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Main discussion: Packing boxes with bricks

Probably the most basic problem about tiling is to show that an 8×8 chessboard with two opposite
corners removed cannot be tiled with dominoes. Many olympiad problems play on variations of this
idea. (A related question worth considering: if one black square and one white square are removed
from the chessboard, then can we always tile the rest with dominoes?) For example, consider the
following generalization:

Problem 1: Let k be an integer. Which m × n boards can be tiled with 1 × k tiles (rotations
allowed)?

You could assign colors (labelled 1, 2, . . . ), or you could assign roots of unity. For k = 3 the
coloring schemes are shown below (ω is a third root of unity).

1 2 3 1 2 3 · · ·
2 3 1 2 3 1 · · ·
3 1 2 3 1 2 · · ·
1 2 3 1 2 3 · · ·
2 3 1 2 3 1 · · ·
3 1 2 3 1 2 · · ·
...

...
...

...
...

...
. . .

1 ω ω2 1 ω ω2 · · ·
ω ω2 1 ω ω2 1 · · ·
ω2 1 ω ω2 1 ω · · ·
1 ω ω2 1 ω ω2 · · ·
ω ω2 1 ω ω2 1 · · ·
ω2 1 ω ω2 1 ω · · ·
...

...
...

...
...

...
. . .

The idea is that each tile covers all three colors exactly once, so all the colors must appear the same
number of times. In the roots of unity method, each tile covers a sum of zero since 1+ω+· · ·+ωk−1 =
0, and the sum of the whole board must be zero. It’s easy to check that this happens if and only
if k divides m or n. (check this!) �

In this problem, these two approaches amount to the same thing. Each method has its own
advantages. In this discussion, we show how the roots of unity approach can be extended to other
problems. Many problems given for practice at the end use the coloring approach extensively.

Consider the following continuous analogue of Problem 1. It is also a generalization, as it implies
the Problem 1 (why?).

Problem 2: Show that if a rectangle can be tiled by smaller rectangles each of which has at least
one integer side, then the tiled rectangle has at least one integer side.

There was a paper that contains 14 proofs of this result!1 How many can you find?
1Stan Wagon, Fourteen Proofs of a Result About Tiling a Rectangle, Amer. Math. Monthly, 94 (1987) 601–617
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Let’s see how we can use the idea in Problem 1. In Problem 1, we are essentially assigning
the square with coordinates (i, j) with the value ωi+j = e(i+j)

2πi
k . How can we extend this to the

continuous case? One way to do this is to construct the function f : R2 → C.

f(x, y) = e2πi(x+y).

This function assigns “weights” to the points of the plane, just as we assigned weights to the squares
of the board in Problem 1. In Problem 1, the sum of the roots of unity covered by a single tile is
0. Here, note that the integral of f over any horizontal or vertical line segment with integer length
is zero. This is the key insight.

So, let us place the large rectangle on the 2-D Cartesian coordinate, with its bottom left corner
at the origin (assume that all rectangles are placed with its sides parallel to the axes). We can
check that the integral of f over any rectangle with one integer dimension is zero. Thus, if a tiling
is possible, then the integral of f over the entire large rectangle must be zero as well. You can
check that this is possible only when one of the sides of the large rectangle has integer length as
well. The technical details of this argument can be summarized in the following integration:∫∫

[a,b]×[c,d]

f dA =
∫ b

a

∫ d

c
e2πi(x+y) dydx =

∫ b

a
e2πix dx

∫ d

c
e2πiy dy =

(
e2πib − e2πia

2πi

)(
e2πid − e2πic

2πi

)
.

This is a perfectly valid solution. However, it uses calculus (gasp!). Moreover, it uses calculus
with complex numbers! Can we get an elementary solution out of this? Well, let’s see if we can at
least reduce the solution to just calculus over the real numbers. Consider the following function:

f1(x, y) = sin (2πx) sin (2πy)

The two weight functions f1 and f share many common properties, and it turns that the solution
still works if we had used f1 instead of f . (However, the weight function cos(2πx) cos(2πy) does
not work. Why?)

We can simplify a bit more. Notice that we never really used anything about the exact curvature
of sin, as we more or less only need the property that the integral of the function over [x, x+ 1] is
0. So, why don’t we “straighten” out our weight function, and use the following:

f2(x, y) = g(x)g(y), where g(x) =

{
1 {x} ≤ 1

2 ,

−1 {x} > 1
2 .

You can check that f2 also does the trick! Moreover, f3 allows us to come up with a combinatorial
formulation of the solution—just consider the weight function as a black and white coloring of the
board. You can work out the details yourself. �

Excellent! We just found three of the fourteen solutions.

Now, let’s go back to the discrete case, but let’s move up a dimension. Can you tile a 6× 6× 6
with 1× 2× 4 boxes? What can we say in general?

Problem 3: (de Bruijn) If the box A1× · · · ×An can be tiled with bricks a1× · · · × an, then show
that for each i, ai divides some Aj . (Note that this does not necessarily mean that the box is a
multiple of the brick, e.g. the box 1× 5× 6 and brick 1× 2× 3.)

We say that a d-dimensional box A is a multiple of a d-dimensional box B if box A can be tiled
by B in such a way that all the copies of B’s are placed in the same orientation. Equivalently, A
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is a multiple of B if there is some permutation σ on {1, 2, . . . , n} such that the i-th component of
A is an integer multiple of the σ(i)-th component of B for each i.

Problem 3 isn’t too difficult. In fact, it’s pretty much the same as Problem 1. Let’s focus on one
particular ai, and use the same idea as in problem 1 with k = ai to show that one of the dimensions
of the box is divisible by ai. �

Now, let’s restrict ourselves to a certain special case:

Problem 4: (de Bruijn) Suppose that the brick a1 × · · · × an satisfies the divisibility relations
a1 | a2 | · · · | an. Then the box A1×· · ·×An can be tiled with the brick if and only if it’s a multiple
of the brick.

Let’s work our way down through the ai’s one by one, starting from the largest. By Problem 3,
there is some Ai that is divisible by an, say an | An. Now, dropping the last coordinate and take
a cross-section of dimension A1 × · · · × An−1. If any tiles of this box has a side of length an, then
the divisibility condition allows us to cut up the tiles into a1 × · · · × an−1 tiles. So now we end up
with a tiling of the box A1 × · · · ×An−1 with the bricks a1 × · · · × an−1. Repeat the argument. �

However, if the brick does not satisfy the chain of divisibilities, then there is always some box
that can be tiled by the brick without being a multiple of the brick (exercise: prove this!).

Now, what if we are allowed to use two bricks, but with restricted orientations? Then, there is
a definitive criterion for when we can tile a box with the bricks. Note that we don’t even require
the dimensions of the bricks to the be integers!

Problem 5: (Bower and Michael) Prove that the d-dimensional box R can be tiled by translates
of two given d-dimensional bricks B1 and B2 if and only if R can be partitioned by a hyperplane
into two sub-boxes R1 and R2 such that Ri is a multiple of Bi for i = 1, 2.

Note that the not every tiling has to be bipartite, but the existence of a non-bipartite tiling
implies the existence of a bipartite tiling.

The most difficult part of the problem is the 2-D case. However, we have done most of the work
for that already! (Where?) The rest is left as exercise.
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Problems

Key ideas: color the board in some way that gives some constraints or invariants. Often, this
involves marking a certain subset of the board. Looking at parities and other modulos is a good
idea. Sometimes you may have to use more than one coloring schemes simultaneously2 to solve a
problem. Finally, don’t forget that some problem have two (related) parts—proving a constraint
and constructing an example.

1. Is there a closed knight’s tour on a 5× 5 chessboard?

2. For which n is there a closed knight’s tour on a 4× n chessboard?

3. (Tournament of Towns 2004) Given two rectangles A and B, such that one can tile a rectangle
similar to B using copies of A, show that one can tile a rectangle similar to A using copies of
B.

4. (Canada 2007) What is the maximum number of dominoes which can be placed on an 8× 9
board if six are already placed as shown below?

• •
• •

• •
• •

• •
• •

5. What is the smallest number of squares on an 8×8 chessboard which would have to be painted
so that no 3× 1 rectangle could be placed on the board without covering a painted square.

6. Which single square can be removed from a 7 × 7 board so that the rest can be tiled with
1× 3 trominos.

7. Prove that a 4× 11 rectangle cannot be tiled by L-shaped tetrominoes.

8. (Russia 1996) Can a 5 × 7 board be covered by L-trominos, not crossing its boundary, in
several layers, so that each square of the board is covered by the same number of trominos?

2You may have seen certain “cool” coloring proofs that use the Klein four-group. Those might not actually be
as fancy as you thought. The Klein four-group is the group with four elements {e, a, b, c} satisfying the relations
a2 = b2 = c2 = abc = e, but in fact, it is isomorphic to the group of two-dimensional coordinates in mod 2 under
addition, i.e., {(0, 0), (1, 0), (0, 1), (1, 1)}. Thus, any coloring proof that uses the Klein four-group can be replicated
by multiple applications of a black-white coloring scheme.
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9. (Russia 2002) A rectangle is partitioned into 100 L-trominos and some 1× 3 tiles. Someone
chosen chosen 96 of these L-trominoes and merge them in pairs into 48 2×3 rectangles. Prove
that one can translate the remaining 4 L-trominoes and merge them into two 2×3 rectangles.

10. A 6 × 6 board is tiled by dominoes. Show that there is a line that cuts the board into two
parts without cutting any domino.

11. (Iurie Boreico) Let n be a positive integer such that gcd(n, 6) = 1, and let k and l be positive
integers. The entries of a k × l table are all +1 or −1. One can simultaneously change the
signs of any n consecutive entries horizontally, vertically, or diagonally. Prove that one can
eventually make all the entires negative numbers if and only if n divides k or n divides l.

12. (Tournament of Towns 1993) On a 10×10 square board we are trying we place ten rectangles:
one 1×4, two 1×3, three 1×2 and four 1×1. Prove that if we arbitrarily place the rectangles
on the board but in the aforementioned order, then at each step, it is always possible to fit
the rectangle into the board so that it does not share a point (even on the boundaries) with
an existing rectangle.

13. There is a 5 × 5 array of lights, such that at each step, we may toggle all the lights in any
2× 2, 3× 3, 4× 4 or 5× 5 sub-square. Initially all the lights are switched off. After a certain
number of toggles, exactly one light is switched on. Find all the possible positions of the
light.

14. (APMO 2007) A regular (5×5)-array of lights is defective, so that toggling the switch for one
light causes each adjacent light in the same row and in the same column as well as the light
itself to change state, from on to off, or from off to on. Initially all the lights are switched
off. After a certain number of toggles, exactly one light is switched on. Find all the possible
positions of the light.

15. (USAMO 1998) A computer screen shows a 98×98 chessboard, colored in the usual way. One
can select with a mouse any rectangle with sides on the lines of the chessboard and click the
mouse button: as a result, the colors in the selected rectangle switch (black becomes white,
white becomes black). Determine the minimum number of mouse clicks needed to make the
chessboard all one color.

16. (Balkan 2000) Determine the maximum number of 1 × 10
√

2 rectangles that can be placed
on a 50× 90 rectangle without overlap and so that the small rectangles have its sides parallel
to the large rectangle.

17. (IMO Shortlist 2002) For n an odd positive integer, the unit squares of an n× n chessboard
are colored alternately black and white, with the four corners colored black. For which values
of is it possible to cover all the black squares with non-overlapping L-trominos? When it is
possible, what is the minimum number of L-trominos needed?

18. (IMO Shortlist 2000) A staircase-brick with 3 steps of width 2 is made of 12 unit cubes.
Determine all integers for which it is possible to build a cube of side n using such bricks.

(The staircase-brick is made up of two such layers.)
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19. (IMO 2004) Define a “hook” to be a figure made up of six unit squares as shown below in the
picture, or any of the figures obtained by applying rotations and reflections to this figure.

Determine all m× n rectangles that can be tiled with hooks? (i.e. no gaps, no overlaps, and
no part of a hook lies outside the rectangle).3

Fun facts about tiling

• (Fish and Temperly 1961; Kasterleyn 1961) The number of tilings of a 2m × 2n rectangle
with 2mn dominoes is equal to

4mn
m∏
j=1

n∏
k=1

(
cos2 jπ

2m+ 1
+ cos2 kπ

2n+ 1

)
This is a remarkable formula. It’s not even clear that the product is an integer!

• (Laczkovich and Szekeres 1995) For which x can a square be tiled with finitely many rectangles
similar to a 1× x rectangle (in any orientation)?

The answer is that this is possible if and only if x is the root of a polynomial with integer
coefficients, and all the roots of the minimal polynomial of x has positive real part.

For example, we cannot tile a square with rectangles similar to 1 ×
√

2, but we can tile a
square with rectangles similar to 1×

(√
2 + 17

12

)
.

3For an analysis of a large number of polyomino tiles in terms of which rectangles each can tile, see http:

//www.math.ucf.edu/~reid/Polyomino/rectifiable_data.html. This database contains the analysis of the “hook”
polyomino way before the 2004 IMO. Consequently, the problem received some complaints on MathLinks after the
contest because it was “well-known.” Nevertheless, only 11 students solved the problem at the IMO, and no one got
6 points (only one contestant got a 5 . . . and there’s an interesting story behind that . . . ).
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