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An important skill of an olympiad geometer is being able to recognize known configurations.
Indeed, many geometry problems are built on a few common themes. In this lecture, we will explore
one such configuration.

1 What Do These Problems Have in Common?

1. (IMO 1985) A circle with center O passes through the vertices A and C of triangle ABC
and intersects segments AB and BC again at distinct points K and N , respectively. The
circumcircles of triangles ABC and KBN intersects at exactly two distinct points B and M .
Prove that ∠OMB = 90◦.
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2. (Russia 1995; Romanian TST 1996; Iran 1997) Consider a circle with diameter AB and center
O, and let C and D be two points on this circle. The line CD meets the line AB at a point
M satisfying MB < MA and MD < MC. Let K be the point of intersection (different from
O) of the circumcircles of triangles AOC and DOB. Show that ∠MKO = 90◦.
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3. (USA TST 2007) Triangle ABC is inscribed in circle ω. The tangent lines to ω at B and C
meet at T . Point S lies on ray BC such that AS ⊥ AT . Points B1 and C1 lies on ray ST
(with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and
AB1C1 are similar to each other.
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Although these geometric configurations may seem very different at first sight, they are actually
very related. In fact, they are all just bits and pieces of one big diagram!

2 One Big Diagram

A

B

C

D

P

Q
R

O

M

Figure 1: The big picture.

In this lecture, we will try to understand the features of Figure 1. There are a lot of things
going on in this diagram, and it can be frightening to look at. Don’t worry, we will go through it
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bits and pieces at time. In the process, we will discuss some geometric techniques that are useful
in other places as well.

(Can you tell where to find each of the problems in Section 1 in Figure 1? You probably can’t
at this point, but hopefully you will be able to by the end of this lecture.)

3 Miquel’s Theorem and Miquel Point

Fact 1 (Miquel’s Theorem). Let ABC be a triangle, and let X,Y, Z be points on lines BC,CA,AB,
respectively. Assume that the six points A,B,C,X, Y, Z are all distinct. Then the circumcircles of
AY Z,BZX,CXY pass through a common point.

A
B

C

XY

Z

Figure 2: Diagram for Fact 1 (Miquel’s Theorem).

Exercise 1. Prove Fact 1. (This is very easy. Just chase1 a few angles.)

Fact 2 (Miquel point). Let `1, `2, `3, `4 be four lines in the plane, no two parallel. Let Cijk denote
the circumcircle of the triangle formed by the lines `i, `j , `k (these circles are called Miquel circles).
Then C123, C124, C134, C234 pass through a common point (called the Miquel point).

Exercise 2. Prove Fact 2. (Hint: apply Theorem 1)

We want to specialize to the case of a cyclic quadrilateral.

A

B

C

D

Q R

Figure 3: Miquel point for a cyclic quadrilateral ABCD.

1If you are bothered by configuration and orientation issues (and you should be!), use directed angles.
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Fact 3. Let ABCD be a quadrilateral. Let lines AB and CD meet at Q, and lines DA and CB
meet at R. Then the Miquel point of ABCD (i.e., the second intersection point of the circumcircles
of ADQ and ABR) lies on the line QR if and only if ABCD is cyclic.

Exercise 3. Prove Fact 3. (This is again just easy angle chasing.)

4 An Important Result about Spiral Similarities

A spiral similarity2 about a point O (known as the center of the spiral similarity) is a composition
of a rotation and a dilation, both centered at O.

O

Figure 4: An example of a spiral similarity.

For instance, in the complex plane, if O = 0, then spiral similarities are described by multi-
plication by a nonzero complex number. That is, spiral similarities have the form z 7→ αz, where
α ∈ C \ {0}. Here |α| is the dilation factor, and argα is the angle of rotation. It is easy to
deduce from here that if the center of the spiral similarity is some other point, say z0, then the
transformation is given by z 7→ z0 + α(z − z0) (why?).

Fact 4. Let A,B,C,D be four distinct point in the plane, such that ABCD is not a parallelogram.
Then there exists a unique spiral similarity that sends A to B, and C to D.

Proof. Let a, b, c, d be the corresponding complex numbers for the points A,B,C,D. We know that
a spiral similarity has the form T(z) = z0 +α(z− z0), where z0 is the center of the spiral similarity,
and α is data on the rotation and dilation. So we would like to find α and z0 such that T(a) = c
and T(b) = d. This amount to solving the system

z0 + α(a− z0) = c, z0 + α(b− z0) = d.

Solving it, we see that the unique solution is

α =
c− d
a− b

, z0 =
ad− bc

a− b− c+ d
.

Since ABCD is not a parallelogram, we see that a−b−c+d 6= 0, so that this is the unique solution
to the system. Hence there exists a unique spiral similarity that carries A to B and C to D.

2If you want to impress your friends with your mathematical vocabulary, a spiral similarity is sometimes called a
similitude, and a dilation is sometimes called a homothety. (Actually, they are not quite exactly the same thing, but
shhh!)
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Exercise 4. How can you quickly determine the value of α in the above proof without even needing
to set up the system of equations?

Exercise 5. Give a geometric argument why the spiral similarity, if it exists, must be unique.
(Hint: suppose that T1 and T2 are two such spiral similarities, then what can you say about
T1 ◦T−1

2 ?)

Now we come to the key result of this section. It gives a very simple and useful description
of the center of a spiral similarity. It can be very useful in locating very subtle spiral similarities
hidden in a geometry problem. Remember this fact!

(Very Useful) Fact 5. Let A,B,C,D be four distinct point in the plane, such that AC is not
parallel to BD. Let lines AC and BD meet at X. Let the circumcircles of ABX and CDX meet
again at O. Then O is the center of the unique spiral similarity that carries A to C and B to D.

A

B

C

D

O

X

Figure 5: Diagram for Fact 5.

Proof. We give the proof only for the configuration shown above. Since ABXO and CDOX are
cyclic, we have ∠OBD = ∠OAC and ∠OCA = ∠ODB. It follows that triangles AOC and BOD
are similar. Therefore, the spiral similarity centered at O that carries A to C must also carry B to
D.

Exercise 6. Rewrite the above proof using directed angles mod π so that it works for all configu-
rations.

Finally, it is is worth mentioning that spiral similarities often comes in pairs. If we can send
AB to CD, then we can just as easily send AC to BD.

Fact 6. If O is the center of the spiral similarity that sends A to C and B to D, then O is also the
center of the spiral similarity that sends A to B and C to D.

Proof. Since spiral similarity preserves angles at O, we have ∠AOB = ∠COD. Also, the dilation
ratio of the first spiral similarity is OC/OA = OD/OB. So the rotation about with angle ∠AOB =
∠COD and dilation with ratio OB/OA = OD/OC sends A to B, and C to D, as desired.

Exercise 7. Deduce Fact 6 from Facts 2 and 5.

Now, let us apply these results to our configuration in Section 2.

Fact 7. Let M be the Miquel point of quadrilateral ABCD. Then M is the center of spiral
similarity that sends AB to DC, as well as the center of the spiral similarity that sends AD to BC.
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Exercise 8. Prove Fact 7.

Let us specialize to a cyclic quadrilateral, and continue the configuration in Fact 3

Fact 8. Let ABCD be a cyclic quadrilateral with circumcenter O. Let lines AB and CD meet at
Q, and lines DA and CB meet at R. Let M be the Miquel point of ABCD (which lies on line QR,
due to Fact 3). Then OM is perpendicular to QR.

A

B
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D

Q
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O

M

M1

M2

Figure 6: Diagram for the proof of Fact 8.

Proof. Let T denote the spiral similarity centered at M which sends A to D and B to C (Fact 7).
Let M1 and M2 be the midpoint of AB and DC, respectively. Then T must send M1 to M2. So
M is the center of unique spiral similarity that sends A to M1 and D to M2 (Fact 6), and thus it
follows that M,M1,M2, Q are concyclic (Fact 5).

Since M1 and M2 are the midpoints of the chords AB and CD, we have ∠OM2Q = ∠OM1Q,
and so O,M1,M2, Q are concyclic, and OQ is the diameter of the common circle. It follows that
O,M,M1,M2, Q all lie on the circle with diameter OQ. In particular, ∠OMQ = 90◦, as desired.

5 A Criterion for Orthogonality

In this section, we give another proof of Fact 8 and introduce a very useful computational criterion
for orthogonality.

(Very Useful) Fact 9. Let A,B,C,D be points in the plane. Assume that A 6= B and C 6= D.
Then lines AB and CD are perpendicular if and only if AC2 +BD2 = AD2 +BC2.

Proof. The result follows immediately from the following identity.

( ~A− ~C) · ( ~A− ~C) + ( ~B− ~D) · ( ~B− ~D)− ( ~A− ~D) · ( ~A− ~D)− ( ~B− ~C) · ( ~B− ~C) = 2( ~B− ~A) · (~C− ~D).

Note that the LHS is zero iff AC2 +BD2 = AD2 +BC2 and the RHS is zero iff AB ⊥ CD.

Another proof of Fact 8. Let r be the circumradius of ABCD. Using Power of a Point on the
circumcircles of ABCD and ABRM , we get

QO2 − r2 = QA ·QB = QM ·QR = QM ·MR+QM2
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(the strategy here is to transfer all the data onto the line QR). Similarly, we have

RO2 − r2 = RA ·RD = RM ·RQ = QM ·MR+RM2.

Subtracting the two relations, we get

QO2 −RO2 = QM2 −RM2,

and it thus follows from Fact 9 that OM is perpendicular to QR.

6 Radical Axis

Given two circles in the plane, their radical axis is the locus of points of equal power to the two
circles. It turns out that this is always a line. If the two circles intersect, then the radical axis is
the line passing through the two intersection points (i.e., the common chord). If the two circles are
tangent, then the radical axis is the common internal tangent.

Figure 7: An example of a radical axis.

Exercise 9. Use Fact 9 to deduce that the radical axis is always a line.

It is well known (and easy to prove) that, given three distinct circles, their pairwise radical axes
are either concurrent or all parallel. If the three radical axes meet at a common point, we say that
the common intersection point is the radical center of the three circles.

For instance, using the setup from Fact 8, we see that BC is the radical axis of circles ABCD
and BCQM , AD is the radical axis of circles ABCD and ADQM , and QM is the radical axes
of circles ADQM and BCQM . So the lines AD,BC,QM meet at common point, R, the radical
center of the three circles: ABCD,ADQM,BCQM .

Fact 10. Use the setup from Fact 8. Points A,C,M,O are concyclic, and points B,D,M,O are
concyclic.

Exercise 10. Prove Fact 10. (This is pretty easy angle chasing.)

Fact 11. Use the setup from Fact 8. The lines AC,BD,OM are concurrent.

Proof. Consider the three circles: ABCD,AOCM,BODM . Lines AC,BD,OM are the three
radical axes, and thus they must concur.

Exercise 11. Show that MO bisects ∠CMA as well as ∠BMD.
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Figure 8: Diagram for the proof of Fact 11.

7 Inversion and Polarity

In this section, we assume some prior knowledge of inversion, as well as poles and polars. Here is
a quick review:

Let C be a circle, with center O and radius r. The inversion with respect to C is a transformation
(in fact, an involution) that sends a point P (6= O) to a point P ′ on ray OP such that OP ·OP ′ = r2.
Inversions “switches lines and circles.” Specifically, a line that pass through O gets sent to itself; a
line not passing through O gets sent to a circle through O; a circle that pass through O gets sent to
a line not passing through O; and a circle not passing through O gets sent to a (possible different)
circle not passing through O.

Suppose that P ( 6= O) is a point, and ` is a line passing through the inverse of P and also
perpendicular to OP , then we say that ` is the polar of P , and that P is the pole of `. Polar maps
satisfy the principle of duality. For instance, the P lies on the polar of Q iff Q lies on the polar of
P ; `1 passes through the pole of `2 iff `2 passes through the pole of `2; three poles are collinear iff
the three corresponding polars are concurrent.

Let us return to the configuration.

Fact 12. Let ABCD be a cyclic quadrilateral with circumcenter O. Let AC and BD meet at P ,
lines AB and CD meet at Q, and lines DA and CB meet at R. Let M be the Miquel point of
ABCD. Then P is the inverse of M with respect to the circumcircle of ABCD.

Proof. Since P is the intersection of AC and BD, under the inversion, it must be mapped to the
intersection (other than O) of the circles OAC and OBD, which is M (Fact 10).

Note that this gives another proof of Fact 11, which says that O,P,M are collinear.

Fact 13. The line QR is the polar of the point P .

Proof. This follows from Fact 8 and Fact 13.

Given a circle, C, we say that a triangle is self-polar if each side is the polar of the opposite
vertex.

Now we are able to prove an extremely useful result in projective geometry.3

(Very Useful) Fact 14. The triangle PQR is self-polar with respect to the circumcircle of ABCD.
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Figure 9: PQR is self-polar.

Proof. There is nothing in the proofs that required us to have A,B,C,D in that order on the circle.
By permuting the relabels of A,B,C,D, we can deduce from Fact 13 that PR is the polar of Q,
and PQ is the polar of R. This gives the desired result.

Fact 15. O is the orthocenter of PQR.

Proof. This follows immediately from Fact 14, since OX ⊥ ` for any pole-polar pair (X, `).

8 Summary

This concludes our analysis of the diagram in Section 2. Here is a summary of the key results that
came out of it. (Refer to Figure 1.)

Theorem. Let ABCD be a cyclic quadrilateral with circumcenter O. Let AC and BD meet at
P , lines AB and CD meet at Q, and lines DA and CB meet at R. Let line OP meet QR at M .
Then

(a) The circumcircles of the following triangles all pass through M : QAD, QBC, RAB, RDC,
AOC, BOD. (In particular, M is the Miquel point of the quadrilateral ABCD.)

(b) M is the center of the spiral similarity that carries A to B and D to C, and also the center
of the spiral similarity that carries A to D and B to C.

(c) OM ⊥ QR. In fact, M is the inverse of P with respect to the circumcircle of ABCD.

(d) The triangle PQR is self-polar with respect to the circumcircle of ABCD.

Remember this configuration! Many olympiad geometry problems are basically just a portion
of this one big diagram.

3For what it’s worth, here’s a very quick sketch of a proof of Fact 14 using projective geometry: Let line RP
intersect AB and BC at E and F , respectively. By applying perspectivities from P and R, we find that (A, B; E, Q) =
(C, D; F, Q) = (B, A; F, Q), from which it follows that (A, B; E, Q) and (C, D; F, Q) are both harmonic. It follows
that EF is the polar of Q, and hence PR is the polar of Q. Similarly we can show that QR is the polar of P , and
PQ is the polar of Q. So PQR is self-polar.
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9 Problems

0. Work through all the exercises.

1. (IMO 1985) A circle with center O passes through the vertices A and C of triangle ABC
and intersects segments AB and BC again at distinct points K and N , respectively. The
circumcircles of triangles ABC and KBN intersects at exactly two distinct points B and M .
Prove that ∠OMB = 90◦.

2. (China 1992) Convex quadrilateral ABCD is inscribed in circle ω with center O. Diagonals
AC and BD meet at P . The circumcircles of triangles ABP and CDP meet at P and Q.
Assume that points O, P , and Q are distinct. Prove that ∠OQP = 90◦.

3. (Russia 1999) A circle through vertices A and B of a triangle ABC meets side BC again at
D. A circle through B and C meets side AB at E and the first circle again at F . Prove that
if points A,E,D,C lie on a circle with center O, then ∠BFO = 90◦.

4. Circles ω1 and ω2 meet at points O and M . Circle ω, centered at O, meet circles ω1 and ω2

in four distinct points A,B,C and D, such that ABCD is a convex quadrilateral. Lines AB
and CD meet at N1. Lines AD and BC meet at N2. Prove that N1N2 ⊥MO.

5. (Russia 1995; Romanian TST 1996; Iran 1997) Consider a circle with diameter AB and center
O, and let C and D be two points on this circle. The line CD meets the line AB at a point
M satisfying MB < MA and MD < MC. Let K be the point of intersection (different from
O) of the circumcircles of triangles AOC and DOB. Show that ∠MKO = 90◦.

6. (a) Let A,B,C,D be four points in the plane. Let lines AC and BD meet at P , lines AB
and CD meet at Q, and lines BC and DA meet at R. Let the line through P parallel
to QR meet lines AB and CD at X and Z. Show that P is the midpoint of XZ.

(b) Use part (a) and Fact 8 to prove the Butterfly Theorem: Let C be a circle and let
EF be a chord. Let P be the midpoint of EF , and let AC, BD be two other chords
passing through P . Suppose that AB and CD meet EF at X and Z, respectively, then
PX = PZ.

7. Let ABCD be a cyclic quadrilateral with circumcenter O. Let lines AB and CD meet at R.
Let ` denote the line through R perpendicular to OR. Prove that lines BD and AC meet on
` at points equidistant from R.

8. (USA TST 2007) Triangle ABC is inscribed in circle ω. The tangent lines to ω at B and C
meet at T . Point S lies on ray BC such that AS ⊥ AT . Points B1 and C1 lies on ray ST
(with C1 in between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and
AB1C1 are similar to each other.

9. Let ABC be a triangle with incenter I. Points M and N are the midpoints of side AB
and AC, respectively. Points D and E lie on lines AB and AC, respectively, such that
BD = CE = BC. Line `1 pass through D and is perpendicular to line IM . Line `2 passes
through E and is perpendicular to line IN . Let P be the intersection of lines `1 and `2. Prove
that AP ⊥ BC.

10. (IMO 2005) Let ABCD be a given convex quadrilateral with sides BC and AD equal in
length and not parallel. Let E and F be interior points of the sides BC and AD respectively
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such that BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q,
the lines EF and AC meet at R. Consider all the triangles PQR as E and F vary. Show
that the circumcircles of these triangles have a common point other than P .

11. A circle is inscribed in quadrilateral ABCD so that it touches sides AB,BC,CD,DA at
E,F,G,H respectively.

(a) Show that lines AC,EF,GH are concurrent. In fact, they concur at the pole of BD.

(b) Show that lines AC,BD,EG,FH are concurrent.

12. (China 1997) Let quadrilateral ABCD be inscribed in a circle. Suppose lines AB and DC
intersect at P and lines AD and BC intersect at Q. From Q, construct the two tangents QE
and QF to the circle where E and F are the points of tangency. Prove that the three points
P , E, F are collinear.

13. Let ABCD be a cyclic quadrilateral with circumcenter O. Let lines AB and CD meet at E,
AD and BC meet at F , and AC and BD meet at P . Furthermore, let EP and AD meet at
K, and let M be the projection of O onto AD be M . Prove that BCMK is cyclic.

14. (IMO Shortlist 2006) Points A1, B1 and C1 are chosen on sides BC,CA, and AB of a triangle
ABC, respectively. The circumcircles of triangles AB1C1, BC1A1, and CA1B1 intersect the
circumcircle of triangle ABC again at points A2, B2, and C2, respectively (A2 6= A,B2 6= B,
and C2 6= C). Points A3, B3, and C3 are symmetric to A1, B1, C1 with respect to the
midpoints of sides BC,CA, and AB, respectively. Prove that triangles A2B2C2 and A3B3C3

are similar.

15. Euler point of a cyclic quadrilateral

(a) Let ABCD be a cyclic quadrilateral. Let HA, HB, HC , HD be the orthocenters of BCD,
ACD, ABD, ABC, respectively. Show that HAHBHCHD is the image of ABCD under
a reflection about some point E (i.e. a 180◦ rotation about E).
Point E is called the Euler point of ABCD. (Aside: why is it called the Euler point?4)

(b) Show that E lies on the nine-point-circles of triangles ABC, ABD, ACD, BCD.

(c) Show that E lies on the Simson line of triangle ABC and point D.

(d) Show that E is also the Euler point of HAHBHCHD.

(e) Let MXY denote the midpoint of XY . Show that the perpendiculars from MAB to CD,
from MBC to DA, from MCD to AB, and from MDA to BC, concur at E.

4Hint: Recall that the Euler point of a triangle is another name for the center of the nine-point-circle.
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10 Hints

0. Really, they are not hard.

1. Find the configuration in the big diagram. Fact 8 is the key.

2. This is the same as the previous problem! (Why?)

3. We’ve done this too many times already!

4. Use Facts 8 and 10.

5. See previous problem. (Do we need AB to be a diameter?)

6. (a) There is a one-line solution using projective geometry (try a perspectivity at Q). (b) Use
OP ⊥ QR.

7. Butterfly, metamorphized.

8. To see how this fits into the big diagram, try using BCC1B1 as the starting cyclic quadrilat-
eral.

9. Repeatedly apply Fact 9.

10. Do you see a spiral similarity? Where is its center?

11. Use the self-polar diagonal triangle of EFGH.

12. Use the self-polar diagonal triangle of ABCD.

13. Through power of a point, it suffices to show that FB · FC = FM · FK.

14. Use Fact 5, and see that 4C2BA ∼ 4C1A1B1 ∼ 4CA3B3, and similarly with the other
three vertices. Deduce that ∠B2A2C2 = ∠B3A3C3.

15. Complex numbers may be helpful. For (c), recall the following fact: the Simson line of ABC
and D bisects DHD. For (e), observe that a dilation of ratio 2 centered at B sends MAB to
A and E to HB.
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