2.

the theorem gives
i(G)2 ≤ i(G×K2) ≤ i(Kd,d)

n/d,

Proof of Lemma 10.4.13. Let 2G denote a disjoint union of two copies of G. Label its
vertices by vi with v ∈ V and i ∈ {0, 1} so that its edges are uivi with uv ∈ E(G) and
i ∈ {0, 1}. We will give an injection φ : I(2G)→ I(G×K2). Recall that I(G) is the set of
independent sets of G. The injection would imply i(G)2 = i(2G) ≤ i(G×K2) as desired.

Fix an arbitrary order on all subsets of V (G). Let S be an independent set of 2G. Let

Ebad(S) := {uv ∈ E(G) : u0, v1 ∈ S}.

Note that Ebad(S) is a bipartite subgraph of G, since each edge of Ebad has exactly one
endpoint in {v ∈ V (G) : v0 ∈ S} but not both (or else S would not be independent). Let
A denote the first subset (in the previously fixed ordering) of V (G) such that all edges in
Ebad(S) have one vertex in A and the other outside A. Define φ(S) to be the subset of
V (G)× {0, 1} obtained by “swapping” the pairs in A, i.e., for all v ∈ A, vi ∈ φ(S) if and
only if v1−i ∈ S for each i ∈ {0, 1}, and for all v /∈ A, vi ∈ φ(S) if and only if vi ∈ S for
each i ∈ {0, 1}. It is not hard to verify that φ(S) is an independent set in G ×K2. The
swapping procedure fixes the “bad” edges.

It remains to verify that φ is an injection. For every S ∈ I(2G), once we know T = φ(S),
we can recover S by first setting

E ′bad(T ) = {uv ∈ E(G) : ui, vi ∈ T for some i ∈ {0, 1}},

so that Ebad(S) = E ′bad(T ), and then finding A as earlier and swapping the pairs of A
back. (Remark: it follows that T ∈ I(G×K2) lies in the image of φ if and only if E ′bad(T )

is bipartite.)

The entropy proof of the bipartite case of Theorem 10.4.12 extends to graph homomor-
phisms, yielding the following result.
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Theorem 10.4.14 (Galvin and Tetali 2004). Let G be an n-vertex d-regular bipartite
graph. Let H be any graph allowing loops. Then

hom(G,H) ≤ hom(Kd,d, H)n/(2d)

Some important special cases:

• hom(G, ) = i(G), the number of independent sets of G;

• hom(G,Kq) = the number of proper q-colorings of G.

The bipartite hypothesis in Theorem 10.4.14 cannot be always be removed. For example,
if H = , then log2 hom(G,H) is the number of connected components of G, so that
the maximizers of log2 hom(G,H)/v(G) are disjoint unions of Kd+1’s.

ForH = Kq, corresponding to the proper q-colorings, the bipartite hypothesis was recently
removed.

Theorem 10.4.15 (Sah, Sawhney, Stoner, and Zhao 2020). Let G be an n-vertex d-
regular graph. Then

cq(G) ≤ cq(Kd,d)
n/(2d)

where cq(G) is the number of q-colorings of G.

Furthermore, it was also shown in the same paper that in Theorem 10.4.14, the bipartite
hypothesis on G can be weakened to triangle-free. Furthermore triangle-free is the weakest
possible hypothesis on G so that the claim is true for all H.

For more discussion and open problems on this topic, see the survey by Zhao (2017).
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11 The container method

Many problems in combinatorics can be phrased in terms of independent sets in hyper-
graphs.

For example, here is a model question:

Question 11.0.1. How many triangle-free graphs are there on n vertices?

By taking all subgraphs of Kn/2,n/2, we obtain 2n
2/4 such graphs. It turns out this gives

the correct exponential asymptotic.

Theorem 11.0.2 (Erdős, Kleitman, and Rothschild 1973). The number of triangle-free
graphs on n vertices is 2n

2/4+o(n2).

Remark 11.0.3. It does not matter here whether we consider vertices to be labeled, it
affects the answer up to a factor of at most n! = eO(n logn).

Remark 11.0.4. Actually the original Erdős–Kleitman–Rothschild paper showed an even
stronger result: 1 − o(1) fraction of all n-vertex triangle-free graphs are bipartite. The
above asymptotic can be then easily deduced by counting subgraphs of complete bipartite
graphs. The container methods discussed in this section are not strong enough to prove
this finer claim.

We can convert this asymptotic enumeration problem into a problem about independent
sets in a 3-uniform hypergraph H:

• V (H) =
(

[n]
2

)
• The edges of H are triples of the form {xy, xz, yx}, i.e., triangles

We then have the correspondence:

• A subset of V (H) = a graph on vertex set [n]

• An independent set of V (H) = a triangle-free graph

(Here an independent set in a hypergraph is a subset of vertices containing no edges.)

Naively applying first moment/union bound does not work—there are too many events
to union bound over.

For example, Mantel’s theorem tell us the maximum number of edges in an n-vertex
triangle-free graph is bn2/4c, obtained by Kbn/2c,dn/2e. With a fixed triangle-free graph G,
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the number of subgraphs of G is 2e(G), and each of them is triangle-free. Perhaps we could
union bound over all maximal triangle-free graphs? It turns out that there are 2n

2/8+o(n2)

such maximal triangle-free graphs, so a union bound would be too wasteful.

In many applications, independent sets are clustered into relatively few highly correlated
sets. In the case of triangle-free graphs, each maximal triangle-free graph is very “close”
to many other maximal triangle-free graphs.

Is there a more efficient union bound that takes account of the clustering of independent
sets?

The container method does exactly that. Given some hypergraph with controlled degrees,
one can find a collection of containers satisfying the following properties:

• Each container is a subset of vertices of the hypergraph.

• Every independent set of the hypergraph is a subset of some container.

• The total number of containers in the collection is relatively small.

• Each container is not too large (in fact, not too much larger than the maximum size
of an independent set)

We can then union bound over all such containers. If the number of containers is not too
small, then the union bound is not too lossy.

Here are some of the most typical and important applications of the container method:

• Asymptotic enumerations:

– Counting H-free graphs on n vertices

– Counting H-free graphs on n vertices and m edges

– Counting k-AP-free subsets of [n] of size m

• Extremal and Ramsey results in random structures:

– The maximum number of edges in an H-free subgraph of G(n, p)

– Szemeŕedi’s theorem in a p-random subset of [n]

• List coloring in graphs/hypergraphs

The method of hypergraph containers is one of the most exciting developments in this
past decade. Some references and further reading:
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• The graph container method was developed by Kleitman and Winston (1982) (for
counting C4-free graphs) and Sapozhenko (2001) (for bounding the number of inde-
pendent sets in a regular graph, giving an earlier version of Theorem 10.4.12)

• The hypergraph container theorem was proved independently by Balogh, Morris,
and Samotij (2015), and Saxton and Thomason (2015).

• See the 2018 ICM survey of Balogh, Morris, and Samotij for an introduction to the
topic along with many applications

• See Samotij’s survey article (2015) for an introduction to the graph container method

• See Morris’ lecture notes (2016) for a gentle introduction to the proof and applica-
tions of hypergraph containers.

11.1 Containers for triangle-free graphs

11.1.1 The number of triangle-free graphs

We will prove Theorem 11.0.2 that the number of triangle-free graphs on n vertices is
2n

2/4+o(n2).

Theorem 11.1.1 (Containers for triangle-free graphs). For every ε > 0, there exists
C > 0 such that the following holds.
For every n, there is a collection C of graphs on n vertices, with

|C| ≤ nCn
3/2

such that

(a) every G ∈ C has at most (1
4

+ ε)n2 edges, and

(b) every triangle-free graph is contained in some G ∈ C.

Proof of upper bound of Theorem 11.0.2 (the number of n-vertex triangle-free graphs is 2n
2/4+o(n2).

Let ε > 0 be any real number (arbitrarily small). Let C be produced by Theorem 11.1.1.

Then every G ∈ C has at most (1
4

+ ε)n2 edges, and every triangle-free graph is contained
in some G ∈ C. Hence the number of triangle-free graphs is

|C| 2(
1
4

+δ)n2

≤ 2(
1
4

+ε)n2+Oε(n3/2 logn).
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Since ε > 0 can be made arbitrarily small, the number triangle-free graphs on n vertices
is 2( 1

4
+o(1))n2 .

The same proof technique, with an appropriate container theorem, can be used to count
H-free graphs.

We write ex(n,H) for the maximum number of edges in an n-vertex graph without H as
a subgraph.

Theorem 11.1.2 (Erdős–Stone–Simonovits). Fix a non-bipartite graph H. Then

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

Note that for bipartite graphs H, the above theorem just says o(n2), though more precise
estimates are available. Although we do not know the asymptotic for ex(n,H) for all H,
e.g., it is still open for H = K4,4 and H = C8.

Theorem 11.1.3. Fix a non-bipartite graph H. Then the number of H-free graphs on
n vertices is 2(1+o(1)) ex(n,H).

The analogous statement for bipartite graphs is false. The following conjecture remains
of great interest, and it is known for certain graphs, e.g., H = C4.

Conjecture 11.1.4. Fix a bipartite graph H with a cycle. The number of H-free graphs
on n vertices is 2O(ex(n,H)).

11.1.2 Mantel’s theorem in random graphs

Theorem 11.1.5. If p � 1/
√
n, then with probability 1− o(1), every triangle-free sub-

graph of G(n, p) has at most (1
4

+ o(1))pn2 edges.

Remark 11.1.6. In fact, a much stronger result is true: the triangle-free subgraph of
G(n, p) with the maximum number of edges is whp bipartite (DeMarco and Kahn 2015).

Remark 11.1.7. The statement is false for p � 1/
√
n. Indeed, in this case, then the

expected number of triangles is O(n3p3), whereas there are whp n2p/2 edges, and n3p3 �
n2p, so we can remove o(n2p) edges to make the graph triangle-free.

Proof. We prove a slightly weaker result, namely that the result is true if p� n−1/2 log n.
The version with p � n−1/2 can be proved via a stronger formulation of the container
lemma (using “fingerprints” as discussed later).
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Let ε > 0 be aribtrarily small. Let C be a set of containers for n-vertex triangle-free
graphs in Theorem 11.1.1. For every G ∈ C, e(G) ≤

(
1
4

+ ε
)
n2, so by an application of

the Chernoff bound,

P
(
e(G ∩G(n, p)) >

(
1

4
+ 2ε

)
n2p

)
≤ e−Ωε(n2p)

Since every triangle-free graph is contained in some G ∈ C, by taking a union bound over
C, we see that

P
(
G(n, p) has a triangle-free subgraph with >

(
1

4
+ 2ε

)
n2p edges

)
≤
∑
G∈C

P
(
e(G ∩G(n, p)) >

(
1

4
+ 2ε

)
n2p

)
≤ |C| e−Ωε(n2p)

≤ eOε(n
3/2 logn)−Ωε(n2p)

= o(1)

provided that p� n−1/2 log n.

11.2 Graph containers

Theorem 11.2.1. For every c > 0, there exists δ > 0 such that the following holds.
Let G = (V,E) be a graph with average degree d and maximum degree at most cd. There
exists a collection C of subsets of V , with

|C| ≤
(

|V |
≤ 2δ |V | /d

)
such that

1. Every independent set I of G is contained in some C ∈ C.

2. |C| ≤ (1− δ) |V | for every C ∈ C.

Each C ∈ C is called a “container.” Every independent set of C is contained in some
container.

Remark 11.2.2. The requirement |C| ≤ (1− δ) |V | looks quite a bit weaker than in Theo-
rem 11.1.1, where each container is only slightly larger than the maximum independent set.
In a typical application of the container method, one iteratively applies the (hyper)graph
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container theorem (e.g., Theorem 11.2.1 and later Theorem 11.3.1) to the subgraphs in-
duced by the slightly smaller containers in the previous iteration. One iterates until the
containers are close to their minimum possible size.

For this iterative application of container theorem to work, one usually needs a supersat-
uration result, which, roughly speaking, says that every subset of vertices that is slightly
larger than the independence number necessarily induces a lot of edges. This property is
common to all standard applications of the container method.

The container theorem is proved using

The graph container algorithm (for a fixed given graph G)

Input: an independent set I ⊂ V .

Output: a “fingerprint” S ⊂ I of size ≤ 2δ |V | /d, and a container C ⊃ I which depends
only on S.

Throughout the algorithm, we will maintain a partition V = A ∪ S ∪X, where

• A, the “available” vertices, initially A = V

• S, the current fingerprint, initially S = ∅

• X, the “excluded” vertices, initially X = ∅.

The max-degree order of G[A] is an ordering of A in by the degree of the vertices in
G[A], with the largest first, and breaking ties according to some arbitrary predetermined
ordering of V .

While |X| < δ |V |:

1. Let v be the first vertex of I ∩ A in the max-degree order on G[A].

2. Add v to S.

3. Add the neighbors of v to X.

4. Add vertices preceding v in the max-degree order on G[A] to X.

5. Remove from A all the new vertices added to S ∪X.

Claim: when the algorithm terminates, we obtain a partition V = A ∪ S ∪X such that
|X| ≥ δ |V | and |S| ≤ 2δ |V | /d.

Proof idea: due to the degree hypotheses, in every iteration, at least ≥ d/2 new vertices
are added to X (provided that d ≤ 2δ |V |). See Morris’ lecture notes for details.

Key facts:
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• Two different independent sets I, I ′ ⊂ V that produce the same fingerprint S in the
algorithm necessarily produces the same partition V = A ∪ S ∪X

• The final set S ∪ A contains I (since only vertices not in I are ever moved to I)

Therefore, the total number possibilities for containers S ∪ A is at most the number of
sets S ⊂ V . Since |S| ≤ 2δ |V | /d and |A ∪ S| ≤ (1 − δ) |V |, this concludes the proof of
the graph container lemma.

The fingerprint obtained by the proof actually gives us a stronger consequence that will
be important for some applications.

Theorem 11.2.3 (Graph container lemma, with fingerprints). For every c > 0, there
exists δ > 0 such that the following holds.
Let G = (V,E) a graph with average degree d and maximum degree at most cd.
Writing I for the collection of independent sets of G, there exist functions

S : I → 2V and A : 2V → 2V

(one only needs to define A(·) on sets in the image of S)
such that, for every I ∈ I,

• S(I) ⊂ I ⊂ S(I) ∪ A(S(I))

• |S(I)| ≤ 2δ |V | /d

• |S(I) ∪ A(S(I))| ≤ (1− δ) |V |

11.3 Hypergraph container theorem

An independent set in a hypergraph is a subset of vertices containing no edges.

Given an r-uniform hypergraph H and 1 ≤ ` < r, we write

∆`(H) = max
A⊂V (H):|A|=`

the number of edges containing A
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Theorem 11.3.1 (Container theorem for 3-uniform hypergraph). For every c > 0 there
exists δ > 0 such that the following holds.
Let H be a 3-uniform hypergraph with average degree d ≥ δ−1 and

∆1(H) ≤ cd and ∆2(H) ≤ c
√
d.

Then there exists a collection C of subsets of V (H) with

|C| ≤
(

v(H)

≤ v(H)/
√
d

)
such that

• Every independent set of H is contained in some C ∈ C, and

• |C| ≤ (1− δ)v(H) for every C ∈ C.

Like the graph container theorem, the hypergraph container theorem is proved by design-
ing an algorithm to produce, from an independent set I ⊂ V (H), a fingerprint S ⊂ I and
a container C ⊃ I.

The hypergraph container algorithm is more involved compared to the graph container
algorithm. In fact, the 3-uniform hypergraph container algorithm calls the graph container
algorithm.

Container algorithm for 3-uniform hypergraphs (a very rough sketch):

Throughout the algorithm, we will maintain

• A fingerprint S, initially S = ∅

• A 3-uniform hypergraph A, initially A = H

• A graph G of “forbidden” pairs on V (H), initially G = ∅

While |S| ≤ v(H)/
√
d− 1:

• Let u be the first vertex in I in the max-degree order on A

• Add u to S

• Add xy to E(G) whenever uxy ∈ E(H)

• Remove from V (A) the vertex u as well as all vertices proceeding u in the max-degree
order on A
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• Remove from V (A) every vertex whose degree in G is larger than c
√
d.

• Remove from E(A) every edge that contains an edge of G.

Finally, it is will be the case that either

• We have removed many vertices from V (A)

• Or the final graph G has at least Ω(
√
dn) edges and has maximum degree O(

√
d),

so that we can apply the graph container lemma to G.

In either case, the algorithm produces a container with the desired properties. Again see
Morris’ lecture notes for details.
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