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Progressions in Sparse Pseudorandom Sets

Chapter Highlights

• The Green–Tao theorem: proof strategy
• A relative Szemerédi theorem and its proof: a central ingredient in the proof of the

Green–Tao theorem
• Transference principle: applying Szemerédi’s theorem as a black box to the sparse pseu-

dorandom setting
• A graph theoretic approach
• Dense model theorem: modeling a sparse set by a dense set
• Sparse triangle counting lemma

In this chapter we discuss a celebrated theorem by Green and Tao (2008) that settled a
folklore conjecture about primes.

Theorem 9.0.1 (Green–Tao theorem)
The primes contain arbitrarily long arithmetic progressions.

The proof of this stunning result uses sophisticated ideas from both combinatorics and
number theory. As stated in the abstract of their paper:

[T]he main new ingredient of this paper . . . is a certain transference principle. This allows
us to deduce from Szemerédi’s theorem that any subset of a sufficiently pseudorandom set
(or measure) of positive relative density contains progressions of arbitrary length.

The main goal of this chapter is to explain what the above paragraph means. As Green
(2007b) writes (emphasis in original):

Our main advance, then, lies not in our understanding of the primes but rather in what we
can say about arithmetic progressions.

We will abstract away ingredients related to prime numbers (see Further Reading at the end
of the chapter) and instead focus on the central combinatorial result: a relative Szemerédi
theorem. We follow the graph theoretic approach by Conlon, Fox, and Zhao (2014, 2015),
which simplified both the hypotheses and the proof of the relative Szemerédi theorem.

9.1 Green–Tao Theorem
In this section, we give a high-level overview of the proof strategy of the Green–Tao theorem.
Recall Szemerédi’s theorem:
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284 Progressions in Sparse Pseudorandom Sets

Theorem 9.1.1 (Szemerédi’s theorem)
Fix 𝑘 ≥ 3. Every 𝑘-AP-free subset of [𝑁] has size 𝑜(𝑁).

By the prime number theorem,

# {primes ≤ 𝑁} = (1 + 𝑜(1)) 𝑁

log 𝑁
.

So Szemerédi’s theorem does not automatically imply the Green–Tao theorem.

Remark 9.1.2 (Quantitative bounds). It is possible that better quantitative bounds on Sze-
merédi’s theorem might eventually imply the Green–Tao theorem based on the density of
primes alone. For example, Erdős famously conjectured that any 𝐴 ⊆ N with divergent
harmonic series (i.e.,

∑
𝑎∈𝐴 1/𝑎 = ∞) contains arbitrarily long arithmetic progressions (Con-

jecture 0.2.5). The current best quantitative bounds on Szemerédi’s theorem for 𝑘-APs is
|𝐴| ≤ 𝑁 (log log 𝑁)−𝑐𝑘 (Gowers 2001), which are insufficient for the primes, although better
bounds are known for 𝑘 = 3, 4. More recently, Bloom and Sisask (2020) proved that for 𝑘 = 3,
|𝐴| ≤ 𝑁 (log 𝑁)−1−𝑐 for some constant 𝑐 > 0, thereby implying the Green–Tao theorem for
3-APs via the density of primes alone.

We will be quite informal here in order to highlight some key ideas of the proof of
the Green–Tao theorem. Fix 𝑘 ≥ 3. The idea is to embed the primes in a slightly larger
“pseudorandom host set”:

{primes} ⊆ {“almost primes”} .
Very roughly speaking, “almost primes” are numbers with no small prime divisors. The
“almost primes” are much easier to analyze compared to the primes. Using analytic number
theory (involving techniques related to the problem of small gaps between primes), one can
construct “almost primes” satisfying the following properties.

Properties of the “almost primes”:
(1) The primes occupy at least a positive constant fraction of the “almost primes”:

# {primes ≤ 𝑁}
# {“almost primes” ≤ 𝑁} ≥ 𝛿𝑘 .

(2) The “almost primes” behave pseudorandomly with respect to certain pattern counts.

The next key ingredient plays a central role in the proof of the Green–Tao theorem, as
mentioned at the beginning of this chapter. It will be nicer to work in Z/𝑁Z rather than [𝑁].
Relative Szemerédi theorem (informal). Fix 𝑘 ≥ 3. If 𝑆 ⊆ Z/𝑁Z satisfies certain pseudo-
randomness hypotheses, then every 𝑘-AP-free subset of 𝑆 has size 𝑜( |𝑆 |).

Here imagine a sequence 𝑆 = 𝑆𝑁 ⊆ Z/𝑁Z of size 𝑜(𝑁) (or else the relative Szemerédi
theorem would already follow from Szemerédi’s theorem), and |𝑆 | ≥ 𝑁1−𝑐𝑘 for some small
constant 𝑐𝑘 > 0. In the proof of the Green–Tao theorem, the set 𝑆 will be the “almost primes”
(so that |𝑆 | = Θ(𝑁/log 𝑁)), subject to various other technical modifications such as the
𝑊-trick discussed in Remark 9.1.4.

The relative Szemerédi theorem and the construction of the “almost primes” together tell
us that the primes contain a 𝑘-AP. It also implies the following.
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Theorem 9.1.3 (Green–Tao)
Fix 𝑘 ≥ 3. If 𝐴 is a 𝑘-AP-free subset of the primes, then

lim
𝑁→∞

|𝐴 ∩ [𝑁] |
|Primes ∩ [𝑁] | = 0.

In other words, every subset of primes with positive relative density contains arbitrarily
long arithmetic progressions.

Remark 9.1.4 (Residue biases in the primes and the 𝑊-trick). There are certain local
biases that get in the way of pseudorandomness for primes. For example, all primes greater
than 2 are odd, all primes greater than 3 are not divisible by 3, and so on. In this way,
the primes look different from a subset of positive integers where each 𝑛 is included with
probability 1/log 𝑛 independently at random.

The 𝑾-trick corrects these residue class biases. Let 𝑤 = 𝑤(𝑁) be a function with 𝑤 →∞
slowly as 𝑁 → ∞. Let 𝑊 =

∏
𝑝≤𝑤 𝑝 be the product of primes up to 𝑤. The 𝑊-trick tells

us to only consider primes that are congruent to 1 mod 𝑊 . The resulting set of “𝑊-tricked
primes” {𝑛 : 𝑛𝑊 + 1 is prime} does not have any bias modulo a small fixed prime. The
relative Szemerédi theorem should be applied to the𝑊-tricked primes.

We shall not dwell on the analytic number theoretic arguments here. See Further Reading
at the end of the chapter for references. For example, Conlon, Fox, and Zhao (2014, Sections
8 and 9) gives an exposition of the construction of the “almost primes” and the proofs of its
properties. The goal of the rest of the chapter is to state and prove the relative Szemerédi
theorem.

9.2 Relative Szemerédi Theorem
In this section, we formulate a relative Szemerédi theorem. For concreteness, we mostly
discuss 3-APs, though everything generalizes to 𝑘-APs straightforwardly.

Recall Roth’s theorem:

Theorem 9.2.1 (Roth’s theorem)
Every 3-AP-free subset of Z/𝑁Z has size 𝑜(𝑁).

We would like to formulate a result of the following form, where Z/𝑁Z is replaced by a
sparse pseudorandom host set 𝑆.

Relative Roth theorem (informal). If 𝑆 ⊆ Z/𝑁Z satisfies certain pseudorandomness
conditions, then every 3-AP-free subset of 𝑆 has size 𝑜( |𝑆 |).

In what sense should 𝑆 behave pseudorandomly? It will be easiest to explain the pseudo-
random hypothesis using a graph.

Consider the following construction of a graph 𝐺𝑆 that we saw in Chapter 6 (in particular
Sections 2.4 and 2.10).
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𝐺𝑆: 𝑌 = Z/𝑁Z𝑋 = Z/𝑁Z

𝑍 = Z/𝑁Z

𝑦𝑥

𝑧

𝑥 ∼ 𝑦 iff
2𝑥 + 𝑦 ∈ 𝑆

𝑥 ∼ 𝑧 iff
𝑥 − 𝑧 ∈ 𝑆

𝑦 ∼ 𝑧 iff
−𝑦 − 2𝑧 ∈ 𝑆

Here 𝐺𝑆 is a tripartite graph with vertex sets 𝑋,𝑌, 𝑍 , each being a copy of Z/𝑁Z. Its edges
are:
• (𝑥, 𝑦) ∈ 𝑋 × 𝑌 whenever 2𝑥 + 𝑦 ∈ 𝑆;
• (𝑥, 𝑧) ∈ 𝑋 × 𝑍 whenever 𝑥 − 𝑧 ∈ 𝑆;
• (𝑦, 𝑧) ∈ 𝑌 × 𝑍 whenever −𝑦 − 2𝑧 ∈ 𝑆.

This graph 𝐺𝑆 is designed so that (𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 is a triangle if and only if

2𝑥 + 𝑦, 𝑥 − 𝑧, −𝑦 − 2𝑧 ∈ 𝑆.
Note that these three terms form a 3-AP with common difference −𝑥 − 𝑦 − 𝑧. So the triangles
in 𝐺𝑆 precisely correspond to 3-APs in 𝑆 (it is an 𝑁-to-1 correspondence).

The following definition is a variation of homomorphism density from Section 4.3.

Definition 9.2.2 (𝐹-density)
Let 𝐹 and 𝐺 be tripartite graphs with three labeled parts. Define 𝑭-density in 𝑮,
denoted 𝒕(𝑭, 𝑮), to be the probability that a random map 𝑉 (𝐹) → 𝑉 (𝐺) is a graph
homomorphism 𝐹 → 𝐺, where each vertex in the first vertex part of 𝐹 is sent to a
uniform vertex of the first vertex part of 𝐺, and likewise with the second and third parts,
all independently.

𝐹

−→

𝐺𝑆

𝑌𝑋

𝑍

Now we define the desired pseudorandomness hypotheses on 𝑆 ⊆ Z/𝑁Z, which says that
the associated graph 𝐺𝑆 has certain subgraph counts close to random.
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Definition 9.2.3 (3-linear forms condition)
We say that 𝑆 ⊆ Z/𝑁Z satisfies the 3-linear forms condition with tolerance 𝜺 if, setting
𝑝 = |𝑆 | /𝑁 , one has

(1 − Y)𝑝𝑒 (𝐹 ) ≤ 𝑡 (𝐹, 𝐺𝑆) ≤ (1 + Y)𝑝𝑒 (𝐹 ) whenever 𝐹 ⊆ 𝐾2,2,2.

(Here 𝐹 ⊆ 𝐾2,2,2 means that is a subgraph of the labeled tripartite graph 𝐾2,2,2; an
example is illustrated below.)

𝐹 ⊆ 𝐾2,2,2

In other words, comparing the graph 𝐺𝑆 to a random tripartite graph with the same edge
density 𝑝, these two graphs have approximately the same 𝐹-density whenever 𝐹 ⊆ 𝐾2,2,2.

Alternatively, we can state the 3-linear forms condition explicitly without referring to
graphs. This is done by expanding the definition of 𝐺𝑆 . Let 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑧0, 𝑧1 ∈ Z/𝑁Z be
chosen independently and uniformly at random. Then 𝑆 ⊆ Z/𝑁Z with |𝑆 | = 𝑝𝑁 satisfies the
3-linear forms condition with tolerance Y if the probability that




−𝑦0 − 2𝑧0, 𝑥0 − 𝑧0, 2𝑥0 + 𝑦0,
−𝑦1 − 2𝑧0, 𝑥1 − 𝑧0, 2𝑥1 + 𝑦0,
−𝑦0 − 2𝑧1, 𝑥0 − 𝑧1, 2𝑥0 + 𝑦1,
−𝑦1 − 2𝑧1, 𝑥1 − 𝑧1, 2𝑥1 + 𝑦1



⊆ 𝑆

lies in the interval (1 ± Y)𝑝12, and furthermore the same holds if we erase any subset of
the above 12 linear forms and also change the “12” in 𝑝12 to the number of linear forms
remaining.

Remark 9.2.4. This 𝐾2,2,2 condition is reminiscent of the 𝐶4-count condition for the quasir-
andom graph in Theorem 3.1.1 by Chung, Graham, and Wilson (1989). Just as how𝐶4 = 𝐾2,2
is a 2-blow-up of a single edge, 𝐾2,2,2 is a 2-blow-up of a triangle.

2-blow-up−−−−−−−−→ 2-blow-up−−−−−−−−→

The 3-linear forms condition can be viewed as a “second moment” condition with respect to
triangles. It is needed in the proof of the sparse triangle counting lemma later.

We are now ready to state a precise formulation of the relative Roth theorem.
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Theorem 9.2.5 (Relative Roth theorem)
For every 𝛿 > 0, there exist Y > 0 and 𝑁0 so that for all odd 𝑁 ≥ 𝑁0, if 𝑆 ⊆ Z/𝑁Z
satisfies the 3-linear forms condition with tolerance Y, then every 3-AP-free subset of 𝑆
has size less than 𝛿 |𝑆 |.

To extend these definitions and results to 𝑘-APs, we set up a (𝑘 − 1)-uniform hypergraph.
We use a procedure similar to the deduction of Szemerédi’s theorem from the hypergraph
removal lemma in Section 2.10.

Let us illustrate it first for 4-APs. We say that 𝑆 ⊆ Z/𝑁Z satisfies the 4-linear forms
condition with tolerance 𝜺 if given random𝑤0,𝑤1, 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑧0, 𝑧1 ∈ Z/𝑁Z (independent
and uniform as always), the probability that




3𝑤0 + 2𝑥0 + 𝑦0, 2𝑤0 + 𝑥0 − 𝑧0, 𝑤0 − 𝑦0 − 2𝑧0, −𝑥0 − 2𝑦0 − 3𝑧0,
3𝑤0 + 2𝑥0 + 𝑦1, 2𝑤0 + 𝑥0 − 𝑧1, 𝑤0 − 𝑦0 − 2𝑧1, −𝑥0 − 2𝑦0 − 3𝑧1,
3𝑤0 + 2𝑥1 + 𝑦0, 2𝑤0 + 𝑥1 − 𝑧0, 𝑤0 − 𝑦1 − 2𝑧0, −𝑥0 − 2𝑦1 − 3𝑧0,
3𝑤0 + 2𝑥1 + 𝑦1, 2𝑤0 + 𝑥1 − 𝑧1, 𝑤0 − 𝑦1 − 2𝑧1, −𝑥0 − 2𝑦1 − 3𝑧1,
3𝑤1 + 2𝑥0 + 𝑦0, 2𝑤1 + 𝑥0 − 𝑧0, 𝑤1 − 𝑦0 − 2𝑧0, −𝑥1 − 2𝑦0 − 3𝑧0,
3𝑤1 + 2𝑥0 + 𝑦1, 2𝑤1 + 𝑥0 − 𝑧1, 𝑤1 − 𝑦0 − 2𝑧1, −𝑥1 − 2𝑦0 − 3𝑧1,
3𝑤1 + 2𝑥1 + 𝑦0, 2𝑤1 + 𝑥1 − 𝑧0, 𝑤1 − 𝑦1 − 2𝑧0, −𝑥1 − 2𝑦1 − 3𝑧0,
3𝑤1 + 2𝑥1 + 𝑦1, 2𝑤1 + 𝑥1 − 𝑧1, 𝑤1 − 𝑦1 − 2𝑧1, −𝑥1 − 2𝑦1 − 3𝑧1




⊆ 𝑆

lies within the interval (1± Y)𝑝32, and furthermore the same is true if we erase any subset of
the above 32 factors and replace the “32” in 𝑝32 by the number of linear forms remaining.

Here is the statement for 𝑘-APs. (You may wish to skip it and simply imagine how it
should generalize based on the above examples.)

Definition 9.2.6 (𝑘-linear forms condition)
For each 1 ≤ 𝑟 ≤ 𝑘 , let

𝐿𝑟 (𝑥1, . . . , 𝑥𝑘) = 𝑘𝑥1 + (𝑘 − 1)𝑥2 + · · · + 𝑥𝑘 − 𝑟 (𝑥1 + · · · + 𝑥𝑘).
We say that 𝑆 ⊆ Z/𝑁Z satisfies the 𝒌-linear forms condition with tolerance 𝜺 if for
every 𝑅 ⊆ [𝑘] × {0, 1}𝑘 , with each variable 𝑥𝑖, 𝑗 ∈ Z/𝑁Z chosen independently and
uniformly at random, the probability that

𝐿𝑟 (𝑥1, 𝑗1 , . . . , 𝑥𝑘, 𝑗𝑘 ) ∈ 𝑆 for all (𝑟, 𝑗1, . . . , 𝑗𝑘) ∈ 𝑅
lies within the interval (1 ± Y)𝑝 |𝑅 | .

Theorem 9.2.7 (Relative Szemerédi theorem)
For every 𝑘 ≥ 3 and 𝛿 > 0, there exist Y > 0 and 𝑁0 so that for all 𝑁 ≥ 𝑁0 coprime to
(𝑘 − 1)!, if 𝑆 ⊆ Z/𝑁Z satisfies the 𝑘-linear forms condition with tolerance Y, then every
𝑘-AP-free subset of 𝑆 has size less than 𝛿 |𝑆 |.

Remark 9.2.8 (History). The above formulations of relative Roth and Szemerédi theorems
are due to Conlon, Fox, and Zhao (2015). The original approach by Green and Tao (2008)
required in addition another technical hypothesis on 𝑆 known as the “correlation condition,”
which is no longer needed.
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Remark 9.2.9 (Szemerédi’s theorem in a random set). Instead of a pseudorandom host
set 𝑆, what happens if 𝑆 is a random subset of Z/𝑁Z obtained by keeping each element with
probability 𝑝 = 𝑝𝑁 → 0 as 𝑁 → ∞? A second moment argument shows that, provided
that 𝑝𝑁 tends to zero sufficiently slowly, the random set 𝑆 indeed satisfies the 𝑘-linear forms
condition (see Exercise 9.2.11 below). However, this argument is rather lossy. The following
sharp result was proved independently by Conlon and Gowers (2016) and Schacht (2016). In
the statement below, there is no substantive difference between [𝑁] and Z/𝑁Z.

Theorem 9.2.10 (Szemerédi’s theorem in a random set)
For every 𝑘 ≥ 3 and 𝛿 > 0, there is some 𝐶 such that as long as 𝑝 > 𝐶𝑁−1/(𝑘−1) , with
probability approaching 1 as 𝑁 → ∞, given a random 𝑆 ⊆ [𝑁] where every element is
included independently with probability 𝑝, every 𝑘-AP-free subset of 𝑆 has size at most
𝛿 |𝑆 |.

The threshold 𝐶𝑁−1/(𝑘−1) is optimal up to the constant 𝐶. Indeed, the expected number
of 𝑘-APs in 𝑆 is 𝑂 (𝑝𝑘𝑁2), which is less than half of E |𝑆 | = 𝑝𝑁 if 𝑝 < 𝑐𝑁−1/(𝑘−1) for
a sufficiently small constant 𝑐 > 0. One can delete from 𝑆 an element from each 𝑘-AP
contained in 𝑆. So with high probability, this process deletes at most half of 𝑆, and the
remaining subset of 𝑆 is 𝑘-AP-free.

The hypergraph container method gives another proof of the above result, plus much
more (Balogh, Morris, and Samotĳ 2015; Saxton and Thomason 2015). See the survey The
method of hypergraph containers by Balogh, Morris, and Samotĳ (2018) for more on this
topic.

Exercise 9.2.11 (Random sets and the linear forms condition). Let 𝑆 ⊆ Z/𝑁Z be a
random set where every element of Z/𝑁Z is included in 𝑆 independently with probability
𝑝.

Prove that there is some 𝑐 > 0 so that for every Y > 0 there is some 𝐶 > 0 so that as
long as 𝑝 > 𝐶𝑁−𝑐 and 𝑁 is large enough, with probability at least 1 − Y, 𝑆 satisfies the
3-linear forms condition with tolerance Y . What is the optimal 𝑐?

Hint:Usethesecondmomentmethod;seeAlonandSpencer(2016,Chapter4).

9.3 Transference Principle
To prove the relative Szemerédi theorem, we shall assume Szemerédi’s theorem and apply it
as a black box to the sparse pseudorandom setting. It may be surprising that we can apply
Szemerédi’s theorem this way. Green and Tao developed a method known as a transference
principle for bringing Szemerédi’s theorem to the sparse pseudorandom setting . The idea also
appeared earlier in the work of Green (2005b) establishing Roth’s theorem in the primes. The
transference principle is an influential idea, and it can be applied to other extremal problems
in combinatorics.

Let us sketch the outline of the proof of the relative Szemerédi theorem. We are given

𝐴 ⊆ 𝑆 with |𝐴| ≥ 𝛿 |𝑆 | .
Here 𝑆 ⊆ Z/𝑁Z is a sparse pseudorandom set satisfying the 𝑘-linear forms condition.
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Step 1. Approximate 𝐴 by a dense model.
We will prove a dense model theorem that produces a “dense model” 𝐵 of 𝐴. In particular,

the density of 𝐵 in Z/𝑁Z is similar to the relative density of 𝐴 in 𝑆:
|𝐵|
𝑁
≈ |𝐴||𝑆 | ≥ 𝛿.

And furthermore, 𝐵 will be close to 𝐴 with respect to a “cut norm” derived from the graphon
cut norm (see Chapter 4 on graph limits). Recall that the graphon cut norm is closely linked
to Y-regularity from the regularity lemma (Chapter 2) and the discrepancy condition DISC
from quasirandom graphs (Chapter 3).

Step 2. Count 𝑘-APs in 𝐴 and 𝐵.
We will prove a sparse counting lemma to show that the number of 𝑘-APs in 𝐴 is similar

to the number of 𝑘-APs in 𝐵, after an appropriate density normalization. In other words,
setting 𝑝 = |𝑆 | /𝑁 for the normalizing density, we will show

|{𝑘-APs in 𝐴}| ≈ 𝑝𝑘 |{𝑘-APs in 𝐵}| .
Szemerédi’s theorem says that every subset of [𝑁] with size ≥ 𝛿𝑁 contains a 𝑘-AP

(provided that 𝑁 is sufficiently large given the constant 𝛿 > 0). In fact, we can bootstrap
Szemerédi’s theorem to show that a subset of [𝑁] with size ≥ 𝛿𝑁 must contain lots of 𝑘-APs.
The deduction uses a sampling argument and is attributed to Varnavides (1959). (This was
Exercise 1.3.7 from Section 1.3 on supersaturation.)

Theorem 9.3.1 (Szemerédi’s theorem, counting version)
For every 𝛿 > 0, there exists 𝑐 > 0 and 𝑁0 such that for every 𝑁 ≥ 𝑁0, every subset of
Z/𝑁Z with ≥ 𝛿𝑁 elements contains ≥ 𝑐𝑁2 𝑘-APs.

Since the “dense model” 𝐵 has size ≥ 𝛿𝑁/2, by the counting version of Szemerédi’s
theorem, 𝐵 has ≳𝛿 𝑁2 𝑘-APs, and hence 𝐴 has ≳𝛿 𝑝𝑘𝑁2 𝑘-APs by the sparse counting
lemma. So in particular, 𝐴 cannot be 𝑘-AP-free. This finishes the proof sketch of the relative
Szemerédi theorem.

Now that we have seen the above outline, it remains to formulate and prove:
• a dense model theorem, and
• a sparse counting lemma.
We will focus on explaining the 3-AP case (i.e., relative Roth theorem) in the rest of this

chapter. The 3-AP setting is notationally simpler than that of 𝑘-AP. It is straightforward to
generalize the 3-AP proof to 𝑘-APs following the (𝑘−1)-uniform hypergraph setup discussed
in the previous section.

9.4 Dense Model Theorem
In this section, Γ is any finite abelian group. We will only need the case Γ = Z/𝑁Z in
subsequent sections.

Given 𝑓 : Γ→ R, we define the following “cut norm” similar to the cut norm from graph
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limits (Chapter 4):

∥ 𝒇 ∥□ B sup
𝐴,𝐵⊆Γ

��E𝑥,𝑦∈Γ [ 𝑓 (𝑥 + 𝑦)1𝐴(𝑥)1𝐵 (𝑦)]�� .
This is essentially the graphon cut norm applied to the function Γ × Γ → R given by
(𝑥, 𝑦) ↦→ 𝑓 (𝑥 + 𝑦).

As should be expected from the equivalence of DISC and EIG for quasirandom Cayley
graphs (Theorem 3.5.3), having small cut norm is equivalent to being Fourier uniform.

Exercise 9.4.1. Show that for all 𝑓 : Γ→ R,

𝑐∥ �̂� ∥∞ ≤ ∥ 𝑓 ∥□ ≤ ∥ �̂� ∥∞,
where 𝑐 is some absolute constant (not depending on Γ or 𝑓 ).

Remark 9.4.2 (Generalizations to 𝑘-APs). The above definition is tailored to 3-APs. For
4-APs, we should define the corresponding norm of 𝑓 as

sup
𝐴,𝐵,𝐶⊆Γ×Γ

��E𝑥,𝑦,𝑧∈Γ [ 𝑓 (𝑥 + 𝑦 + 𝑧)1𝐴(𝑥, 𝑦)1𝐵 (𝑥, 𝑧)1𝐶 (𝑦, 𝑧)]�� .
(The more obvious guess of using 1𝐴(𝑥)1𝐵 (𝑦)1𝐶 (𝑧) instead of the above turns out to be insuf-
ficient for proving the relative Szemerédi theorem. A related issue in the context of hypergraph
regularity was discussed in Section 2.11.) The generalization to 𝑘-APs is straightforward.
However, for 𝑘 ≥ 4, the above norm is no longer equivalent to Fourier uniformity. This is
why we study ∥ 𝑓 ∥□ norm instead of ∥ �̂� ∥∞ in this section.

Informally, the main result of this section says that if a sparse set 𝑆 is close to random
in normalized cut norm, then every subset 𝐴 ⊆ 𝑆 can be approximated by some dense
𝐵 ⊆ Z/𝑁Z in normalized cut norm.

Theorem 9.4.3 (Dense model theorem)
For every Y > 0, there exists 𝛿 > 0 such that the following holds. For every finite abelian
group Γ and sets 𝐴 ⊆ 𝑆 ⊆ Γ such that, setting 𝑝 = |𝑆 | /|Γ|,

∥1𝑆 − 𝑝∥□ ≤ 𝛿𝑝,
there exists 𝑔 : Γ→ [0, 1] such that

∥1𝐴 − 𝑝𝑔∥□ ≤ Y𝑝.

Remark 9.4.4 (3-linear forms condition implies small cut norm). The cut norm hypothesis
is weaker than the 3-linear forms condition, as can be proved by two applications of the
Cauchy–Schwarz inequality (for example, see the proof of Lemma 9.5.2 in the next section).
In short, ∥a − 1∥4□ ≤ 𝑡 (𝐾2,2, a − 1).
Remark 9.4.5 (Set instead of function). We can replace the function 𝑔 by a random set
𝐵 ⊆ Γ where each 𝑥 ∈ Γ is included in 𝐵 with probability 𝑔(𝑥). By standard concentration
bounds, changing 𝑔 to 𝐵 induces a negligible effect on Y if Γ is large enough. It is important
here that 𝑔(𝑥) ∈ [0, 1] for all 𝑥 ∈ Γ.

So the above theorem says, given a sparse pseudorandom host set 𝑆, any subset of 𝑆 can
be modeled by a dense set 𝐵 that is close to 𝐴 with respect to the normalized cut norm.
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It will be more natural to prove the above theorem a bit more generally where sets
𝐴 ⊆ 𝑆 ⊆ Γ are replaced by functional analogs. Since these are sparse sets, we should scale
indicator functions as follows:

𝑓 = 𝑝−11𝐴 and a = 𝑝−11𝑆 .

Then 𝑓 ≤ a pointwise. Note that 𝑓 and a take values in [0, 𝑝−1], unlike 𝑔, which takes values
in [0, 1]. The normalization is such that Ea = 1. Here is the main result of this section.

Theorem 9.4.6 (Dense model theorem)
For every Y > 0, there exists 𝛿 > 0 such that the following holds. For every finite abelian
group Γ and functions 𝑓 , a : Γ→ [0,∞) satisfying

∥a − 1∥□ ≤ 𝛿
and

𝑓 ≤ a pointwise,

there exists a function 𝑔 : Γ→ [0, 1] such that

∥ 𝑓 − 𝑔∥□ ≤ Y.

The rest of this section is devoted to proving the above theorem. First, we reformulate the
cut norm using convex geometry.

Let Φ denote the set of all functions Γ → R that can be written as a convex combination
of convolutions of the form 1𝐴 ∗ 1𝐵 or −1𝐴 ∗ 1𝐵, where 𝐴, 𝐵 ⊆ Γ. Equivalently,

Φ = ConvexHull ({1𝐴 ∗ 1𝐵 : 𝐴, 𝐵 ⊆ Γ} ∪ {−1𝐴 ∗ 1𝐵 : 𝐴, 𝐵 ⊆ Γ}) .
Note that Φ is a centrally symmetric convex set of functions Γ→ R.

Lemma 9.4.7 (Multiplicative closure)
The set Φ is closed under pointwise multiplication; that is, if 𝜑, 𝜑′ ∈ Φ, then 𝜑𝜑′ ∈ Φ.

Proof. Given 𝐴, 𝐵, 𝐶, 𝐷 ⊆ Γ, we have

(1𝐴 ∗ 1𝐵) (𝑥) (1𝐶 ∗ 1𝐷) (𝑥) = E𝑎,𝑏,𝑐,𝑑:𝑎+𝑏=𝑐+𝑑=𝑥1𝐴(𝑎)1𝐵 (𝑏)1𝐶 (𝑐)1𝐷 (𝑑)
= E𝑎,𝑏,𝑠:𝑎+𝑏=𝑥1𝐴(𝑎)1𝐵 (𝑏)1𝐶 (𝑎 + 𝑠)1𝐷 (𝑏 − 𝑠)
= E𝑠E𝑎,𝑏:𝑎+𝑏=𝑥1𝐴∩(𝐶−𝑠) (𝑎)1𝐵∩(𝐷+𝑠) (𝑏).
= E𝑠 (1𝐴∩(𝐶−𝑠) ∗ 1𝐵∩(𝐷+𝑠) ) (𝑥).

Thus the pointwise product of 1𝐴 ∗ 1𝐵 and 1𝐶 ∗ 1𝐷 lies in Φ since it is an average of various
functions of the form 1𝑆 ∗ 1𝑇 . Since Φ is the convex hull of functions of the form 1𝐴 ∗ 1𝐵 and
−1𝐴 ∗ 1𝐵, Φ is closed under pointwise multiplication. □

Given 𝑓 , 𝑔 : Γ→ R, define their inner product by

⟨ 𝒇 , 𝒈⟩ B E𝑥∈Γ 𝑓 (𝑥)𝑔(𝑥).
Since

E𝑥,𝑦∈Γ 𝑓 (𝑥 + 𝑦)1𝐴(𝑥)1𝐵 (𝑦) = ⟨ 𝑓 , 1𝐴 ∗ 1𝐵⟩ ,
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we have
∥ 𝑓 ∥□ = sup

𝐴,𝐵⊆Γ
|⟨ 𝑓 , 1𝐴 ∗ 1𝐵⟩| = sup

𝜑∈Φ
⟨ 𝑓 , 𝜑⟩ .

Since Φ is a centrally symmetric convex body, ∥ ∥□ is indeed a norm. Its dual norm is thus
given by, for any nonzero 𝜓 : Γ→ R,

∥𝜓∥∗□ = sup
𝑓 : Γ→R
∥ 𝑓 ∥□≤1

⟨ 𝑓 , 𝜓⟩ = sup
{
𝑟 ∈ R : 𝑟−1𝜓 ∈ Φ}

.

In other words, Φ is the unit ball for ∥ ∥∗□ norm. The following inequality holds for all
𝑓 , 𝜓 : Γ→ R:

⟨ 𝑓 , 𝜓⟩ ≤ ∥ 𝑓 ∥□ ∥𝜓∥∗□ .

Lemma 9.4.8 (Submultiplicativity of the dual cut norm)
The norm ∥·∥∗□ is submultiplicative; that is, for all 𝜓, 𝜓′ : Γ→ R,

∥𝜓𝜓′∥∗□ ≤ ∥𝜓∥∗□ ∥𝜓′∥∗□ .

Proof. The inequality is not affected if we multiply 𝜓 and 𝜓′ each by a constant. So we can
assume that ∥𝜓∥∗□ = ∥𝜓′∥∗□ = 1. Then 𝜓, 𝜓′ ∈ Φ. Hence 𝜓𝜓′ ∈ Φ by Lemma 9.4.7. This
implies that ∥𝜓𝜓′∥′□ ≤ 1. □

We need two classical results from analysis and convex geometry.

Theorem 9.4.9 (Weierstrass polynomial approximation theorem)
Let 𝑎, 𝑏 ∈ R and Y > 0. Let 𝐹 : [𝑎, 𝑏] → R be a continuous function. Then there exists
a polynomial 𝑃 such that |𝐹 (𝑡) − 𝑃(𝑡) | ≤ Y for all 𝑡 ∈ [𝑎, 𝑏].

Theorem 9.4.10 (Separating hyperplane theorem)
Given a closed convex set 𝐾 ⊆ R𝑛 and a point 𝑝 ∉ 𝐾 , there exists a hyperplane separating
𝐾 and 𝑝.

𝐾

𝑝

Proof idea of the dense model theorem. If no 𝑔 : Γ→ [0, 1] satisfies ∥ 𝑓 − 𝑔∥□ ≤ Y, then 𝑓
does not lie in the convex set containing all functions of the form 𝑔 + 𝑔′ where 𝑔 : Γ→ [0, 1]
and ∥𝑔′∥□ ≤ Y. The separating hyperplane theorem then gives us a function 𝜓 so that
⟨ 𝑓 , 𝜓⟩ > 1 and ⟨𝑔 + 𝑔′, 𝜓⟩ ≤ 1 for all such 𝑔, 𝑔′. (It helps to pretend a bit of extra slack
here, say ⟨ 𝑓 , 𝜓⟩ > 1 + Y.) Using the Weierstrass polynomial approximation theorem, choose
a polynomial 𝑃(𝑡) so that 𝑃(𝑡) ≈ max{0, 𝑡} pointwise for all |𝑡 | ≤ ∥𝜓∥∗□ = 𝑂 Y (1). Writing
𝜓+(𝑥) = max {0, 𝜓(𝑥)} for the positive part of 𝜓, we have

⟨ 𝑓 , 𝜓⟩ ≤ ⟨ 𝑓 , 𝜓+⟩ ≤ ⟨a, 𝜓+⟩ ≈ ⟨a, 𝑃𝜓⟩ = ⟨a − 1, 𝑃𝜓⟩ + ⟨1, 𝑃𝜓⟩ .
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We can show that ∥𝜓∥∗□ = 𝑂 Y (1). As 𝑃 is a polynomial, by the triangle inequality and the
submultiplicativity of ∥ ∥∗□, we find that ∥𝑃𝜓∥∗□ = 𝑂 Y (1). And so

⟨a − 1, 𝑃𝜓⟩ ≤ ∥a − 1∥□ ∥𝑃𝜓∥∗□ ≤ 𝛿 ∥𝑃𝜓∥∗□
can be made arbitrarily small by making 𝛿 small. We also have ⟨1, 𝑃𝜓⟩ ≈ ⟨1, 𝜓+⟩, which is
at most around 1. Together, we see that ⟨ 𝑓 , 𝜓⟩ is at most around 1, which would contradict
⟨ 𝑓 , 𝜓⟩ > 1 from earlier (assuming enough slack). ■

Proof of the dense model theorem (Theorem 9.4.6). We will show that the conclusion holds
with 𝛿 > 0 chosen to be sufficiently small as a function of Y. We may assume that 0 < Y < 1/2.
We will prove the existence of a function 𝑔 : Γ → [0, 1 + Y/2] such that ∥ 𝑓 − 𝑔∥□ ≤ Y/2.
(To obtain the function Γ→ [0, 1] in the theorem, we can replace 𝑔 by min{𝑔, 1}.)

We are trying to prove that one can write 𝑓 as 𝑔 + 𝑔′ with

𝑔 ∈ 𝐾 B {
functions Γ→ [0, 1 + Y

2 ]
}

and
𝑔′ ∈ 𝐾 ′ B {

functions Γ→ R with ∥·∥□ ≤ Y
2

}
.

We can view the sets 𝐾 and 𝐾 ′ as convex bodies (both containing the origin) in the space of
all functions Γ→ R. Our goal is to show that 𝑓 ∈ 𝐾 + 𝐾 ′.

Let us assume the contrary. By the separating hyperplane theorem applied to 𝑓 ∉ 𝐾 + 𝐾 ′,
there exists a function 𝜓 : Γ → R (which is a normal vector to the separating hyperplane)
such that
(a) ⟨ 𝑓 , 𝜓⟩ > 1, and
(b) ⟨𝑔 + 𝑔′, 𝜓⟩ ≤ 1 for all 𝑔 ∈ 𝐾 and 𝑔′ ∈ 𝐾 ′

Taking 𝑔 = (1 + Y
2 )1𝜓≥0 and 𝑔′ = 0 in (b), we have

⟨1, 𝜓+⟩ ≤ 1
1 + Y/2 . (9.1)

Here we write 𝜓+ for the function 𝜓+(𝑥) B max {𝜓(𝑥), 0}.
On the other hand, setting 𝑔 = 0, we have

1 ≥ sup
𝑔′∈𝐾 ′

⟨𝑔′, 𝜓⟩ = sup
∥𝑔′ ∥□≤Y/2

⟨𝑔′, 𝜓⟩ = Y

2
∥𝜓∥∗□ .

So

∥𝜓∥∗□ ≤
2
Y
.

Setting 𝑔 = 0 and 𝑔′ = ± Y2 𝑁1𝑥 for a single 𝑥 ∈ Γ (i.e, 𝑔′ is supported on a single element of
Γ), we have ∥𝑔′∥□ ≤ Y/2 and 1 ≥ ⟨𝑔′, 𝜓⟩ = ± Y2𝜓(𝑥). So |𝜓(𝑥) | ≤ 2/Y. This holds for every
𝑥 ∈ Γ. Thus

∥𝜓∥∞ ≤
2
Y
.

By the Weierstrass polynomial approximation theorem, there exists some real polynomial
𝑃(𝑥) = 𝑝𝑑𝑥𝑑 + · · · + 𝑝1𝑥 + 𝑝0 such that

|𝑃(𝑡) −max {𝑡, 0}| ≤ Y

20
whenever |𝑡 | ≤ 2

Y
.
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𝑃(𝑡)
max{𝑡, 0}

Set

𝑅 =
𝑑∑︁
𝑖=0

|𝑝𝑖 |
(
2
Y

) 𝑖
,

which is a constant that depends only on Y. (A more careful analysis gives 𝑅 = exp(Y−𝑂 (1) ).)
Write 𝑃𝜓 : Γ → R to mean the function given by 𝑃𝜓(𝑥) = 𝑃(𝜓(𝑥)). By the triangle

inequality and the submulticativity of ∥·∥∗□ (Lemma 9.4.8) ,

∥𝑃𝜓∥∗□ ≤
𝑑∑︁
𝑖=0

|𝑝𝑖 | ∥𝜓𝑖 ∥∗□ ≤
𝑑∑︁
𝑖=0

|𝑝𝑖 | (∥𝜓∥∗□)𝑖 ≤
𝑑∑︁
𝑖=0

|𝑝𝑖 |
(
2
Y

) 𝑖
= 𝑅.

Let us choose
𝛿 = min

{ Y

20𝑅
, 1

}
.

Then ∥a − 1∥□ ≤ 𝛿 implies that

|⟨a − 1, 𝑃𝜓⟩| ≤ ∥a − 1∥□ ∥𝑃𝜓∥∗□ ≤ 𝛿𝑅 ≤
Y

20
. (9.2)

Earlier we showed that ∥𝜓∥∞ ≤ 2/Y, and also |𝑃(𝑡) −max {𝑡, 0}| ≤ Y/20 whenever
|𝑡 | ≤ 2/Y. Thus

∥𝑃𝜓 − 𝜓+∥∞ ≤
Y

20
. (9.3)

Hence,

⟨a, 𝑃𝜓⟩ = ⟨1, 𝑃𝜓⟩ + ⟨a − 1, 𝑃𝜓⟩
≤ ⟨1, 𝑃𝜓⟩ + Y

20
[by (9.2)]

≤ ⟨1, 𝜓+⟩ + Y

10
[by (9.3)]

≤ 1
1 + Y/2 +

Y

10
. [by (9.1)].

Also,
⟨a − 1, 1⟩ ≤ ∥a − 1∥□ ≤ 𝛿.

Thus
∥a∥1 ≤ 1 + ∥a − 1∥1 ≤ 1 + 𝛿 ≤ 2.

So by (9.3),

⟨a, 𝜓+ − 𝑃𝜓⟩ ≤ ∥a∥1 ∥𝜓+ − 𝑃𝜓∥∞ ≤ 2 · Y
20
≤ Y

10
. (9.4)
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Thus, using that 0 ≤ 𝑓 ≤ a,
⟨ 𝑓 , 𝜓⟩ ≤ ⟨ 𝑓 , 𝜓+⟩ ≤ ⟨a, 𝜓+⟩

≤ ⟨a, 𝑃𝜓⟩ + ⟨a, 𝜓+ − 𝑃𝜓⟩

≤ 1
1 + Y/2 +

Y

10
+ Y

10
≤ 1 − Y

10
.

This contradicts (a) from earlier. This concludes the proof of the theorem. □

Remark 9.4.11 (History). An early version of the density model theorem was used by Green
and Tao (2008), where it was proved using a regularity-type energy increment argument. The
above significantly simpler proof is due to Gowers (2010) and Reingold, Trevisan, Tulsiani,
and Vadhan (2008) independently. Before the work of Conlon, Fox, and Zhao (2015), one
needed to consider the Gowers uniformity norm rather than the simpler cut norm as we did
above. The use of the cut norm further simplifies the proof of the corresponding dense model
theorem, as noted by Zhao (2014).

Exercise 9.4.12. State and prove a dense model theorem for 𝑘-APs.

9.5 Sparse Counting Lemma
Let us prove an extension of the triangle counting lemma from Section 4.5. Here we work
with a sparse graph (represented by 𝑓 ) that is a subgraph of a sparse pseudorandom host
graph (represented by a) satisfying a 3-linear forms condition (involving 𝐾2,2,2 densities).
The conclusion is that if 𝑓 is close in cut norm to another dense graph 𝑔, then 𝑓 and 𝑔 have
similar triangle densities (we normalize 𝑓 for density).

Setup for this section. Throughout this section, we have three finite sets 𝑋,𝑌, 𝑍 (which can
also be probability spaces) representing the vertex sets of a tripartite graph. The following
functions represent edge-weighted tripartite graphs:

𝑓 , 𝑔, a : (𝑋 × 𝑌 ) ∪ (𝑋 × 𝑍) ∪ (𝑌 × 𝑍) → R.
• a represents the normalized edge-indicator function of a possibly sparse pseudorandom

host graph (arising from 𝑆 ⊆ Z/𝑁Z in the statement of the relative Roth theorem).
• 𝑓 represents the normalized edge-indicator function of a relatively dense subset 𝐴 ⊆ 𝑆.
• 𝑔 represents the dense model of 𝑓 .

𝑌𝑋

𝑍

For any tripartite graph 𝐹, we write 𝑡 (𝐹, 𝑓 ) for the 𝐹-density in 𝑓 (and likewise with 𝑔
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and a). Some examples:

𝑡 (𝐾3, 𝑓 ) = E𝑥,𝑦,𝑧 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) and
𝑦𝑥

𝑧

𝑡 (𝐾2,1,1, 𝐹) = E𝑥,𝑥′ ,𝑦,𝑧 𝑓 (𝑥, 𝑦) 𝑓 (𝑥′, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥′, 𝑧) 𝑓 (𝑦, 𝑧)
𝑦

𝑥
𝑥′

𝑧

We maintain the convention that 𝑥, 𝑥′ range uniformly over 𝑋 , and so on.
The functions 𝑓 , 𝑔, a are assumed to satisfy:
• 0 ≤ 𝑓 ≤ a pointwise;
• 0 ≤ 𝑔 ≤ 1 pointwise;
• The 3-linear forms condition:

|𝑡 (𝐹, a) − 1| ≤ Y whenever 𝐹 ⊆ 𝐾2,2,2;

• When restricted to each of 𝑋 × 𝑌 , 𝑋 × 𝑍 , and 𝑌 × 𝑍 , we have

∥ 𝑓 − 𝑔∥□ ≤ Y.
For example, when restricted to 𝑋 × 𝑌 , the left-hand side quantity denotes

sup
𝐴⊆𝑋,𝐵⊆𝑌

��E𝑥,𝑦 ( 𝑓 − 𝑔) (𝑥, 𝑦)1𝐴(𝑥)1𝐵 (𝑦)�� . 𝐵
𝐴

𝑓 − 𝑔

Throughout we assume that Y > 0 is sufficiently small, so that ≤ YΩ(1) means ≤ 𝐶Y𝑐 for
some absolute constants 𝑐, 𝐶 > 0 (which could change from line to line).

Here is the main result of this section, due to Conlon, Fox, and Zhao (2015).

Theorem 9.5.1 (Sparse triangle counting lemma)
Assume the setup at the beginning of this section. Then

|𝑡 (𝐾3, 𝑓 ) − 𝑡 (𝐾3, 𝑔) | ≤ YΩ(1) .

You should now pause and review the proof of the “dense” triangle counting lemma from
Proposition 4.5.4, which says that if in addition we assume 0 ≤ 𝑓 ≤ 1 (that is, assuming
a = 1 identically), then

|𝑡 (𝐾3, 𝑓 ) − 𝑡 (𝐾3, 𝑔) | ≤ 3 ∥ 𝑓 − 𝑔∥□ ≤ 3Y.

Roughly speaking, the proof of the dense triangle counting lemma proceeds by replacing 𝑓
by 𝑔 one edge at a time, each time incurring at most an ∥ 𝑓 − 𝑔∥□ loss.
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𝑓

𝑓𝑓
≈

𝑔

𝑓𝑓
≈

𝑔

𝑓𝑔
≈

𝑔

𝑔𝑔

Having a = 1 should be thought of as the “dense” case. Indeed, a = 1 correponds
to 𝑆 = Z/𝑁Z rather than having a sparse pseudorandom set 𝑆. In general, starting with a
general “sparse” a, our strategy is to reduce the problem to another triangle counting problem
where a is replaced by 1 on one of the edges of the triangle.

a

aa
→

1

aa
→

1

1a
→

1

11

This densification strategy reduces a sparse triangle counting problem to a progressively
easier triangle counting problem where some of the sparse bipartite graphs among 𝑋,𝑌, 𝑍
become dense.

Let Sparsity(𝝂) be the number of elements of {𝑋 × 𝑌, 𝑋 × 𝑍,𝑌 × 𝑍} on which a differs
from 1. We will prove the statement:

SparseTCL(𝒌): the sparse triangle counting lemma is true whenever Sparsity(a) ≤ 𝑘 . (The
hidden constants may depend on 𝑘 .)

We already proved the base case SparseTCL(0), which is the “dense” case corresponding
to a = 1, as discussed earlier. We will prove the implications

SparseTCL(0) =⇒ SparseTCL(1) =⇒ SparseTCL(2) =⇒ SparseTCL(3).
We phrase our argument as an induction (a slightly unusual induction setup, as 0 ≤ 𝑘 ≤ 3).
For the induction step, it suffices to prove the conclusion of the sparse triangle counting
lemmas under the following hypothesis.

Induction hypothesis: SparseTCL(𝑘 − 1) holds with 𝑘 = Sparsity(a), and a is not
identically 1 on 𝑋 × 𝑌 .

The next lemma shows that a is close to 1 in a strong sense, provided that a satisfies the
3-linear forms condition.

Lemma 9.5.2 (Strong linear forms)
Assume the setup at the beginning of this section. We have��E𝑥,𝑦,𝑧,𝑧′ (a(𝑥, 𝑦) − 1) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥, 𝑧′) 𝑓 (𝑦, 𝑧) 𝑓 (𝑦, 𝑧′)

�� ≤ YΩ(1) .
The same statement holds if any subset of the four 𝑓 factors are replaced by 𝑔.

Proof. The proof uses two applications of the Cauchy–Schwarz inequality. Let us write down
the proof in the case when none of the four 𝑓 s are replaced by 𝑔s. The other cases are similar
(basically apply 𝑔 ≤ 1 instead of 𝑓 ≤ a wherever appropriate).

Here is a figure illustrating the first application of the Cauchy–Schwarz inequality.
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©
«

a − 1

𝑓𝑓

ª®®®®®
¬

2

≤
©
«

a − 1

𝑓𝑓

ª®®®®®
¬

©
«

𝑓

ª®®®¬
≤

©
«

a − 1

a𝑓

ª®®®®®
¬

©«
a

ª®®®
¬

Here are the inequalities written out:��E𝑥,𝑦,𝑧,𝑧′ (a(𝑥, 𝑦) − 1) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥, 𝑧′) 𝑓 (𝑦, 𝑧) 𝑓 (𝑦, 𝑧′)
��2

=
��E𝑦,𝑧,𝑧′E𝑥 [(a(𝑥, 𝑦) − 1) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥, 𝑧′)] 𝑓 (𝑦, 𝑧) 𝑓 (𝑦, 𝑧′)��2
≤

(
E𝑦,𝑧,𝑧′

(
E𝑥 (a(𝑥, 𝑦) − 1) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥, 𝑧′))2

𝑓 (𝑦, 𝑧) 𝑓 (𝑦, 𝑧′)
)
E𝑦,𝑧,𝑧′ 𝑓 (𝑦, 𝑧) 𝑓 (𝑦, 𝑧′)

≤
(
E𝑦,𝑧,𝑧′

(
E𝑥 (a(𝑥, 𝑦) − 1) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥, 𝑧′))2

a(𝑦, 𝑧)a(𝑦, 𝑧′)
)
E𝑦,𝑧,𝑧′a(𝑦, 𝑧)a(𝑦, 𝑧′).

Note that we are able to apply 𝑓 ≤ a in the final step above due to the nonnegativity of the
square, which arose from the Cauchy–Schwarz inequality. We could not have applied 𝑓 ≤ a
at the very beginning.

The second factor above is at most 1 + Y due to the 3-linear forms condition. It remains to
show that the first factor is ≤ YΩ(1) . The first factor expands to

E𝑥,𝑥′ ,𝑦,𝑧,𝑧′ (a(𝑥, 𝑦) − 1) (a(𝑥′, 𝑦) − 1) 𝑓 (𝑥, 𝑧) 𝑓 (𝑥, 𝑧′) 𝑓 (𝑥′, 𝑧) 𝑓 (𝑥′, 𝑧′)a(𝑦, 𝑧)a(𝑦, 𝑧′).
We can upper bound the above quantity as illustrated below, using a second application of
the Cauchy–Schwarz inequality.

©
«

a − 1

a𝑓

ª®®®®®
¬

2

≤
©
«

a − 1

a𝑓

ª®®®®®
¬

©
«

a − 1

a𝑓

ª®®®®®
¬
≤

©
«

a − 1

aa

ª®®®®®
¬

©
«

a − 1

aa

ª®®®®®
¬

On the right-hand side, the first factor is ≤ YΩ(1) by the 3-linear forms condition. Indeed,
|𝑡 (𝐹, a) − 1| ≤ Y for any 𝐹 ⊆ 𝐾2,2,2. If we expand all the a − 1 in the first factor above, then
it becomes an alternating sum of various 𝑡 (𝐹, a) ∈ [1 − Y, 1 + Y] with 𝐹 ⊆ 𝐾2,2,2, with the
main contribution 1 from each term canceling each other out. The second factor is ≤ 1 + Y
again by the 3-linear forms condition.

Putting everything together, this completes the proof of the lemma. □

Define a∧, 𝑓∧, 𝑔∧ : 𝑋 × 𝑌 → [0,∞) by

a∧(𝑥, 𝑦) B E𝑧a(𝑥, 𝑧)a(𝑦, 𝑧),
𝑓∧(𝑥, 𝑦) B E𝑧 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧),
𝑔∧(𝑥, 𝑦) B E𝑧𝑔(𝑥, 𝑧)𝑔(𝑦, 𝑧).

𝑥 𝑦

They represent codegrees. Even though a and 𝑓 are possibly unbounded, the new weighted
graphs a∧ and 𝑓∧ behave like dense graphs because the sparseness is somehow smoothed out
(this is a key observation). On a first reading of the proof, you may wish to pretend that a∧
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and 𝑓∧ are uniformly bounded above by 1 (in reality, we need to control the negligible bit of
a exceeding 1).

We have

𝑡 (𝐾3, 𝑓 ) = ⟨ 𝑓 , 𝑓∧⟩,
and 𝑡 (𝐾3, 𝑔) = ⟨𝑔, 𝑔∧⟩.

So

𝑡 (𝐾3, 𝑓 ) − 𝑡 (𝐾3, 𝑔) = ⟨ 𝑓 , 𝑓∧⟩ − ⟨𝑔, 𝑔∧⟩
= ⟨ 𝑓 , 𝑓∧ − 𝑔∧⟩ + ⟨ 𝑓 − 𝑔, 𝑔∧⟩.

We have

|⟨ 𝑓 − 𝑔, 𝑔∧⟩| ≤ ∥ 𝑓 − 𝑔∥□ ≤ Y.

𝑓 − 𝑔

𝑔𝑔

by the same argument as in the dense triangle counting lemma (Proposition 4.5.4), as
0 ≤ 𝑔 ≤ 1. So it remains to show |⟨ 𝑓 , 𝑓∧ − 𝑔∧⟩| ≤ YΩ(1) .

By the Cauchy–Schwarz inequality, we have

⟨ 𝑓 , 𝑓∧ − 𝑔∧⟩2 = E[ 𝑓 ( 𝑓∧ − 𝑔∧)]2 ≤ E[ 𝑓 ( 𝑓∧ − 𝑔∧)2] E 𝑓 ≤ E[a( 𝑓∧ − 𝑔∧)2] Ea.
The second factor is Ea ≤ 1 + Y by the 3-linear forms condition. So it remains to show that

E[a( 𝑓∧ − 𝑔∧)2] = ⟨a, ( 𝑓∧ − 𝑔∧)2⟩ ≤ YΩ(1) .
By Lemma 9.5.2 ��⟨a − 1, ( 𝑓∧ − 𝑔∧)2⟩

�� ≤ YΩ(1)
(to see this inequality, first expand ( 𝑓∧ − 𝑔∧)2 and then apply Lemma 9.5.2 term by term).
Thus

E[a( 𝑓∧ − 𝑔∧)2] ≤ E[( 𝑓∧ − 𝑔∧)2] + YΩ(1) .
Thus, to prove the induction step (as stated earlier) for the sparse triangle counting lemma, it
remains to prove the following.

Lemma 9.5.3 (Densified triangle counting)
Assuming the setup at the beginning of the section as well as the induction hypothesis,
we have

E[( 𝑓∧ − 𝑔∧)2] ≤ YΩ(1) . (9.5)

Let us first sketch the idea of the proof of Lemma 9.5.3. Expanding, we have

LHS of (9.5) = ⟨ 𝑓∧, 𝑓∧⟩ − ⟨ 𝑓∧, 𝑔∧⟩ − ⟨𝑔∧, 𝑓∧⟩ + ⟨𝑔∧, 𝑔∧⟩. (9.6)

Each term represents some 4-cycle density.
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So it suffices to show that each of the four terms above differs from ⟨𝑔∧, 𝑔∧⟩ by ≤ YΩ(1) .
We are trying to show that ⟨ 𝑓∧, 𝑓∧⟩ ≈ ⟨𝑔∧, 𝑔∧⟩. Expanding the second factor in each ⟨·, ·⟩, we
are trying to show that

E𝑥,𝑦,𝑧 𝑓∧(𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧)
≈ E𝑥,𝑦,𝑧𝑔∧(𝑥, 𝑦)𝑔(𝑥, 𝑧)𝑔(𝑦, 𝑧).

𝑓∧

𝑓𝑓

However, this is just another instance of the sparse triangle counting lemma! And importantly,
this instance is easier than the one we started with. Indeed, we have ∥ 𝑓∧ − 𝑔∧∥□ ≤ YΩ(1) (this
can be proved by invoking the induction hypothesis). Furthermore, the first factor 𝑓∧(𝑥, 𝑦)
now behaves more like a bounded function (corresponding to a dense graph rather than a
sparse graph). Let us pretend for a second that 𝑓∧ ≤ 1, ignoring the negligible part of 𝑓∧
exceeding 1. Then we have reduced the original problem to a new instance of the triangle
counting lemma, except that now 𝑓 ≤ a on 𝑋 ×𝑌 has been replaced by 𝑓∧ ≤ 1 (this is the key
point where densification occurs). Lemma 9.5.3 then follows from the induction hypothesis
as we have reduced the sparsity of the pseudorandom host graph.

Coming back to the proof, as discussed earlier, while 𝑓∧ is not necessarily ≤ 1, it is
almost so. We need to handle the error term arising from replacing 𝑓∧ by its capped version
𝑓∧ : 𝑋 × 𝑌 → [0, 1] defined by

𝑓∧ = min{ 𝑓∧, 1} pointwise.

We have
0 ≤ 𝑓∧ − 𝑓∧ = max{ 𝑓∧ − 1, 0} ≤ max{a∧ − 1, 0} ≤ |a∧ − 1|. (9.7)

Also,
(E|a∧ − 1|)2 ≤ E[(a∧ − 1)2] = Ea2

∧ − 2Ea∧ + 1 ≤ 3Y (9.8)

by the 3-linear forms condition, since Ea2
∧ and Ea∧ are both within Y of 1. So���⟨ 𝑓∧, 𝑓∧⟩ − ⟨ 𝑓∧, 𝑓∧⟩��� = ���⟨ 𝑓∧ − 𝑓∧, 𝑓∧⟩��� ≤ E |a∧ − 1| a∧

= E |a∧ − 1| (a∧ − 1) + E |a∧ − 1|
≤ E[(a∧ − 1)2] + E |a∧ − 1|
≤ YΩ(1) . [by (9.8)] (9.9)

Lemma 9.5.4 (Cut norm between codegrees)
With the same assumptions as Lemma 9.5.3,

∥ 𝑓∧ − 𝑔∧∥□ ≤ YΩ(1) .
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Proof. Indeed, for any 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌 , we have

⟨ 𝑓∧ − 𝑔∧, 1𝐴×𝐵⟩ = ⟨ 𝑓∧ − 𝑓∧, 1𝐴×𝐵⟩ + ⟨ 𝑓∧ − 𝑔∧, 1𝐴×𝐵⟩.
By (9.7) followed by (9.8)

⟨ 𝑓∧ − 𝑓∧, 1𝐴×𝐵⟩ ≤ E| 𝑓∧ − 𝑓∧ | ≤ E|a∧ − 1| ≤ YΩ(1) .
So it remains to show that

|⟨ 𝑓∧ − 𝑔∧, 1𝐴×𝐵⟩| ≤ YΩ(1) .
This is true since

⟨ 𝑓∧, 1𝐴×𝐵⟩ = E𝑥,𝑦,𝑧1𝐴×𝐵 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧)
and ⟨𝑔∧, 1𝐴×𝐵⟩ = E𝑥,𝑦,𝑧1𝐴×𝐵 (𝑥, 𝑦)𝑔(𝑥, 𝑧)𝑔(𝑦, 𝑧)

𝐵
𝐴

1𝐴×𝐵

𝑓𝑓

satisfy the hypothesis of the sparse counting lemma with 𝑓 , 𝑔, a on 𝑋 × 𝑌 replaced by
1𝐴×𝐵, 1𝐴×𝐵, 1, thereby decreasing the sparsity of a by 1, and hence we can apply the induction
hypothesis. □

Proof of Lemma 9.5.3. We need to show that each of the four terms on the right-hand side
of (9.6) is within YΩ(1) of ⟨𝑔∧, 𝑔∧⟩. Let us show that

|⟨ 𝑓∧, 𝑓∧⟩ − ⟨𝑔∧, 𝑔∧⟩| ≤ YΩ(1) .
By (9.9), ⟨ 𝑓∧, 𝑓∧⟩ differs from ⟨ 𝑓∧, 𝑓∧⟩ by ≤ YΩ(1) , and thus it suffices to show that

⟨ 𝑓∧, 𝑓∧⟩ = E𝑥,𝑦,𝑧 𝑓∧(𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧)
and

⟨𝑔∧, 𝑔∧⟩ = E𝑥,𝑦,𝑧𝑔∧(𝑥, 𝑦)𝑔(𝑥, 𝑧)𝑔(𝑦, 𝑧)
differ by ≤ YΩ(1) . To show this, we apply the induction hypothesis to the setting where 𝑓 , 𝑔, a
on 𝑋 × 𝑌 are replaced by 𝑓∧, 𝑔, 1 (recall from Lemma 9.5.4 that ∥ 𝑓∧ − 𝑔∥□ ≤ YΩ(1) ), which
reduces the sparsity of a by 1. So the induction hypothesis implies���⟨ 𝑓∧, 𝑓∧⟩ − ⟨𝑔∧, 𝑔∧⟩��� ≤ YΩ(1) .
Thus |⟨ 𝑓∧, 𝑓∧⟩ − ⟨𝑔∧, 𝑔∧⟩| ≤ YΩ(1) . Likewise, the other terms on the right-hand side of
(9.9) are within YΩ(1) of ⟨𝑔∧, 𝑔∧⟩ (Exercise!). The conclusion E[( 𝑓∧ − 𝑔∧)2] ≤ YΩ(1) then
follows. □

Exercise 9.5.5. State and prove a generalization of the sparse counting lemma to count
an arbitrary but fixed subgraph (replacing the triangle above). How about hypergraphs?
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9.6 Proof of the Relative Roth Theorem
Now we combine the dense model theorem and the sparse triangle counting lemma to prove
the relative Roth theorem:

Theorem 9.2.5 (restated). For every 𝛿 > 0, there exist Y > 0 and 𝑁0 so that for all 𝑁 ≥ 𝑁0,
if 𝑆 ⊆ Z/𝑁Z satisfies the 3-linear forms condition with tolerance Y, then every 3-AP-free
subset of 𝑆 has size less than 𝛿 |𝑆 |.

Recall that with 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑧0, 𝑧1 ∈ Z/𝑁Z chosen independently and uniformly at ran-
dom, the set 𝑆 ⊆ Z/𝑁Z with |𝑆 | = 𝑝𝑁 satisfies the 3-linear forms condition with tolerance
𝜺 if the probability that




−𝑦0 − 2𝑧0, 𝑥0 − 𝑧0, 2𝑥0 + 𝑦0,
−𝑦1 − 2𝑧0, 𝑥1 − 𝑧0, 2𝑥1 + 𝑦0,
−𝑦0 − 2𝑧1, 𝑥0 − 𝑧1, 2𝑥0 + 𝑦1,
−𝑦1 − 2𝑧1, 𝑥1 − 𝑧1, 2𝑥1 + 𝑦1



⊆ 𝑆

lies in the interval (1 ± Y)𝑝12, and furthermore the same holds if we erase any subset of
the above 12 linear forms and also change the “12” in 𝑝12 to the number of linear forms
remaining.

The proof follows the strategy outlined in Section 9.3 on the transference principle. We
need a counting version of Roth’s theorem. As in Chapter 6, we define, for 𝑓 : Z/𝑁Z→ R,
its 3-AP density by

𝚲3( 𝒇 ) B E𝑥,𝑑∈Z/𝑁Z 𝑓 (𝑥) 𝑓 (𝑥 + 𝑑) 𝑓 (𝑥 + 2𝑑).

Theorem 9.6.1 (Roth’s theorem, functional/counting version)
For every 𝛿 > 0, there exists 𝑐 = 𝑐(𝛿) > 0 such that every 𝑓 : Z/𝑁Z → [0, 1] with
E 𝑓 ≥ 𝛿,

Λ3( 𝑓 ) ≥ 𝑐.

Exercise 9.6.2. Deduce the above version of Roth’s theorem from the existence version
(namely that every 3-AP-free subset of [𝑁] has size 𝑜(𝑁).)

Proof of the relative Roth theorem (Theorem 9.2.5). Let 𝑝 = |𝑆 | /𝑁 . Define

a : Z/𝑁Z→ [0,∞) by a = 𝑝−11𝑆 .

Let 𝑋 = 𝑌 = 𝑍 = Z/𝑁Z. Consider the associated edge-weighted tripartite graph

a′ : (𝑋 × 𝑌 ) ∪ (𝑋 × 𝑍) ∪ (𝑌 × 𝑍) → [0,∞)
defined by, for 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , and 𝑧 ∈ 𝑍 ,

a′ (𝑥, 𝑦) = a(2𝑥 + 𝑦), a′ (𝑥, 𝑧) = a(𝑥 − 𝑧), a′ (𝑦, 𝑧) = a(−𝑦 − 2𝑧).
Since a satisfies the 3-linear forms condition (as a function on Z/𝑁Z), a′ also satisfies the
3-linear forms condition in the sense of Section 9.5. Likewise,

∥a − 1∥□ = ∥a′ − 1∥□
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where ∥a − 1∥□ on the left-hand side is in the sense of Section 9.4 and ∥a′ − 1∥□ is defined
as in Section 9.5 where a′ is restricted to 𝑋 × 𝑌 . (The same would be true had we restricted
to 𝑋 × 𝑍 or 𝑌 × 𝑍 .) Indeed,

∥a − 1∥□ = sup
𝐴⊆𝑋,𝐵⊆𝑌

E(a(𝑥 + 𝑦) − 1)1𝐴(𝑥)1𝐵 (𝑦)

whereas

∥a′ − 1∥□ = sup
𝐴⊆𝑋,𝐵⊆𝑌

E(a′ (𝑥, 𝑦) − 1)1𝐴(𝑥)1𝐵 (𝑦)

= sup
𝐴⊆𝑋,𝐵⊆𝑌

E(a(2𝑥 + 𝑦) − 1)1𝐴(𝑥)1𝐵 (𝑦),

and these two expressions are equal to each other after a change of variables 𝑥 ↔ 2𝑥 (which
is a bĳection as 𝑁 is odd).

By Lemma 9.5.2 (or simply two applications of the Cauchy–Schwarz inequality followed
by the 3-linear forms condition), we obtain

∥a − 1∥□ ≤ YΩ(1) .
Now suppose 𝐴 ⊆ 𝑆 and |𝐴| ≥ 𝛿𝑁 . Define 𝑓 : Z/𝑁Z→ [0,∞) by

𝑓 = 𝑝−11𝐴

so that 0 ≤ 𝑓 ≤ a pointwise. Then by the dense model theorem (Theorem 9.4.6), there exists
a function 𝑔 : Z/𝑁Z→ [0, 1] such that

∥ 𝑓 − 𝑔∥□ ≤ [,
where [ = [(Y) is some quantity that tends to zero as Y → 0.

Define the associated edge-weighted tripatite graphs

𝑓 ′, 𝑔′ : (𝑋 × 𝑌 ) ∪ (𝑋 × 𝑍) ∪ (𝑌 × 𝑍) → [0,∞)
where, for 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , and 𝑧 ∈ 𝑍 ,

𝑓 ′ (𝑥, 𝑦) = 𝑓 (2𝑥 + 𝑦), 𝑓 ′ (𝑥, 𝑧) = 𝑓 (𝑥 − 𝑧), 𝑓 ′ (𝑦, 𝑧) = 𝑓 (−𝑦 − 2𝑧),
𝑔′ (𝑥, 𝑦) = 𝑔(2𝑥 + 𝑦), 𝑔′ (𝑥, 𝑧) = 𝑔(𝑥 − 𝑧), 𝑔′ (𝑦, 𝑧) = 𝑔(−𝑦 − 2𝑧).

Note that 𝑔′ takes values in [0, 1]. Then

∥ 𝑓 ′ − 𝑔′∥□ = ∥ 𝑓 − 𝑔∥□ ≤ [
when 𝑓 ′ − 𝑔′ is interpreted as restricted to 𝑋 × 𝑌 (and the same for 𝑋 × 𝑍 or 𝑌 × 𝑍). Thus
by the sparse triangle counting lemma (Theorem 9.5.1), we have

|𝑡 (𝐾3, 𝑓
′) − 𝑡 (𝐾3, 𝑔

′) | ≤ [Ω(1) .
Note that

𝑡 (𝐾3, 𝑓
′) = E𝑥,𝑦,𝑧 𝑓 ′ (𝑥, 𝑦) 𝑓 ′ (𝑥, 𝑧) 𝑓 ′ (𝑦, 𝑧)
= E𝑥,𝑦,𝑧∈Z/𝑁Z 𝑓 (2𝑥 + 𝑦) 𝑓 (𝑥 − 𝑧) 𝑓 (−𝑦 − 2𝑧)
= E𝑥,𝑑∈Z/𝑁Z 𝑓 (𝑥) 𝑓 (𝑥 + 𝑑) 𝑓 (𝑥 + 2𝑑).
= Λ3( 𝑓 )
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Likewise, 𝑡 (𝐾3, 𝑔
′) = Λ3(𝑔). And so

|Λ3( 𝑓 ) − Λ3(𝑔) | ≤ [Ω(1) . (9.10)

We have
E𝑔 ≥ E 𝑓 − [ ≥ 𝛿 − [.

Provided that Y is chosen to be small enough so that [ is small enough (say, so that E𝑔 ≥
𝛿/2), we deduce from Roth’s theorem (the functional version, Theorem 9.6.1) Λ3(𝑔) ≳𝛿 1.
Therefore

𝑝−3𝑁−2 |{(𝑥, 𝑑) : 𝑥, 𝑥 + 𝑑, 𝑥 + 2𝑑 ∈ 𝐴}| = Λ3( 𝑓 )
(9.10)≥ Λ3(𝑔) − [Ω(1) ≳𝛿 1

provided that [ is sufficiently small. We can now conclude that 𝐴 must have a nontrivial
3-AP if 𝑁 is large enough. Indeed, if 𝐴 were 3-AP-free, then

|{(𝑥, 𝑑) : 𝑥, 𝑥 + 𝑑, 𝑥 + 2𝑑 ∈ 𝐴}| = |𝐴| ≤ |𝑆 | = 𝑝𝑁,
and so the above inequality would imply 𝑝 ≲𝛿 𝑁−1/2. However, this would be incompatible
with the 3-linear forms condition on 𝑆, since the probability that random 𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑧0, 𝑧1 ∈
Z/𝑁Z satisfy 



−𝑦0 − 2𝑧0, 𝑥0 − 𝑧0, 2𝑥0 + 𝑦0,
−𝑦1 − 2𝑧0, 𝑥1 − 𝑧0, 2𝑥1 + 𝑦0,
−𝑦0 − 2𝑧1, 𝑥0 − 𝑧1, 2𝑥0 + 𝑦1,
−𝑦1 − 2𝑧1, 𝑥1 − 𝑧1, 2𝑥1 + 𝑦1



⊆ 𝑆

lies in the interval (1 ± Y)𝑝12, but this probability is at least |𝑆 | /𝑁5 = 𝑝/𝑁4 (the probability
that all 12 terms above are equal to the same element of 𝑆). So (1+Y)𝑝12 ≥ 𝑝𝑁−4, and hence
𝑝 ≳ 𝑁−4/11, which would contradict the earlier 𝑝 ≲𝛿 𝑁−1/2 if 𝑁 is large enough. □

Remark 9.6.3. The above proof generalizes to a proof of the relative Szemerédi theorem,
assuming Szemerédi’s theorem as a black box.

All the arguments in this chapter can be generalized to deduce the relative Szemerédi
theorem (Theorem 9.2.7) from Szemerédi’s theorem. The ideas are essentially the same,
although the notation gets heavier.

Further Reading
The original paper by Green and Tao (2008) titled The primes contain arbitrarily long
arithmetic progressions is worth reading. Their follow-up paper Linear equations in primes
(2010a) substantially strengthens the result to asymptotically count the number of 𝑘-APs
in the primes, though the proof was conditional on several claims that were subsequently
proved, most notably the inverse theorem for Gowers uniformity norms (Green, Tao, and
Ziegler 2012).

A number of expository articles were written on this topic shortly after the breakthroughs:
Green (2007b, 2014), Tao (2007b), Kra (2006), Wolf (2013).

The graph-theoretic approach taken in this chapter is adapted from the article The Green–
Tao theorem: an exposition by Conlon, Fox, and Zhao (2014). The article presents a full proof
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of the Green–Tao theorem that incorporates various simplifications found since the original
work. The analytic number theoretic arguments, which were omitted from this chapter, can
also be found in that article.

Chapter Summary

• Green–Tao theorem. The primes contain arbitrarily long arithmetic progressions. Proof
strategy:
– Embed the primes in a slightly larger set, the “almost primes,” which enjoys certain

pseudorandomness properties.
– Show that every 𝑘-AP-free subset of such a pseudorandom set must have negligible

size.
• Relative Szemerédi theorem. If 𝑆 ⊆ Z/𝑁Z satisfies a 𝒌-linear forms condition, then

every 𝑘-AP-free subset of 𝑆 has size 𝑜( |𝑆 |).
– The 3-linear forms condition is a pseudorandomness hypothesis. It says that the asso-

ciated tripartite graph has 𝐹-density close to random whenever 𝐹 ⊆ 𝐾2,2,2.
• Proof of the relative Szemerédi theorem uses the transference principle to transfer

Szemerédi’s theorem from the dense setting to the sparse pseudorandom setting.
– First approximate 𝐴 ⊆ 𝑆 by a dense set 𝐵 ⊆ Z/𝑁Z (dense model theorem).
– Then show that the normalized count of 𝑘-APs in 𝐴 and 𝐵 are similar (sparse counting

lemma).
– Finally conclude using Szemerédi’s theorem that 𝐵 has many 𝑘-APs, and therefore so

must 𝐴.
• Dense model theorem. If a sparse set 𝑆 is close to random in normalized cut norm, then

every subset 𝐴 ⊆ 𝑆 can be approximated by some dense 𝐵 ⊆ Z/𝑁Z in normalized cut
norm.

• Sparse counting lemma. If two graphs (one sparse and one dense) are close to normalized
cut norm, then they have similar triangle counts, provided that the sparse graph lies inside
a sparse pseudorandom graph satisfying the 3-linear forms condition (which says that the
densities of 𝐾2,2,2 and its subgraphs are close to random).
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