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Forbidding 3-Term Arithmetic Progressions

Chapter Highlights

• Fourier analytic proof of Roth’s theorem
• Finite field model in additive combinatorics: F𝑛𝑝 as a model for the integers
• Basics of discrete Fourier analysis
• Density increment argument in the proof of Roth’s theorem
• The polynomial method proof of Roth’s theorem in F𝑛3• Arithmetic analogue of the regularity lemma, and application to Roth’s theorem with

popular difference

In this chapter, we study Roth’s theorem, which says that every 3-AP-free subset of [𝑁]
has size 𝑜(𝑁).

Previously, in Section 2.4, we gave a proof of Roth’s theorem using the graph regularity
lemma. The main goal of this chapter is to give a Fourier analytic proof of Roth’s theorem.
This is also Roth’s original proof (1953).

We begin by proving Roth’s theorem in the finite field model. That is, we first prove an
analogue of Roth’s theorem in F𝑛3 . The finite field vector space serves as a fruitful playground
for many additive combinatorics problems. Techniques such as Fourier analysis are often
simpler to carry out in the finite field model. After we develop the techniques in the finite
field model, we then prove Roth’s theorem in the integers. It can be a good idea to first try out
ideas in the finite field model before bringing them to the integers, as there may be additional
technical difficulties in the integers.

Later in Section 6.5, we will see a completely different proof of Roth’s theorem in F𝑛3
using the polynomial method, which gives significantly better quantitative bounds. This
proof surprised many people at the time of its discovery. However, unlike Fourier analysis,
this polynomial method technique only applies to the finite field setting, and it is unknown
how to apply it to the integers.

There is a parallel between the Fourier analytic method in this chapter and the graph
regularity method from Chapter 2. In Section 6.6, we develop an arithmetic regularity lemma
and use it in Section 6.7 to prove a strengthening of Roth’s theorem showing popular common
differences.

6.1 Fourier Analysis in Finite Field Vector Spaces
We review some basic facts about Fourier analysis in F𝑛𝑝 for a prime 𝑝. Everything here can
be extended to arbitrary abelian groups. As we saw in Section 3.3, eigenvalues of Cayley
graphs on an abelian group and the Fourier transform are intimately related.
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204 Forbidding 3-Term Arithmetic Progressions

Throughout this section, we fix a prime 𝑝 and let

𝜔 = exp(2𝜋𝑖/𝑝).

Definition 6.1.1 (Fourier transform in F𝑛𝑝)
The Fourier transform of 𝑓 : F𝑛𝑝 → C is a function �̂� : F𝑛𝑝 → C defined by setting, for
each 𝑟 ∈ F𝑛𝑝,

̂𝒇 (𝒓) B E𝑥∈F𝑛𝑝 𝑓 (𝑥)𝜔−𝑟 ·𝑥 =
1
𝑝𝑛

∑︁
𝑥∈F𝑛𝑝

𝑓 (𝑥)𝜔−𝑟 ·𝑥

where 𝑟 · 𝑥 = 𝑟1𝑥1 + · · · + 𝑟𝑛𝑥𝑛.

In particular, �̂� (0) = E 𝑓 is the average of 𝑓 . This value often plays a special role compared
to other values �̂� (𝑟).

To simplify notation, it is generally understood that the variables being averaged or summed
over are varying uniformly in the domain F𝑛𝑝.

Let us now state several important properties of the Fourier transform. We will see that all
these properties are consequences of the orthogonality of the Fourier basis.

The next result allows us to write 𝑓 in terms of �̂� .

Theorem 6.1.2 (Fourier inversion formula)
Let 𝑓 : F𝑛𝑝 → C. For every 𝑥 ∈ F𝑛𝑝,

𝑓 (𝑥) =
∑︁
𝑟∈F𝑛𝑝

�̂� (𝑟)𝜔𝑟 ·𝑥 .

The next result tells us that the Fourier transform preserves inner products.

Theorem 6.1.3 (Parseval / Plancherel)
Given 𝑓 , 𝑔 : F𝑛𝑝 → C, we have

E𝑥∈F𝑛𝑝 𝑓 (𝑥)𝑔(𝑥) =
∑︁
𝑟∈F𝑛𝑝

�̂� (𝑟)�̂�(𝑟).

In particular, as a special case ( 𝑓 = 𝑔),

E𝑥∈F𝑛𝑝 | 𝑓 (𝑥) |2 =
∑︁
𝑟∈F𝑛𝑝
| �̂� (𝑟) |2.

Remark 6.1.4 (History/naming). The names Parseval and Plancherel are often used in-
terchangeably in practice to refer to the unitarity of the Fourier transform (i.e., the above
theorem). Parseval derived the identity for the Fourier series of a periodic function on R,
whereas Plancherel derived it for the Fourier transform on R.

As is nowadays the standard in additive combinatorics, we adopt the following convention
for the Fourier transform in finite abelian groups:

average in physical space E 𝒇
and sum in frequency (Fourier) space ∑

̂𝒇 .
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6.1 Fourier Analysis in Finite Field Vector Spaces 205

For example, following this convention, we define an “averaging” inner product for functions
𝑓 , 𝑔 : F𝑛𝑝 → C by

⟨ 𝒇 , 𝒈⟩ B E𝑥∈F𝑛𝑝 𝑓 (𝑥)𝑔(𝑥) and ∥ 𝒇 ∥2 B ⟨ 𝑓 , 𝑓 ⟩1/2 .
In the frequency/Fourier domain, we define the “summing” inner product for functions
𝛼, 𝛽 : F𝑛𝑝 → C by

⟨𝜶, 𝜷⟩ℓ2 B
∑︁
𝑥∈F𝑛𝑝

𝛼(𝑥)𝛽(𝑥). and ∥𝜶∥ℓ2 B ⟨𝛼, 𝛼⟩1/2
ℓ2 .

Writing 𝛾𝑟 : F𝑛𝑝 → C for the function defined by

𝜸𝒓 (𝒙) B 𝜔𝑟 ·𝑥

(this is a character of the group F𝑛𝑝), the Fourier transform can be written as

�̂� (𝑟) = E𝑥𝛾𝑟 (𝑥) 𝑓 (𝑥) = ⟨𝛾𝑟 , 𝑓 ⟩ . (6.1)

Parseval’s identity can be stated as

⟨ 𝑓 , 𝑔⟩ = ⟨ �̂� , �̂�⟩ℓ2 and ∥ 𝑓 ∥2 = ∥ �̂� ∥ℓ2 .

With these conventions, we often do not need to keep track of normalization factors.
The above identities can be proved via direct verification, by plugging in the formula for

the Fourier transform. We give a more conceptual proof below.

Proof of the Fourier inversion formula (Theorem 6.1.2). Let 𝛾𝑟 (𝑥) = 𝜔𝑟 ·𝑥 . Then the set of
functions

{𝛾𝑟 : 𝑟 ∈ F𝑛𝑝}
forms an orthonormal basis for the space of functions F𝑛𝑝 → C with respect to the averaging
inner product ⟨·, ·⟩. Indeed,

⟨𝛾𝑟 , 𝛾𝑠⟩ = E𝑥𝜔 (𝑠−𝑟 ) ·𝑥 =
{

1 if 𝑟 = 𝑠,
0 if 𝑟 ≠ 𝑠

Furthermore, there are 𝑝𝑛 functions 𝛾𝑟 (as 𝑟 ranges over F𝑛𝑝). So they form a basis of the
𝑝𝑛-dimensional vector space of all functions 𝑓 : F𝑛𝑝 → C. We will call this basis the Fourier
basis.

Now, given an arbitrary 𝑓 : F𝑛𝑝 → C, the “coordinate” of 𝑓 with respect to the basis vector
𝛾𝑟 of the Fourier basis is ⟨𝛾𝑟 , 𝑓 ⟩ = �̂� (𝑟) by (6.1). So

𝑓 =
∑︁
𝑟

�̂� (𝑟)𝛾𝑟 .

This is precisely the Fourier inversion formula. □

Proof of Parseval’s identity (Theorem 6.1.3). Continuing from the previous proof, since the
Fourier basis is orthonormal, we can evaluate ⟨ 𝑓 , 𝑔⟩ with respects to coordinates in this basis,
thereby by yielding

⟨ 𝑓 , 𝑔⟩ =
∑︁
𝑟∈F𝑛𝑝
⟨𝛾𝑟 , 𝑓 ⟩ ⟨𝛾𝑟 , 𝑔⟩ =

∑︁
𝑟∈F𝑛𝑝

�̂� (𝑟)�̂�(𝑟). □
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206 Forbidding 3-Term Arithmetic Progressions

The convolution is an important operation.

Definition 6.1.5 (Convolution)
Given 𝑓 , 𝑔 : F𝑛𝑝 → C, define 𝑓 ∗ 𝑔 : F𝑛𝑝 → C by

( 𝒇 ∗ 𝒈) (𝑥) B E𝑦∈F𝑛𝑝 𝑓 (𝑦)𝑔(𝑥 − 𝑦).
In other words, ( 𝑓 ∗ 𝑔) (𝑥) is the average of 𝑓 (𝑦)𝑔(𝑧) over all pairs (𝑦, 𝑧) with 𝑦 + 𝑧 = 𝑥.

Example 6.1.6. (a) If 𝑓 is supported on 𝐴 ⊆ F𝑛𝑝 and 𝑔 is supported on 𝐵 ⊆ F𝑛𝑝, then 𝑓 ∗ 𝑔
is supported on the sumset 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

(b) Let 𝑊 be a subspace of F𝑛𝑝. Let 𝜇𝑊 = (𝑝𝑛/|𝑊 |)1𝑊 be the indicator function on 𝑊
normalized so that E𝜇𝑊 = 1. Then for any 𝑓 : F𝑛𝑝 → C, the function 𝑓 ∗ 𝜇𝑊 is obtained from
𝑓 by replacing its value at 𝑥 by its average value on the coset 𝑥 +𝑊 .

The second example suggests that convolution can be thought of as smoothing a function,
damping its potentially rough perturbations.

The Fourier transform conveniently converts convolutions to multiplication.

Theorem 6.1.7 (Convolution identity)
For any 𝑓 , 𝑔 : F𝑛𝑝 → C and any 𝑟 ∈ F𝑛𝑝,

�𝑓 ∗ 𝑔(𝑟) = �̂� (𝑟)�̂�(𝑟).

Proof. We have
�𝑓 ∗ 𝑔(𝑟) = E𝑥 ( 𝑓 ∗ 𝑔) (𝑥)𝜔−𝑟 ·𝑥 = E𝑥E𝑦,𝑧:𝑦+𝑧=𝑥 𝑓 (𝑦)𝑔(𝑧)𝜔−𝑟 · (𝑦+𝑧)

= E𝑦,𝑧 𝑓 (𝑦)𝑔(𝑧)𝜔−𝑟 · (𝑦+𝑧) =
(
E𝑦 𝑓 (𝑦)𝜔−𝑟 ·𝑦

) (E𝑧𝑔(𝑧)𝜔−𝑟 ·𝑧) = �̂� (𝑟)�̂�(𝑟). □

By repeated applications of the convolution identity, we have

( 𝑓1 ∗ · · · ∗ 𝑓𝑘)∧ = �̂�1 �̂�2 · · · �̂�𝑘
(here we write 𝑓 ∧ for �̂� for typographical reasons).

Now we introduce a quantity relevant to Roth’s theorem on 3-APs.

Definition 6.1.8 (3-AP density)
Given 𝑓 , 𝑔, ℎ : F𝑛𝑝 → C, we write

𝚲( 𝒇 , 𝒈, 𝒉) B E𝑥,𝑦 𝑓 (𝑥)𝑔(𝑥 + 𝑦)ℎ(𝑥 + 2𝑦), (6.2)

and
𝚲3( 𝒇 ) B Λ( 𝑓 , 𝑓 , 𝑓 ). (6.3)

Note that for any 𝐴 ⊆ F𝑛𝑝,
Λ(1𝐴) = 𝑝−2𝑛 |{(𝑥, 𝑦) : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}| = “3-AP density of 𝐴.”.

Here we include “trivial” 3-APs (i.e., those with with 𝑦 = 0).
The following identity, relating the Fourier transform and 3-APs, plays a central role in

the Fourier analytic proof of Roth’s theorem.
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6.1 Fourier Analysis in Finite Field Vector Spaces 207

Proposition 6.1.9 (Fourier and 3-AP)
Let 𝑝 be an odd prime. If 𝑓 , 𝑔, ℎ : F𝑛𝑝 → C, then

Λ( 𝑓 , 𝑔, ℎ) =
∑︁
𝑟

�̂� (𝑟)�̂�(−2𝑟) ℎ̂(𝑟).

We will give two proofs of this proposition. The first proof is more mechanically straight-
forward. It is similar to the proof of the convolution identity earlier. The second proof directly
applies the convolution identity, and may be a bit more abstract/conceptual.

First proof. We expand the left-hand side using the formula for Fourier inversion.

E𝑥,𝑦 𝑓 (𝑥)𝑔(𝑥 + 𝑦)ℎ(𝑥 + 2𝑦)

= E𝑥,𝑦

(∑︁
𝑟1

�̂� (𝑟1)𝜔𝑟1 ·𝑥
) (∑︁

𝑟2

�̂�(𝑟2)𝜔𝑟2 · (𝑥+𝑦)
) (∑︁

𝑟3

ℎ̂(𝑟3)𝜔𝑟3 · (𝑥+2𝑦)
)

=
∑︁
𝑟1 ,𝑟2 ,𝑟3

�̂� (𝑟1)�̂�(𝑟2) ℎ̂(𝑟3)E𝑥𝜔𝑥 · (𝑟1+𝑟2+𝑟3 )E𝑦𝜔𝑦 · (𝑟2+2𝑟3 )

=
∑︁
𝑟1 ,𝑟2 ,𝑟3

�̂� (𝑟1)�̂�(𝑟2) ℎ̂(𝑟3)1𝑟1+𝑟2+𝑟3=01𝑟2+2𝑟3=0

=
∑︁
𝑟

�̂� (𝑟)�̂�(−2𝑟) ℎ̂(𝑟).

In the last step, we use that 𝑟1 + 𝑟2 + 𝑟3 = 0 and 𝑟2 + 2𝑟3 = 0 together imply 𝑟1 = 𝑟3. □

Second proof. Write 𝑔1(𝑦) = 𝑔(−𝑦/2). So 𝑔1(𝑟) = �̂�(−2𝑟). Applying the convolution
identity,

E𝑥,𝑦 𝑓 (𝑥)𝑔(𝑥 + 𝑦)ℎ(𝑥 + 2𝑦) = E𝑥,𝑦,𝑧:𝑥−2𝑦+𝑧=0 𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧)
= E𝑥,𝑦,𝑧:𝑥+𝑦+𝑧=0 𝑓 (𝑥)𝑔1(𝑦)ℎ(𝑧)
= ( 𝑓 ∗ 𝑔1 ∗ ℎ) (0)
=

∑︁
𝑟

�𝑓 ∗ 𝑔1 ∗ ℎ(𝑟) [Fourier inversion]

=
∑︁
𝑟

�̂� (𝑟)𝑔1(𝑟) ℎ̂(𝑟) [Convolution identity]

=
∑︁
𝑟

�̂� (𝑟)�̂�(−2𝑟) ℎ̂(𝑟). □

Remark 6.1.10. In the following section, we will work in F𝑛3 . Since −2 = 1 in F3 (and
so 𝑔1 = 𝑔 above), the proof looks even simpler. In particular, by Fourier inversion and the
convolution identity,

Λ3(1𝐴) = 3−2𝑛 ��{(𝑥, 𝑦, 𝑧) ∈ 𝐴3 : 𝑥 + 𝑦 + 𝑧 = 0}
��

= (1𝐴 ∗ 1𝐴 ∗ 1𝐴) (0) =
∑︁
𝑟

(1𝐴 ∗ 1𝐴 ∗ 1𝐴)∧(𝑟) =
∑︁
𝑟

1̂𝐴(𝑟)3. (6.4)

When 𝐴 = −𝐴, the eigenvalues of the adjacency matrix of the Cayley graph Cay(F𝑛3 , 𝐴) are
3𝑛1̂𝐴(𝑟), 𝑟 ∈ F𝑛3 (recall from Section 3.3 on the eigenvalues of abelian Cayley graphs are
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208 Forbidding 3-Term Arithmetic Progressions

given by the Fourier transforms). The quantity 32𝑛Λ3(1𝐴) is the number of closed walks of
length 3 in the Cayley graph Cay(F𝑛𝑝, 𝐴). So the above identity is saying that the number of
closed walks of length 3 in Cay(F𝑛3 , 𝐴) equals to the third moment of the eigenvalues of the
adjacency matrix, which is a general fact for every graph. (When 𝐴 ≠ −𝐴, we can consider
the directed or bipartite version of this argument.)

The following exercise generalizes the above identity.

Exercise 6.1.11. Let 𝑎1, . . . , 𝑎𝑘 be nonzero integers, none divisible by the prime 𝑝. Let
𝑓1, . . . , 𝑓𝑘 : F𝑛𝑝 → C. Show that

E𝑥1 ,...,𝑥𝑘 ∈F𝑛𝑝 :𝑎1𝑥1+···+𝑎𝑘 𝑥𝑘=0 𝑓1(𝑥1) · · · 𝑓𝑘 (𝑥𝑘) =
∑︁
𝑟∈F𝑛𝑝

�̂�1(𝑎1𝑟) · · · �̂�𝑘 (𝑎𝑘𝑟).

6.2 Roth’s Theorem in the Finite Field Model
In this section, we use Fourier analysis to prove the following finite field analogue of Roth’s
theorem (Meshulam 1995). Later in the chapter, we will convert this proof to the integer
setting.

In an abelian group, a set 𝐴 is said to be 3-AP-free if 𝐴 does not have three distinct
elements of the form 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦. A 3-AP-free subset of F𝑛3 is also called a cap set. The
cap set problem asks to determine the size of the largest cap set in F𝑛3 .

Theorem 6.2.1 (Roth’s theorem in F𝑛3 )
Every 3-AP-free subset of F𝑛3 has size 𝑂 (3𝑛/𝑛).

Remark 6.2.2 (General finite fields). We work in F𝑛3 mainly for convenience. The argument
presented in this section also shows that for every odd prime 𝑝, there is some constant 𝐶𝑝 so
that every 3-AP-free subset of F𝑛𝑝 has size ≤ 𝐶𝑝𝑝𝑛/𝑛.

There are several equivalent interpretations of 𝑥, 𝑦, 𝑧 ∈ F𝑛3 forming a 3-AP (allowing the
possibility for a trivial 3-AP with 𝑥 = 𝑦 = 𝑧):
• (𝑥, 𝑦, 𝑧) = (𝑥, 𝑥 + 𝑑, 𝑥 + 2𝑑) for some 𝑑;
• 𝑥 − 2𝑦 + 𝑧 = 0;
• 𝑥 + 𝑦 + 𝑧 = 0;
• 𝑥, 𝑦, 𝑧 are three distinct points of a line in F𝑛3 or are all equal;
• for each 𝑖, the 𝑖th coordinates of 𝑥, 𝑦, 𝑧 are all distinct or all equal.

Remark 6.2.3 (SET card game). The card game SET comes with a deck of 81 cards (see
Figure 6.1). Each card one of three possibilities in each of the following four features:
• Number: 1, 2, 3;
• Symbol: diamond, squiggle, oval;
• Shading: solid, striped, open;
• Color: red, green, purple.

Each of the 34 = 81 combinations appears exactly once as a card.
In this game, a combination of three cards is called a “set” if each of the four features

shows up as all identical or all distinct among the three cards. For the example, the three cards
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6.2 Roth’s Theorem in the Finite Field Model 209

Figure 6.1 The complete deck of 81 cards in the game SET.

shown below form a “set”: number (all distinct), symbol (all distinct), shading (all striped),
color (all red).

In a standard play of the game, the dealer lays down twelve cards on the table until some
player finds a “set,” in which case the player keeps the three cards of the “set” as their score,
then dealer replenishes the table by laying down more cards. If no set is found, then the dealer
continues to lay down more cards until a set is found.

The cards of the game correspond to points of F4
3. A “set” is precisely a 3-AP. The cap set

problem in F4
3 asks for the number of cards without a “set.” The size of the maximum cap set

in F4
3 is 20 (Pellegrino 1970).
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210 Forbidding 3-Term Arithmetic Progressions

Here is the proof strategy of Roth’s theorem in F𝑛3 :
(1) A 3-AP-free set has a large Fourier coefficient.
(2) A large Fourier coefficient implies density increment on some hyperplane.
(3) Iterate.
As in the proof of the graph regularity lemma (where we refined partitions to obtain an

energy increment), the above process must terminate in a bounded number of steps since the
density of a subset is always between 0 and 1.

Similar to what we saw in Chapter 3 on pseudorandom graphs, a set 𝐴 ⊆ F𝑛3 has pseu-
dorandom properties if and only if all its Fourier coefficients 1̂𝐴(𝑟), for 𝑟 ≠ 0, are small in
absolute value. When 𝐴 is pseudorandom in this Fourier-uniform sense, the 3-AP-density of
𝐴 is similar to that of a random set with the same density. On the flip side, a large Fourier
coefficient in 𝐴 points to nonuniformity along the direction of the Fourier character. Then
we can restrict 𝐴 to some hyperplane and extract a density increment.

The following counting lemma shows that a Fourier-uniform subset of F𝑛3 has 3-AP density
similar to that of a random set. It has a similar flavor as the proof that EIG implies C4 in
Theorem 3.1.1. It is also related to the counting lemma for graphons (Theorem 4.5.1). Recall
the 3-AP-density Λ3 from Definition 6.1.8.

Lemma 6.2.4 (3-AP counting lemma)
Let 𝑓 : F𝑛3 → [0, 1]. Then��Λ3( 𝑓 ) − (E 𝑓 )3

�� ≤ max
𝑟≠0
| �̂� (𝑟) | ∥ 𝑓 ∥22 .

Proof. By Proposition 6.1.9 (also see (6.4)),

Λ3( 𝑓 ) =
∑︁
𝑟

�̂� (𝑟)3 = �̂� (0)3 +
∑︁
𝑟≠0

�̂� (𝑟)3.

Since E 𝑓 = �̂� (0), we have��Λ3( 𝑓 ) − (E 𝑓 )3
�� ≤∑︁

𝑟≠0

| �̂� (𝑟) |3 ≤ max
𝑟≠0
| �̂� (𝑟) | ·

∑︁
𝑟

| �̂� (𝑟) |2 = max
𝑟≠0
| �̂� (𝑟) | ∥ 𝑓 ∥22 .

The final step is by Parseval. □

Remark 6.2.5. It would be insufficient to bound each term | �̂� (𝑟) |3 by ∥ �̂� ∥3∞. Instead, Parseval
comes for the rescue. See Remark 3.1.19 for a similar issue.

Step 1. A 3-AP-free set has a large Fourier coefficient

Lemma 6.2.6 (3-AP-free implies a large Fourier coefficient)
Let 𝐴 ⊆ F𝑛3 and 𝛼 = |𝐴| /3𝑛. If 𝐴 is 3-AP-free and 3𝑛 ≥ 2𝛼−2, then there is 𝑟 ≠ 0 such
that |1̂𝐴(𝑟) | ≥ 𝛼2/2.

Proof. Since 𝐴 is 3-AP-free, Λ3(𝐴) = |𝐴| /32𝑛 = 𝛼/3𝑛, as all 3-APs are trivial (i.e., with
common difference zero). By the counting lemma, Lemma 6.2.4,

𝛼3 − 𝛼

3𝑛
= 𝛼3 − Λ3(1𝐴) ≤ max

𝑟≠0
|̂1𝐴(𝑟) | ∥1𝐴∥22 = max

𝑟≠0
|̂1𝐴(𝑟) |𝛼.

Graph Theory and Additive Combinatorics — Yufei Zhao



6.2 Roth’s Theorem in the Finite Field Model 211

By the hypothesis 3𝑛 ≥ 2𝛼−2, the left-hand side above is ≥ 𝛼3/2. So there is some 𝑟 ≠ 0
with |1̂𝐴(𝑟) | ≥ 𝛼2/2. □

Step 2. A large Fourier coefficient implies density increment on some hyperplane

Lemma 6.2.7 (Large Fourier coefficient implies density increment)
Let 𝐴 ⊆ F𝑛3 with 𝛼 = |𝐴| /3𝑛. Suppose |1̂𝐴(𝑟) | ≥ 𝛿 > 0 for some 𝑟 ≠ 0. Then 𝐴 has
density at least 𝛼 + 𝛿/2 when restricted to some hyperplane.

Proof. We have

1̂𝐴(𝑟) = E𝑥1𝐴(𝑥)𝜔−𝑟 ·𝑥 = 𝛼0 + 𝛼1𝜔 + 𝛼2𝜔
2

3
where 𝛼0, 𝛼1, 𝛼2 are densities of 𝐴 on the cosets of 𝑟⊥. We want to show that one of 𝛼0, 𝛼1, 𝛼2
is significantly larger than 𝛼. This is easy to check directly, but let us introduce a trick that
we will also use later in the integer setting.

We have 𝛼 = (𝛼0 + 𝛼1 + 𝛼2)/3. By the triangle inequality,

3𝛿 ≤
��𝛼0 + 𝛼1𝜔 + 𝛼2𝜔

2��
=

��(𝛼0 − 𝛼) + (𝛼1 − 𝛼)𝜔 + (𝛼2 − 𝛼)𝜔2��
≤ |𝛼0 − 𝛼 | + |𝛼1 − 𝛼 | + |𝛼2 − 𝛼 |

=
2∑︁
𝑗=0

( |𝛼 𝑗 − 𝛼 | + (𝛼 𝑗 − 𝛼)) .
Consequently, there exists 𝑗 such that |𝛼 𝑗 − 𝛼 | + (𝛼 𝑗 − 𝛼) ≥ 𝛿. Note that |𝑡 | + 𝑡 equals 2𝑡 if
𝑡 > 0 and 0 if 𝑡 ≤ 0. So 𝛼 𝑗 − 𝛼 ≥ 𝛿/2, as desired. □

Combining the previous two lemmas, here is what we have proved so far.

Lemma 6.2.8 (3-AP-free implies density increment)
Let 𝐴 ⊆ F𝑛3 and 𝛼 = |𝐴| /3𝑛. If 𝐴 is 3-AP-free and 3𝑛 ≥ 2𝛼−2, then 𝐴 has density at least
𝛼 + 𝛼2/4 when restricted to some hyperplane. □

We now view this hyperplane 𝐻 as F𝑛−1
3 (we may need to select a new origin for 𝐻 if

0 ∉ 𝐻). The restriction of 𝐴 to 𝐻 (i.e., 𝐴 ∩ 𝐻) is now a 3-AP-free subset of 𝐻. The density
increased from 𝛼 to 𝛼 + 𝛼2/4. Next we iterate this density increment.

Remark 6.2.9 (Translation invariance). It is important that the pattern we are forbidding
(3-AP) is translation-invariant. What is wrong with the argument if instead we forbid the
pattern 𝑥 + 𝑦 = 𝑧? Note that {𝑥 ∈ F𝑛3 : 𝑥1 = 2} avoids solutions to 𝑥 + 𝑦 = 𝑧, and this set has
density 1/3.

Step 3. Iterate the density increment
We start with a 3-AP-free 𝐴 ⊆ F𝑛3 . Let 𝑉0 B F

𝑛
3 with density 𝛼0 B 𝛼 = |𝐴| /3𝑛. Repeatedly

apply Lemma 6.2.8. After 𝑖 rounds, we restrict 𝐴 to a codimension 𝑖 affine subspace 𝑉𝑖
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(with 𝑉0 ⊇ 𝑉1 ⊇ · · · ). Let 𝛼𝑖 = |𝐴 ∩𝑉𝑖 | /|𝑉𝑖 | be the density of 𝐴 in 𝑉𝑖. As long as
2𝛼−2

𝑖 ≤ |𝑉𝑖 | = 3𝑛−𝑖, we can apply Lemma 6.2.8 to obtain a 𝑉𝑖+1 with density increment

𝛼𝑖+1 ≥ 𝛼𝑖 + 𝛼2
𝑖 /4.

Since 𝛼 = 𝛼0 ≤ 𝛼1 ≤ · · · ≤ 1, and 𝛼𝑖 increases by ≥ 𝛼2
𝑖 /4 ≥ 𝛼2/4 at each step, the process

terminates after 𝑚 ≤ 4/𝛼2 rounds, at which point we must have 3𝑛−𝑚 < 2𝛼−2
𝑚 ≤ 2𝛼−2 (or

else we can continue via Lemma 6.2.8). So 𝑛 < 𝑚 + log3(2𝛼−2) = 𝑂 (1/𝛼2). Thus 𝛼 ≤ 1/√𝑛.
This is just shy of the bound 𝛼 = 𝑂 (1/𝑛) that we aim to prove. So let us re-do the density
increment analysis more carefully to analyze how quickly 𝛼𝑖 grows.

Each round, 𝛼𝑖 increases by at least 𝛼2/4. So it takes ≤ ⌈4/𝛼⌉ initial rounds for 𝛼𝑖 to
double. Once 𝛼𝑖 ≥ 2𝛼, it then increases by at least 𝛼2

𝑖 /4 each round afterwards, so it takes
≤ ⌈1/𝛼𝑖⌉ ≤ ⌈1/𝛼⌉ additional rounds for the density to double again. And so on: the 𝑘th
doubling time is at most

⌈
42−𝑘/𝛼⌉. Since the density is always at least 𝛼, the density can

double at most log2(1/𝛼) times. So the total number of rounds is at most∑︁
𝑗≤log2 (1/𝛼)

⌈
42− 𝑗

𝛼

⌉
= 𝑂

(
1
𝛼

)
.

Suppose the process terminates after 𝑚 steps with density 𝛼𝑚. Then, examining the
hypothesis of Lemma 6.2.8, we find that the size of the final subspace |𝑉𝑚 | = 3𝑛−𝑚 is less
than 𝛼−2

𝑚 ≤ 𝛼−2. So 𝑛 ≤ 𝑚 + 𝑂 (log(1/𝛼)) ≤ 𝑂 (1/𝛼). Thus 𝛼 = |𝐴| /𝑁 = 𝑂 (1/𝑛). This
completes the proof of Roth’s theorem in F𝑛3 (Theorem 6.2.1).

Remark 6.2.10 (Quantitative bounds). Edel (2004) obtained a cap set of size ≥ 2.21𝑛
for sufficiently large 𝑛. This is obtained by constructing a cap set in F480

3 of size 𝑚 =
2327(273 + 37776) ≥ 2.21480, which then implies, by a product construction, a cap set in F480𝑘

3
of size 𝑚𝑘 for each positive integer 𝑘 .

It was an open problem of great interest whether there is an upper bound of the form 𝑐𝑛,
with constant 𝑐 < 3, on the size of cap sets in F𝑛3 . With significant effort, the Fourier analytic
strategy above was extended to prove an upper bound of the form 3𝑛/𝑛1+𝑐 (Bateman and
Katz 2012). So it came as quite a shock to the community when a very short polynomial
method proof was discovered, giving an upper bound 𝑂 (2.76𝑛) (Croot, Lev, and Pach
2017; Ellenberg and Gĳswĳt 2017). We will discuss this proof in Section 6.5. However, the
polynomial method proof appears to be specific to the finite field model, and it is not known
how to extend the strategy to the integers.

The following exercise shows why the above strategy does not generalize to 4-APs at least
in a straightforward manner.

Exercise 6.2.11 (Fourier uniformity does not control 4-AP counts). Let

𝐴 = {𝑥 ∈ F𝑛5 : 𝑥 · 𝑥 = 0}.
Prove that:

(a) |𝐴| = (5−1 + 𝑜(1))5𝑛 and |1̂𝐴(𝑟) | = 𝑜(1) for all 𝑟 ≠ 0;
(b) |{(𝑥, 𝑦) ∈ F𝑛5 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦, 𝑥 + 3𝑦 ∈ 𝐴}| ≠ (5−4 + 𝑜(1))52𝑛.

Hint:Firstwrite1𝐴asanexponentialsum.ComparewiththeGausssumfromTheorem3.3.14.
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Exercise 6.2.12 (Linearity testing). Show that for every prime 𝑝 there is some 𝐶𝑝 > 0
such that if 𝑓 : F𝑛𝑝 → F𝑝 satisfies

P𝑥,𝑦∈F𝑛𝑝 ( 𝑓 (𝑥) + 𝑓 (𝑦) = 𝑓 (𝑥 + 𝑦)) = 1 − 𝜀
then there exists some 𝑎 ∈ F𝑛𝑝 such that

P𝑥∈F𝑛𝑝 ( 𝑓 (𝑥) = 𝑎 · 𝑥) ≥ 1 − 𝐶𝑝𝜀.
In the above P expressions 𝑥 and 𝑦 are chosen independently and uniformly at random from
F𝑛𝑝.

The following exercises introduce Gowers uniformity norms. Gowers (2001) used them
to prove Szemerédi’s theorem by extending the Fourier analytic proof strategy of Roth’s
theorem to what is now called higher-order Fourier analysis.

The𝑈2 norm in the following exercise plays a role similar to Fourier analysis.

Exercise 6.2.13 (Gowers 𝑈2 uniformity norm). Let 𝑓 : F𝑛𝑝 → C. Define

∥ 𝒇 ∥𝑼2 B
(
E𝑥,𝑦,𝑦′∈F𝑛𝑝 𝑓 (𝑥) 𝑓 (𝑥 + 𝑦) 𝑓 (𝑥 + 𝑦′) 𝑓 (𝑥 + 𝑦 + 𝑦′)

)1/4
.

(a) Show that the expectation above is always a nonnegative real number, so that the
above expression is well defined. Also, show that ∥ 𝑓 ∥𝑈2 ≥ |E 𝑓 |.

(b) (Gowers Cauchy–Schwarz) For 𝑓1, 𝑓2, 𝑓3, 𝑓4 : F𝑛𝑝 → C, let

⟨ 𝑓1, 𝑓2, 𝑓3, 𝑓4⟩ = E𝑥,𝑦,𝑦′∈F𝑛𝑝 𝑓1(𝑥) 𝑓2(𝑥 + 𝑦) 𝑓3(𝑥 + 𝑦′) 𝑓4(𝑥 + 𝑦 + 𝑦′).
Prove that

|⟨ 𝑓1, 𝑓2, 𝑓3, 𝑓4⟩| ≤ ∥ 𝑓1∥𝑈2 ∥ 𝑓2∥𝑈2 ∥ 𝑓3∥𝑈2 ∥ 𝑓4∥𝑈2 .

(c) (Triangle inequality) Show that

∥ 𝑓 + 𝑔∥𝑈2 ≤ ∥ 𝑓 ∥𝑈2 + ∥𝑔∥𝑈2 .

Conclude that ∥ ∥𝑈2 is a norm.

Hint:Notethat⟨𝑓1,𝑓2,𝑓3,𝑓4⟩ismultilinear.Apply(b).

(d) (Relation with Fourier) Show that

∥ 𝑓 ∥𝑈2 = ∥ �̂� ∥ℓ4 .

Furthermore, deduce that if ∥ 𝑓 ∥∞ ≤ 1, then

∥ �̂� ∥∞ ≤ ∥ 𝑓 ∥𝑈2 ≤ ∥ �̂� ∥1/2∞ .

(The second inequality gives a so-called “inverse theorem” for the 𝑈2 norm: if
∥ 𝑓 ∥𝑈2 ≥ 𝛿 then | �̂� (𝑟) | ≥ 𝛿2 for some 𝑟 ∈ F𝑛𝑝. Informally, if 𝑓 is not 𝑈2-uniform,
then 𝑓 correlates with some exponential phase function of the form 𝑥 ↦→ 𝜔𝑟 ·𝑥 .)

The inadequacy of Fourier analysis towards understanding 4-APs is remedied by the 𝑈3

norm, which is significantly more mysterious than the 𝑈2 norm. Some easier properties of
the𝑈3 norm are given in the exercise below. Understanding properties of functions with large
𝑈3 norm (known as the inverse problem) lies at the heart of quadratic Fourier analysis,
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which we do not discuss in this book (see Further Reading). The structure of set addition,
which is the topic of the next chapter, plays a central role in this theory.

Exercise 6.2.14 (Gowers 𝑈3 uniformity norm). Let 𝑓 : F𝑛𝑝 → C. Define

∥ 𝒇 ∥𝑼3 B

(
E𝑥,𝑦1 ,𝑦2 ,𝑦3 𝑓 (𝑥) 𝑓 (𝑥 + 𝑦1) 𝑓 (𝑥 + 𝑦2) 𝑓 (𝑥 + 𝑦3) · · ·

· 𝑓 (𝑥 + 𝑦1 + 𝑦2) 𝑓 (𝑥 + 𝑦1 + 𝑦3) 𝑓 (𝑥 + 𝑦2 + 𝑦3) 𝑓 (𝑥 + 𝑦1 + 𝑦2 + 𝑦3)
)1/8

.

Alternatively, for each 𝑦 ∈ F𝑛𝑝, define the multiplicative finite difference Δ𝑦 𝑓 : F𝑛𝑝 → C
by Δ𝑦 𝑓 (𝑥) B 𝑓 (𝑥) 𝑓 (𝑥 + 𝑦). We can rewrite the above expression in terms of the 𝑈2

uniformity norm from Exercise 6.2.13 as

∥ 𝑓 ∥8𝑈3 = E𝑦∈F𝑛𝑝
Δ𝑦 𝑓 4

𝑈2 .

(a) (Monotonicity) Verify that the above two definitions for ∥ 𝑓 ∥𝑈3 coincide and give
well-defined nonnegative real numbers. Also, show that

∥ 𝑓 ∥𝑈2 ≤ ∥ 𝑓 ∥𝑈3 .

(b) (Separation of norms) Let 𝑝 be odd and 𝑓 : F𝑛𝑝 → C be defined by 𝑓 (𝑥) = 𝑒2𝜋𝑖𝑥 ·𝑥/𝑝.
Prove that ∥ 𝑓 ∥𝑈3 = 1 and ∥ 𝑓 ∥𝑈2 = 𝑝−𝑛/4.

(c) (Triangle inequality) Prove that

∥ 𝑓 + 𝑔∥𝑈3 ≤ ∥ 𝑓 ∥𝑈3 + ∥𝑔∥𝑈3 .

Conclude that ∥ ∥𝑈3 is a norm.
(d) (𝑈3 norm controls 4-APs) Let 𝑝 ≥ 5 be a prime, and 𝑓1, 𝑓2, 𝑓3, 𝑓4 : F𝑛𝑝 → C all

taking values in the unit disk. We write

Λ( 𝑓1, 𝑓2, 𝑓3, 𝑓4) B E𝑥,𝑦∈F𝑛𝑝 𝑓1(𝑥) 𝑓2(𝑥 + 𝑦) 𝑓3(𝑥 + 2𝑦) 𝑓4(𝑥 + 3𝑦).
Prove that

|Λ( 𝑓1, 𝑓2, 𝑓3, 𝑓4) | ≤ min
𝑠
∥ 𝑓𝑠 ∥𝑈3 .

Furthermore, deduce that if 𝑓 , 𝑔 : F𝑛𝑝 → [0, 1], then

|Λ( 𝑓 , 𝑓 , 𝑓 , 𝑓 ) − Λ(𝑔, 𝑔, 𝑔, 𝑔) | ≤ 4 ∥ 𝑓 − 𝑔∥𝑈3 .

Hint:Re-parameterizeasinSection2.10andthenrepeatedlyapplyCauchy–Schwarz.

6.3 Fourier Analysis in the Integers
Now we review the basic notions of Fourier analysis on the integers, also known as Fourier
series. In the next section, we adapt the proof of Roth’s theorem from F𝑛3 to Z.

Here R/Z is the set of reals mod 1. A function 𝑓 : R/Z → C is the same as a function
𝑓 : R→ C that is periodic mod 1 (i.e., 𝑓 (𝑥 + 1) = 𝑓 (𝑥) for all 𝑥 ∈ R).
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Definition 6.3.1 (Fourier transform in Z)
Given a finitely supported 𝑓 : Z→ C, define �̂� : R/Z→ C by setting, for all 𝜃 ∈ R,

̂𝒇 (𝜽) B
∑︁
𝑥∈Z

𝑓 (𝑥)𝑒(−𝑥𝜃),

where
𝒆(𝒕) B exp(2𝜋𝑖𝑡), 𝑡 ∈ R.

Note that �̂� (𝜃) = �̂� (𝜃 + 𝑛) for all integers 𝑛. So �̂� : R/Z→ C is well defined.
The various identities in Section 6.1 have counterparts stated below. We leave the proofs

as exercises for the reader.

Theorem 6.3.2 (Fourier inversion formula)
Given a finitely supported 𝑓 : Z→ C, for any 𝑥 ∈ Z,

𝑓 (𝑥) =
∫ 1

0
�̂� (𝜃)𝑒(𝑥𝜃) 𝑑𝜃.

Theorem 6.3.3 (Parseval / Plancherel)
Given finitely supported 𝑓 , 𝑔 : Z→ C,

∑︁
𝑥∈Z

𝑓 (𝑥)𝑔(𝑥) =
∫ 1

0
�̂� (𝜃)�̂�(𝜃) 𝑑𝜃

In particular, as a special case ( 𝑓 = 𝑔),
∑︁
𝑥∈Z
| 𝑓 (𝑥) |2 =

∫ 1

0
| �̂� (𝜃) |2 𝑑𝜃

Note the normalization conventions: we sum in the physical space Z (there is no sensible
way to average in Z) and average in the frequency space R/Z.

Definition 6.3.4 (Convolution)
Given finitely supported 𝑓 , 𝑔 : Z→ C, define 𝑓 ∗ 𝑔 : Z→ C by

( 𝒇 ∗ 𝒈)(𝒙) B
∑︁
𝑦∈Z

𝑓 (𝑦)𝑔(𝑥 − 𝑦).

Theorem 6.3.5 (Convolution identity)
Given finitely supported 𝑓 , 𝑔 : Z→ C, for any 𝜃 ∈ R/Z,

�𝑓 ∗ 𝑔(𝜃) = �̂� (𝜃)�̂�(𝜃).

Given finitely supported 𝑓 , 𝑔, ℎ : Z→ C, define

𝚲( 𝒇 , 𝒈, 𝒉) B
∑︁
𝑥,𝑦∈Z

𝑓 (𝑥)𝑔(𝑥 + 𝑦)ℎ(𝑥 + 2𝑦)

Graph Theory and Additive Combinatorics — Yufei Zhao



216 Forbidding 3-Term Arithmetic Progressions

and
𝚲3( 𝒇 ) B Λ( 𝑓 , 𝑓 , 𝑓 ).

Then for any finite set 𝐴 of integers,

Λ3(𝐴) = |{(𝑥, 𝑦) : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}|
counts the number of 3-APs in 𝐴, where each nontrivial 3-AP is counted twice, forward and
backward, and each trivial 3-AP is counted once.

Proposition 6.3.6 (Fourier and 3-AP)
Given finitely supported 𝑓 , 𝑔, ℎ : Z→ C,

Λ( 𝑓 , 𝑔, ℎ) =
∫ 1

0
�̂� (𝜃)�̂�(−2𝜃) ℎ̂(𝜃) 𝑑𝜃.

Exercise 6.3.7. Prove all the identities above.

Exercise 6.3.8 (Counting solutions to a single linear equation). Let 𝑐1, . . . , 𝑐𝑘 ∈ Z. Let
𝐴 ⊆ Z be a finite set. Show that

|{(𝑎1, . . . , 𝑎𝑘) ∈ 𝐴𝑘 : 𝑐1𝑎1 + · · · + 𝑐𝑘𝑎𝑘 = 0}| =
∫ 1

0
1̂𝐴(𝑐1𝑡)1̂𝐴(𝑐2𝑡) · · · 1̂𝐴(𝑐𝑘𝑡) 𝑑𝑡.

Exercise 6.3.9. Show that if a finite set 𝐴 of integers contains 𝛽 |𝐴|2 solutions (𝑎, 𝑏, 𝑐) ∈
𝐴3 to 𝑎+2𝑏 = 3𝑐, then it contains at least 𝛽2 |𝐴|3 solutions (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐴4 to 𝑎+𝑏 = 𝑐+𝑑.

6.4 Roth’s Theorem in the Integers
In Section 6.2 we saw a Fourier analytic proof of Roth’s theorem in F𝑛3 . In this section, we
adapt the proof to the integers and obtain the following result. This is Roth’s original proof
(1953).

Theorem 6.4.1 (Roth’s theorem)
Every 3-AP-free subset of [𝑁] = {1, . . . , 𝑁} has size 𝑂 (𝑁/log log 𝑁).

The proof of Roth’s theorem in F𝑛3 proceeded by density increment when restricting to
subspaces. An important difference between F𝑛3 and Z is that Z has no subspaces (more on
this later). Instead, we will proceed in Z by restricting to subprogressions. In this section, by
a progression we mean an arithmetic progression.

We have the following analogue of Lemma 6.2.4. It says that if 𝑓 and 𝑔 are “Fourier-close„”
then they have similar 3-AP counts. We write

∥ ̂𝒇 ∥∞ B sup
𝜃
| �̂� (𝜃) | and ∥ 𝒇 ∥ℓ2 B

(∑︁
𝑥∈Z
| 𝑓 (𝑥) |2

)1/2

.
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Proposition 6.4.2 (3-AP counting lemma)
Let 𝑓 , 𝑔 : Z→ C be finitely supported functions. Then

|Λ3( 𝑓 ) − Λ3(𝑔) | ≤ 3∥�𝑓 − 𝑔∥∞max
{∥ 𝑓 ∥2ℓ2 , ∥𝑔∥2ℓ2

}
.

Proof. We have

Λ3( 𝑓 ) − Λ3(𝑔) = Λ( 𝑓 − 𝑔, 𝑓 , 𝑓 ) + Λ(𝑔, 𝑓 − 𝑔, 𝑓 ) + Λ(𝑔, 𝑔, 𝑓 − 𝑔).
Let us bound the first term on the right-hand side. We have

|Λ( 𝑓 − 𝑔, 𝑓 , 𝑓 ) |

=

����
∫ 1

0

�( 𝑓 − 𝑔) (𝜃) �̂� (−2𝜃) �̂� (𝜃) 𝑑𝜃
���� [Prop. 6.3.6]

≤ ∥�𝑓 − 𝑔∥∞
����
∫ 1

0
�̂� (−2𝜃) �̂� (𝜃) 𝑑𝜃

���� [Triangle ineq.]

≤ ∥�𝑓 − 𝑔∥∞
(∫ 1

0

��� �̂� (−2𝜃)
���2 𝑑𝜃

)1/2 (∫ 1

0

��� �̂� (𝜃)���2 𝑑𝜃
)1/2

[Cauchy–Schwarz]

≤ ∥�𝑓 − 𝑔∥∞ ∥ 𝑓 ∥2ℓ2 . [Parseval]

By similar arguments, we have

|Λ(𝑔, 𝑓 − 𝑔, 𝑓 ) | ≤ ∥�𝑓 − 𝑔∥∞ ∥ 𝑓 ∥ℓ2 ∥𝑔∥ℓ2

and
|Λ(𝑔, 𝑔, 𝑓 − 𝑔) | ≤ ∥�𝑓 − 𝑔∥∞ ∥𝑔∥2ℓ2 .

Combining with the first sum gives the result. □

Now we prove Roth’s theorem by following the same steps as in Section 6.2 for the finite
field setting.

Step 1. A 3-AP-free set has a large Fourier coefficient
Instead of directly studying the Fourier coefficients of 1𝐴 (which is not a good idea since
1̂𝐴(𝜃) ≈ |𝐴| is always large whenever 𝜃 ≈ 0), we apply a useful and standard trick and study
the Fourier coefficients of the de-meaned function

1𝐴 − 𝛼1[𝑁 ] .

This function has sum zero, and so its Fourier transform is zero at zero, which allows us
to focus on the interesting values away from zero. Subtracting by 𝛼1[𝑁 ] here has the same
effect as considering 1̂𝐴(𝑟) only for nonzero 𝑟 in the finite field model.
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Lemma 6.4.3 (3-AP-free implies a large Fourier coefficient)
Let 𝐴 ⊆ [𝑁] be a 3-AP free set with |𝐴| = 𝛼𝑁 . If 𝑁 ≥ 5𝛼−2, then there exists 𝜃 ∈ R/Z
satisfying �����

𝑁∑︁
𝑥=1

(1𝐴 − 𝛼) (𝑥)𝑒(𝜃𝑥)
����� ≥ 𝛼

2

10
𝑁.

Proof. Since 𝐴 is 3-AP-free, the quantity 1𝐴(𝑥)1𝐴(𝑥 + 𝑦)1𝐴(𝑥 + 2𝑦) is nonzero only for
trivial 3-APs (here trivial means 𝑦 = 0). Thus

Λ3(1𝐴) = |𝐴| = 𝛼𝑁.
On the other hand, a 3-AP in [𝑁] can be counted by counting pairs of integers with the same
parity to form the first and third element of the 3-AP, yielding,

Λ3(1[𝑁 ]) = ⌊𝑁/2⌋2 + ⌈𝑁/2⌉2 ≥ 𝑁2/2.
Now apply the counting lemma (Proposition 6.4.2) to 𝑓 = 1𝐴 and 𝑔 = 𝛼1[𝑁 ] . We have
∥1𝐴∥2ℓ2 = |𝐴| = 𝛼𝑁 and ∥𝛼1[𝑁 ] ∥2ℓ2 = 𝛼2𝑁 . So

𝛼3𝑁2

2
− 𝛼𝑁 ≤ 𝛼3Λ3(1[𝑁 ]) − Λ3(1𝐴) ≤ 3𝛼𝑁

(1𝐴 − 𝛼1[𝑁 ])∧

∞ .

Thus, using 𝑁 ≥ 5𝛼−2 in the final step in what follows,

(1𝐴 − 𝛼1[𝑁 ])∧

∞ ≥

1
2𝛼

3𝑁2 − 𝛼𝑁
3𝛼𝑁

=
1
6
𝛼2𝑁 − 1

3
≥ 1

10
𝛼2𝑁.

Therefore there exists some 𝜃 ∈ R with�����
𝑁∑︁
𝑥=1

(1𝐴 − 𝛼) (𝑥)𝑒(𝜃𝑥)
����� = (1𝐴 − 𝛼1[𝑁 ])∧(𝜃) ≥ 1

10
𝛼2𝑁. □

Step 2. A large Fourier coefficient implies density increment on a subprogression
In the finite field model, if 1̂𝐴(𝑟) is large for some 𝑟 ∈ F𝑛3 \ {0}, then we obtained a density
increment by restricting 𝐴 to some coset of the hyperplane 𝑟⊥.

How can we adapt this argument in the integers?
In the finite field model, we used that the Fourier character 𝛾𝑟 (𝑥) = 𝜔𝑟 ·𝑥 is constant on

each coset of the hyperplane 𝑟⊥ ⊆ F𝑛3 . In the integer setting, we want to partition [𝑁] into
subprogressions such that the character Z → C : 𝑥 ↦→ 𝑒(𝑥𝜃) is roughly constant on each
subprogression. As a simple example, assume that 𝜃 is a rational 𝑎/𝑏 for some fairly small 𝑏.
Then 𝑥 ↦→ 𝑒(𝑥𝜃) is constant on arithmetic progressions with common difference 𝑏. Thus we
could partition [𝑁] into arithmetic progressions with common difference 𝑏. This is useful
as long as 𝑏 is not too large. On the other hand, if 𝑏 is too large, or if 𝜃 is irrational, then we
would want to approximate 𝜃 be a rational number with small denominator.

We write
∥𝜽∥

R/Z B distance from 𝜃 to the nearest integer.
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Lemma 6.4.4 (Dirichlet’s lemma)
Let 𝜃 ∈ R and 0 < 𝛿 < 1. Then there exists a positive integer 𝑑 ≤ 1/𝛿 such that
∥𝑑𝜃∥R/Z ≤ 𝛿.

Proof. Let 𝑚 = ⌊1/𝛿⌋. By the pigeonhole principle, among the 𝑚 + 1 numbers 0, 𝜃, · · · , 𝑚𝜃,
we can find 0 ≤ 𝑖 < 𝑗 ≤ 𝑚 such that the fractional parts of 𝑖𝜃 and 𝑗𝜃 differ by at most 𝛿. Set
𝑑 = |𝑖 − 𝑗 |. Then ∥𝑑𝜃∥R/Z ≤ 𝛿, as desired. □

Given 𝜃, we now partition [𝑁] into subprogressions with roughly constant 𝑒(𝑥𝜃) inside
each progression. The constants appearing in rest of this argument are mostly unimportant.

Lemma 6.4.5 (Partition into progression level sets)
Let 0 < 𝜂 < 1 and 𝜃 ∈ R. Suppose 𝑁 ≥ (4𝜋/𝜂)6. Then one can partition [𝑁] into
subprogressions 𝑃𝑖, each with length

𝑁1/3 ≤ |𝑃𝑖 | ≤ 2𝑁1/3,

such that
sup
𝑥,𝑦∈𝑃𝑖

|𝑒(𝑥𝜃) − 𝑒(𝑦𝜃) | < 𝜂, for each 𝑖.

Proof. By Lemma 6.4.4, there is a positive integer 𝑑 <
√
𝑁 such that ∥𝑑𝜃∥R/Z ≤ 1/√𝑁 .

Partition [𝑁] greedily into progressions with common difference 𝑑 of lengths between 𝑁1/3

and 2𝑁1/3. Then, for two elements 𝑥, 𝑦 within the same progression 𝑃𝑖, we have

|𝑒(𝑥𝜃) − 𝑒(𝑦𝜃) | ≤ |𝑃𝑖 | |𝑒(𝑑𝜃) − 1| ≤ 2𝑁1/3 · 2𝜋 · 𝑁−1/2 ≤ 𝜂.
Here we use the inequality |𝑒(𝑑𝜃) − 1| ≤ 2𝜋 ∥𝑑𝜃∥R/Z from the fact that the length of a chord
on a circle is at most the length of the corresponding arc. □

We can now apply this lemma to obtain a density increment.

Lemma 6.4.6 (3-AP-free implies density increment)
Let 𝐴 ⊆ [𝑁] be 3-AP-free, with |𝐴| = 𝛼𝑁 and 𝑁 ≥ (16/𝛼)12. Then there exists a
subprogression 𝑃 ⊆ [𝑁] with |𝑃 | ≥ 𝑁1/3 and |𝐴 ∩ 𝑃 | ≥ (𝛼 + 𝛼2/40) |𝑃 | .

Proof. By Lemma 6.4.3, there exists 𝜃 satisfying�����
𝑁∑︁
𝑥=1

(1𝐴 − 𝛼) (𝑥)𝑒(𝑥𝜃)
����� ≥ 𝛼

2

10
𝑁.

Next, apply Lemma 6.4.5 with 𝜂 = 𝛼2/20 (the hypothesis 𝑁 ≥ (4𝜋/𝜂)6 is satisfied since
(16/𝛼)12 ≥ (80𝜋/𝛼2)6 = (4𝜋/𝜂)6) to obtain a partition 𝑃1, . . . , 𝑃𝑘 of [𝑁] satisfying 𝑁1/3 ≤
|𝑃𝑖 | ≤ 2𝑁1/3 and

|𝑒(𝑥𝜃) − 𝑒(𝑦𝜃) | ≤ 𝛼
2

20
for all 𝑖 and 𝑥, 𝑦 ∈ 𝑃𝑖 .
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So on each 𝑃𝑖, �����
∑︁
𝑥∈𝑃𝑖
(1𝐴 − 𝛼) (𝑥)𝑒(𝑥𝜃)

����� ≤
�����
∑︁
𝑥∈𝑃𝑖
(1𝐴 − 𝛼) (𝑥)

����� + 𝛼
2

20
|𝑃𝑖 |.

Thus

𝛼2

10
𝑁 ≤

�����
𝑁∑︁
𝑥=1

(1𝐴 − 𝛼) (𝑥)𝑒(𝑥𝜃)
�����

≤
𝑘∑︁
𝑖=1

�����
∑︁
𝑥∈𝑃𝑖
(1𝐴 − 𝛼) (𝑥)𝑒(𝑥𝜃)

����� .
≤

𝑘∑︁
𝑖=1

(�����
∑︁
𝑥∈𝑃𝑖
(1𝐴 − 𝛼) (𝑥)

����� + 𝛼
2

20
|𝑃𝑖 |

)

=
𝑘∑︁
𝑖=1

�����
∑︁
𝑥∈𝑃𝑖
(1𝐴 − 𝛼) (𝑥)

����� + 𝛼
2

20
𝑁

Thus
𝛼2

20
𝑁 ≤

𝑘∑︁
𝑖=1

�����
∑︁
𝑥∈𝑃𝑖
(1𝐴 − 𝛼) (𝑥)

�����
and hence

𝛼2

20

𝑘∑︁
𝑖=1

|𝑃𝑖 | ≤
𝑘∑︁
𝑖=1

��|𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |��.
We want to show that there exists some 𝑃𝑖 such that 𝐴 has a density increment when restricted
to 𝑃𝑖. The following trick is convenient. Note that

𝛼2

20

𝑘∑︁
𝑖=1

|𝑃𝑖 | ≤
𝑘∑︁
𝑖=1

��|𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |��

=
𝑘∑︁
𝑖=1

(��|𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |�� + (|𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |)) ,
as the newly added terms in the final step sum to zero. Thus there exists an 𝑖 such that

𝛼2

20
|𝑃𝑖 | ≤

��|𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |�� + (|𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |) .
Since |𝑡 | + 𝑡 is 2𝑡 for 𝑡 > 0 and 0 for 𝑡 ≤ 0, we deduce

𝛼2

20
|𝑃𝑖 | ≤ 2( |𝐴 ∩ 𝑃𝑖 | − 𝛼 |𝑃𝑖 |),

which yields

|𝐴 ∩ 𝑃𝑖 | ≥
(
𝛼 + 𝛼

2

40

)
|𝑃𝑖 |. □
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By translation and rescaling, we can identify 𝑃 with [𝑁 ′] with 𝑁 ′ = |𝑃 |. Then 𝐴 ∩ 𝑃
becomes a subset 𝐴′ ⊆ [𝑁 ′]. Note that 𝐴′ is 3-AP-free (here we are invoking the important
fact that 3-APs are translation and dilation invariant). We can now iterate the argument. (Think
about where the argument goes wrong for patterns such as {𝑥, 𝑦, 𝑥 + 𝑦} and {𝑥, 𝑥 + 𝑦, 𝑥 + 𝑦2}.)

Step 3. Iterate the density increment
This step is nearly identical to the proof in the finite field model. Start with 𝛼0 = 𝛼 and
𝑁0 = 𝑁 . After 𝑖 iterations, we arrive at a subprogression of length 𝑁𝑖 where 𝐴 has density 𝛼𝑖.
As long as 𝑁𝑖 ≥ (16/𝛼𝑖)12, we can apply apply Lemma 6.4.6 to pass down to a subprogression
with

𝑁𝑖+1 ≥ 𝑁1/3
𝑖 and 𝛼𝑖+1 ≥ 𝛼𝑖 + 𝛼2

𝑖 /40.

We double 𝛼𝑖 from 𝛼0 after ≤ ⌈40/𝛼⌉ iterations. Once the density reaches at least 2𝛼, the
next doubling takes ≤ ⌈20/𝛼⌉ iterations, and so on. In general, the 𝑘th doubling requires
≤ ⌈40 · 2−𝑘/𝛼⌉ iterations. There are at most log2(1/𝛼) doublings since the density is always
at most 1. Summing up, the total number of iterations is

𝑚 ≤
log2 (1/𝛼)∑︁
𝑖=1

⌈
40 · 2−𝑘/𝛼⌉ = 𝑂 (1/𝛼).

When the process terminates, by Lemma 6.4.6,

𝑁1/3𝑚 ≤ 𝑁𝑚 < (16/𝛼𝑖)12 ≤ (16/𝛼)12.

Rearranging gives
𝑁 ≤ (16/𝛼)12·3𝑚 ≤ (16/𝛼)𝑒𝑂 (1/𝛼) .

Therefore
|𝐴|
𝑁

= 𝛼 = 𝑂

(
1

log log 𝑁

)
.

This completes the proof of Roth’s theorem (Theorem 6.4.1). □

We saw that the proofs in F𝑛3 and Z have largely the same set of ideas, but the proof in Z
is somewhat more technically involved. The finite field model is often a good sandbox to try
out Fourier analytic ideas.

Remark 6.4.7 (Bohr sets). Let us compare the results in F𝑛3 and [𝑁]. Write 𝑁 = 3𝑛 for
the size of the ambient space in both cases, for comparison. We obtained an upper bound
of 𝑂 (𝑁/log 𝑁) for 3-AP-free sets in F𝑛3 and 𝑂 (𝑁/log log 𝑁) in [𝑁] ⊆ Z. Where does the
difference in quantitative bounds stem from?

In the density increment step for F𝑛3 , at each step, we pass down to a subset that has size
a constant factor (namely 1/3) of the original one. However, in [𝑁], each iteration gives us
a subprogression that has size equal to the cube root of the previous subprogression. The
extra log for Roth’s theorem in the integers comes from this rapid reduction in the sizes of
the subprogressions.

Can we do better? Perhaps by passing down to subsets of [𝑁] that look more like subspaces?

Graph Theory and Additive Combinatorics — Yufei Zhao



222 Forbidding 3-Term Arithmetic Progressions

Indeed, this is possible. Bourgain (1999) used Bohr sets to prove an improved bound of
𝑁/(log 𝑁)1/2+𝑜 (1) on Roth’s theorem. Given 𝜃1, . . . , 𝜃𝑘 , and some 𝜀 > 0, a Bohr set has the
form {

𝑥 ∈ [𝑁] : ∥𝑥𝜃 𝑗 ∥R/Z ≤ 𝜀 for each 𝑗 = 1, . . . , 𝑘
}
.

To see why this is analogous to subspaces, note that we can define a subspace of F𝑛3 as a set
of the following form, {

𝑥 ∈ F𝑛3 : 𝑟 𝑗 · 𝑥 = 0 for each 𝑗 = 1, . . . , 𝑘
}
,

where 𝑟1, . . . , 𝑟𝑘 ∈ F𝑛3 \ {0}. Bohr sets are used widely in additive combinatorics, and in
nearly all subsequent work on Roth’s theorem in the integers, including the proof of the
current best bound 𝑁/(log 𝑁)1+𝑐 for some constant 𝑐 > 0 (Bloom and Sisask 2020).

We will see Bohr sets again in the proof of Freiman’s theorem in Chapter 7.

The next exercise is analogous to Exercise 6.2.11, which was in F𝑛5 .

Exercise 6.4.8∗ (Fourier uniformity does not control 4-AP counts). Fix 0 < 𝛼 < 1. Let
𝑁 be a prime. Let

𝐴 =
{
𝑥 ∈ [𝑁] : 𝑥2 mod 𝑁 < 𝛼𝑁

}
.

Viewing 𝐴 ⊆ Z/𝑁Z, prove that, as 𝑁 →∞ with fixed 𝛼,
(a) |𝐴| = (𝛼 + 𝑜(1))𝑁 and max𝑟≠0 |1̂𝐴(𝑟) | = 𝑜(1);
(b) | (𝑥, 𝑦) ∈ Z/𝑁Z : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦, 𝑥 + 3𝑦 ∈ 𝐴| ≠ (𝛼4 + 𝑜(1))𝑁2.

6.5 Polynomial Method
An important breakthrough of Croot, Lev, and Pach (2017) showed how to apply the poly-
nomial method to Roth-type problems in the finite field model. Their method quickly found
many applications. Less than a week after the Croot, Lev, and Pach paper was made public,
Ellenberg and Gĳswĳt (2017) adapted their argument to prove the following bound on the
cap set problem. The discovery came as quite a shock to the community, especially as the
proof is so short.

Theorem 6.5.1 (Roth’s theorem in F𝑛3 : power-saving upper bound)
Every 3-AP-free subset of F𝑛3 has size 𝑂 (2.76𝑛).

The presentation of the proof below is due to Tao (2016).
Recall from linear algebra the usual rank of a matrix. Here we can view an |𝐴| × |𝐴|

matrix over the field F as a function 𝐹 : 𝐴 × 𝐴 → F. A function 𝐹 is said to have rank 1 if
𝐹 (𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦) for some nonzero functions 𝑓 , 𝑔 : 𝐴→ F. More generally, the rank of 𝐹
is the minimum 𝑘 so that 𝐹 can be written as a sum of 𝑘 rank 1 functions.

More generally, for other notions of rank, we can first define the set of rank 1 functions,
and then define the rank of 𝐹 to be the minimum 𝑘 so that 𝐹 can be written as a sum of 𝑘
rank 1 functions.

Whereas a function 𝐴 × 𝐴 → F corresponds to a matrix, a function 𝐴 × 𝐴 × 𝐴 → F
corresponds to a 3-tensor. There is a notion of tensor rank, where the rank 1 functions are
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those of the form 𝐹 (𝑥, 𝑦, 𝑧) = 𝑓 (𝑥)𝑔(𝑦)ℎ(𝑧). This is a standard and important notion (which
comes with a lot of mystery), but it is not the one that we shall use.

Definition 6.5.2 (Slice rank)
A function 𝐹 : 𝐴 × 𝐴 × 𝐴→ F is said to have slice rank 1 if it can be written as

𝑓 (𝑥)𝑔(𝑦, 𝑧), 𝑓 (𝑦)𝑔(𝑥, 𝑧), or 𝑓 (𝑧)𝑔(𝑥, 𝑦),
for some nonzero functions 𝑓 : 𝐴→ F and 𝑔 : 𝐴 × 𝐴→ F.

The slice rank of a function 𝐹 : 𝐴 × 𝐴 × 𝐴 → F is the minimum 𝑘 so that 𝐹 can be
written as a sum of 𝑘 slice rank 1 functions.

Here is an easy fact about the slice rank.

Lemma 6.5.3 (Trivial upper bound for slice rank)
Every function 𝐹 : 𝐴 × 𝐴 × 𝐴→ F has slice rank at most |𝐴|.

Proof. Let 𝐹𝑎 be the restriction of 𝐹 to the “slice” {(𝑥, 𝑦, 𝑧) ∈ 𝐴 × 𝐴 × 𝐴 : 𝑥 = 𝑎}; that is,

𝐹𝑎 (𝑥, 𝑦, 𝑧) =
{
𝐹 (𝑥, 𝑦, 𝑧) if 𝑥 = 𝑎,
0 if 𝑥 ≠ 𝑎.

𝐹𝑎

Then 𝐹𝑎 has slice rank ≤ 1 since 𝐹𝑎 (𝑥, 𝑦, 𝑧) = 𝛿𝑎 (𝑥)𝐹 (𝑎, 𝑦, 𝑧), where 𝛿𝑎 denotes the function
taking value 1 at 𝑎 and 0 elsewhere. Thus 𝐹 =

∑
𝑎∈𝐴 𝐹𝑎 has slice rank at most |𝐴|. □

For the next lemma, we need the following fact from linear algebra.

Lemma 6.5.4 (Vector with large support)
Every 𝑘-dimensional subspace of an 𝑛-dimensional vector space (over any field) contains
a point with at least 𝑘 nonzero coordinates.

Proof. Form a 𝑘 × 𝑛 matrix 𝑀 whose rows form a basis of this 𝑘-dimensional subspace
𝑊 . Then 𝑀 has rank 𝑘 . So it has some invertible 𝑘 × 𝑘 submatrix with columns 𝑆 ⊆ [𝑛]
with |𝑆 | = 𝑘 . Then for every 𝑧 ∈ F𝑆 , there is some linear combination of the rows whose
coordinates on 𝑆 are identical to those of 𝑧. In particular, there is some vector in the 𝑘-
dimensional subspace𝑊 whose 𝑆-coordinates are all nonzero. □

A diagonal matrix with nonzero diagonal entries has full rank. We show that a similar
statement holds true for the slice rank.

Lemma 6.5.5 (Slice rank of a diagonal)
Suppose 𝐹 : 𝐴 × 𝐴 × 𝐴→ F satisfies 𝐹 (𝑥, 𝑦, 𝑧) ≠ 0 if and only if 𝑥 = 𝑦 = 𝑧. Then 𝐹 has
slice rank |𝐴|.

Proof. From Lemma 6.5.3, we already know that the slice rank of 𝐹 is ≤ |𝐴|. It remains to
prove that the slice rank of 𝐹 is ≥ |𝐴|.

Suppose 𝐹 (𝑥, 𝑦, 𝑧) can be written as a sum of functions of the form

𝑓 (𝑥)𝑔(𝑦, 𝑧), 𝑓 (𝑦)𝑔(𝑥, 𝑧), and 𝑓 (𝑧)𝑔(𝑥, 𝑦),
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with 𝑚1 summands of the first type, 𝑚2 of the second type, and 𝑚3 of the third type. By
Lemma 6.5.4, there is some function ℎ : 𝐴→ F that is orthogonal to all the 𝑓 s from the third
type of summands (i.e.,

∑
𝑥∈𝐴 𝑓 (𝑥)ℎ(𝑥) = 0), and such that |supp ℎ| ≥ |𝐴| − 𝑚3. Let

𝐺 (𝑥, 𝑦) =
∑︁
𝑧∈𝐴

𝐹 (𝑥, 𝑦, 𝑧)ℎ(𝑧).

Only summands of the first two types remain. Each summand of the first type turns into a
rank 1 function (in the matrix sense of the rank)

(𝑥, 𝑦) ↦→
∑︁
𝑧

𝑓 (𝑥)𝑔(𝑦, 𝑧)ℎ(𝑧) = 𝑓 (𝑥)�̃�(𝑦)

for some new function �̃� : 𝐴→ F. Similarly with functions of the second type. So𝐺 (viewed
as an |𝐴| × |𝐴| matrix) has rank ≤ 𝑚1 + 𝑚2. On the other hand,

𝐺 (𝑥, 𝑦) =
{
𝐹 (𝑥, 𝑥, 𝑥)ℎ(𝑥) if 𝑥 = 𝑦,
0 if 𝑥 ≠ 𝑦.

This 𝐺 has rank |supp ℎ| ≥ |𝐴| − 𝑚3. Combining, we get

|𝐴| − 𝑚3 ≤ rank𝐺 ≤ 𝑚1 + 𝑚2.

So 𝑚1 + 𝑚2 + 𝑚3 ≥ |𝐴|. This shows that the slice rank of 𝐹 is ≥ |𝐴|. □

Now we prove an upper bound on the slice rank by invoking the magical powers of
polynomials.

Lemma 6.5.6 (Upper bound on the slice rank of 1𝑥+𝑦+𝑧=0)
Define 𝐹 : 𝐴 × 𝐴 × 𝐴→ F3 by

𝐹 (𝑥, 𝑦, 𝑧) =
{

1 if 𝑥 + 𝑦 + 𝑧 = 0,
0 otherwise.

Then the slice rank of 𝐹 is at most

3
∑︁

𝑎,𝑏,𝑐≥0
𝑎+𝑏+𝑐=𝑛
𝑏+2𝑐≤2𝑛/3

𝑛!
𝑎!𝑏!𝑐!

.

Proof. In F3, one has

1 − 𝑥2 =

{
1 if 𝑥 = 0,
0 if 𝑥 ≠ 0.

So, writing 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛), and 𝑧 = (𝑧1, . . . , 𝑧𝑛), we have

𝐹 (𝑥, 𝑦, 𝑧) =
𝑛∏
𝑖=1

(1 − (𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖)2). (6.5)

If we expand the right-hand side, we obtain a polynomial in 3𝑛 variables with degree 2𝑛.
This is a sum of monomials, each of the form

𝑥𝑖11 · · · 𝑥𝑖𝑛𝑛 𝑦 𝑗11 · · · 𝑦 𝑗𝑛𝑛 𝑧𝑘1
1 · · · 𝑧𝑘𝑛𝑛 ,
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where 𝑖1, 𝑖2, . . . , 𝑖𝑛, 𝑗1, . . . , 𝑗𝑛, 𝑘1, . . . , 𝑘𝑛 ∈ {0, 1, 2}. For each term, by the pigeonhole prin-
ciple, at least one of 𝑖1 + · · · + 𝑖𝑛, 𝑗1 + · · · + 𝑗𝑛, 𝑘1 + · · · + 𝑘𝑛 is at most 2𝑛/3. So we can split
these summands into three sets:

𝑛∏
𝑖=1

(1 − (𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖)2) =
∑︁

𝑖1+···+𝑖𝑛≤ 2𝑛
3

𝑥𝑖11 · · · 𝑥𝑖𝑛𝑛 𝑓𝑖1 ,...,𝑖𝑛 (𝑦, 𝑧)

+
∑︁

𝑗1+···+ 𝑗𝑛≤ 2𝑛
3

𝑦 𝑗11 · · · 𝑦 𝑗𝑛𝑛 𝑔 𝑗1 ,..., 𝑗𝑛 (𝑥, 𝑧)

+
∑︁

𝑘1+···+𝑘𝑛≤ 2𝑛
3

𝑧𝑘1
1 · · · 𝑧𝑘𝑛𝑛 ℎ𝑘1 ,...,𝑘𝑛 (𝑥, 𝑦).

Each summand has slice rank at most 1. The number of summands in the first sum is precisely
the number of triples of nonnegative integers 𝑎, 𝑏, 𝑐 with 𝑎 + 𝑏 + 𝑐 = 𝑛 and 𝑏 + 2𝑐 ≤ 2𝑛/3
(𝑎, 𝑏, 𝑐 correspond to the numbers of 𝑖∗s that are equal to 0, 1, 2 respectively) . The lemma
then follows. □

Here is a standard estimate. The proof is similar to that of the Chernoff bound.

Lemma 6.5.7 (A trinomial coefficient estimate)
For every positive integer 𝑛, ∑︁

𝑎,𝑏,𝑐≥0
𝑎+𝑏+𝑐=𝑛
𝑏+2𝑐≤2𝑛/3

𝑛!
𝑎!𝑏!𝑐!

≤ 2.76𝑛.

Proof. Let 𝑥 ∈ [0, 1]. The sum equals to the coefficients of all the monomials 𝑥𝑘 with
𝑘 ≤ 2𝑛/3 in the expansion of (1 + 𝑥 + 𝑥2)𝑛. By deleting contributions 𝑥𝑘 with 𝑘 > 2𝑛/3 and
using 𝑥2𝑛/3 ≤ 𝑥𝑘 whenever 𝑘 ≤ 2𝑛/3, we have∑︁

𝑎,𝑏,𝑐≥0
𝑎+𝑏+𝑐=𝑛
𝑏+2𝑐≤2𝑛/3

𝑛!
𝑎!𝑏!𝑐!

≤ (1 + 𝑥 + 𝑥
2)𝑛

𝑥2𝑛/3 .

Setting 𝑥 = 0.6 shows that the left-hand side sum is ≤ (2.76)𝑛. □

Remark 6.5.8. Taking the optimal value 𝑥 = (√33−1)/8 = 0.59307 . . . in the final step, we
obtain ≤ (2.75510 . . . )𝑛. This is the true exponential asymptotics of the sum in Lemma 6.5.7
(for example, see Sanov’s theorem from large deviation theory). We have no idea how close
this is to the optimal bound for the cap set problem. However, quite surprisingly, such bound
is tight for a variant of the cap sets known as the tricolored sum-free sets (Blasiak et al. 2017;
Kleinberg et al. 2018).

Proof of Theorem 6.5.1. Let 𝐴 ⊆ F𝑛3 be 3-AP-free. Define 𝐹 : 𝐴 × 𝐴 × 𝐴→ F3 by

𝐹 (𝑥, 𝑦, 𝑧) =
{

1 if 𝑥 + 𝑦 + 𝑧 = 0,
0 otherwise.

Since 𝐴 is 3-AP-free, one has 𝐹 (𝑥, 𝑦, 𝑧) = 1 if and only if 𝑥 = 𝑦 = 𝑧 ∈ 𝐴. By Lemma 6.5.5, 𝐹
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has slice rank |𝐴|. On the other hand, by Lemmas 6.5.6 and 6.5.7, 𝐹 has slice rank ≤ 3(2.76)𝑛.
So |𝐴| ≤ 3(2.76)𝑛. □

It is straightforward to extend the above proof from F3 to any other fixed F𝑝, resulting in
the following:

Theorem 6.5.9 (Roth’s theorem in the finite field model)
For every odd prime 𝑝, there is some 𝑐𝑝 < 𝑝 so that every 3-AP-free subset of F𝑛𝑝 has
size at most 3𝑐𝑛𝑝.

It remains an intriguing open problem to extend the techniques to other settings.

Open Problem 6.5.10 (Szemerédi’s theorem in the finite field model)
Is there a constant 𝑐 < 5 such that every 4-AP-free subset of F𝑛5 has size 𝑂 (𝑐𝑛)?

Open Problem 6.5.11 (Corner-free theorem in the finite field model)
Is there a constant 𝑐 < 2 such that every corner-free subset of F𝑛2 × F𝑛2 has size 𝑂 (𝑐2𝑛)?
Here a corner is a configuration of the form {(𝑥, 𝑦), (𝑥 + 𝑑, 𝑦), (𝑥, 𝑦 + 𝑑)}.

Finally, the proof technique in this section seems specific to the finite field model. It is an
intriguing open problem to apply the polynomial method for Roth’s theorem in the integers.
Due to the Behrend example (Section 2.5), we cannot expect power-saving bounds in the
integers.

Exercise 6.5.12 (Tricolor sum-free set). Let 𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚, 𝑐1, . . . , 𝑐𝑚 ∈ F𝑛2 .
Suppose that the equation 𝑎𝑖 + 𝑏 𝑗 + 𝑐𝑘 = 0 holds if and only if 𝑖 = 𝑗 = 𝑘 . Show that there
is some constant 𝑐 > 0 such that 𝑚 ≤ (2 − 𝑐)𝑛 for all sufficiently large 𝑛.

Exercise 6.5.13 (Sunflower-free set). Three sets 𝐴, 𝐵, 𝐶 form a sunflower if 𝐴 ∩ 𝐵 =
𝐵 ∩𝐶 = 𝐴 ∩𝐶 = 𝐴 ∩ 𝐵 ∩𝐶. Prove that there exists some constant 𝑐 > 0 such that if F is
a collection of subsets of [𝑛] without a sunflower, then |F | ≤ (2 − 𝑐)𝑛 provided that 𝑛 is
sufficiently large.

6.6 Arithmetic Regularity
Here we develop an arithmetic analogue of Szemerédi’s graph regularity lemma from Chap-
ter 2. Just as the graph regularity method has powerful applications, so too does the arithmetic
regularity lemma as well as the general strategy behind it.

First, we need a notion of what it means for a subset of F𝑛𝑝 to be uniform, in a sense
analogous to 𝜀-regular pairs from the graph regularity lemma. We also saw the following
notion in the Fourier analytic proof of Roth’s theorem.

Definition 6.6.1 (Fourier uniformity)
We say that 𝐴 ⊆ F𝑛𝑝 is 𝜺-uniform if |1̂𝐴(𝑟) | ≤ 𝜀 for all 𝑟 ∈ F𝑛𝑝 \ {0}.

The following exercises explains how Fourier uniformity is analogous to the discrepancy-
type condition for 𝜀-regular pairs in the graph regularity lemma.
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Exercise 6.6.2 (Uniformity vs. discrepancy). Let 𝐴 ⊆ F𝑛𝑝 with |𝐴| = 𝛼𝑝𝑛. We say that 𝐴
satisfies HyperplaneDISC(𝜂) if for every hyperplane𝑊 of F𝑛𝑝,���� |𝐴 ∩𝑊 ||𝑊 | − 𝛼

���� ≤ 𝜂.
(a) Prove that if 𝐴 satisfies HyperplaneDISC(𝜀), then 𝐴 is 𝜀-uniform.
(b) Prove that if 𝐴 is 𝜀-uniform, then it satisfies HyperplaneDISC((𝑝 − 1)𝜀).

Definition 6.6.3 (Fourier uniformity on affine subspaces)
For an affine subspace𝑊 of F𝑛𝑝 (i.e., the coset of a subspace), we say that 𝐴 is 𝜺-uniform
on 𝑾 if 𝐴 ∩𝑊 is 𝜀-uniform when viewed as a subset of𝑊 .

Here is an arithmetic analogue of Szemerédi’s graph regularity lemma that we saw in
Chapter 2. It is due to Green (2005a).

Theorem 6.6.4 (Arithmetic regularity lemma)
For every 𝜀 > 0 and prime 𝑝, there exists 𝑀 so that for every 𝐴 ⊆ F𝑛𝑝, there is some
subspace 𝑊 of F𝑛𝑝 with codimension at most 𝑀 such that 𝐴 is 𝜀-uniform on all but at
most 𝜀-fraction of cosets of𝑊 .

The proof is very similar to the proof of the graph regularity lemma in Chapter 2. Each
subspace 𝑊 induces a partition of the whole space F𝑛𝑝 into 𝑊-cosets, and we keep track the
energy (mean-squared density) of the partition. We show that if the conclusion of Theo-
rem 6.6.4 does not hold for the current 𝑊 , then we can replace 𝑊 by a smaller subspace so
that the energy increases significantly. Since the energy is always bounded between 0 and 1,
there are at most a bounded number of iterations.

Definition 6.6.5 (Energy)
Given 𝐴 ⊆ F𝑛𝑝, and𝑊 a subspace of F𝑛𝑝, we define the energy of𝑊 with respect to 𝐴 to
be

𝒒𝑨(𝑾) B E𝑥∈F𝑛𝑝

[ |𝐴 ∩ (𝑊 + 𝑥) |2
|𝑊 |2

]
.

Given a subspace𝑊 of F𝑛𝑝. Define 𝜇𝑊 : F𝑛𝑝 → R by

𝝁𝑾 B
𝑝𝑛

|𝑊 | 1𝑊 .

(One can regard 𝜇𝑊 as the uniform probability distribution on 𝑊 ; it is normalized so that
E𝜇𝑊 = 1.) Then,

(1𝐴 ∗ 𝜇𝑊 ) (𝑥) = |𝐴 ∩ (𝑊 + 𝑥) ||𝑊 | for every 𝑥 ∈ F𝑛𝑝.

We have (check!)

𝜇𝑊 (𝑟) =
{

1 if 𝑟 ∈ 𝑊⊥,
0 if 𝑟 ∉ 𝑊⊥.

Graph Theory and Additive Combinatorics — Yufei Zhao



228 Forbidding 3-Term Arithmetic Progressions

So by the convolution identity (Theorem 6.1.7).

�1𝐴 ∗ 𝜇𝑊 (𝑟) = 1̂𝐴(𝑟)𝜇𝑊 (𝑟) =
{

1̂𝐴(𝑟) if 𝑟 ∈ 𝑊⊥,
0 if 𝑟 ∉ 𝑊⊥.

(6.6)

To summarize, convolving by 𝜇𝑊 averages 1𝐴 along cosets of 𝑊 in the physical space, and
filters𝑊⊥ in the Fourier space.

Energy interacts nicely with the Fourier transform. By Parseval’s identity (Theorem 6.1.3),
we have

𝑞𝐴(𝑊) = ∥1𝐴 ∗ 𝜇𝑊 ∥22 =
∑︁
𝑟∈F𝑛𝑝
|�1𝐴 ∗ 𝜇𝑊 (𝑟) |2 = ∑︁

𝑟∈𝑊⊥
|1̂𝐴(𝑟) |2. (6.7)

The next lemma is analogous to Lemma 2.1.12. It is an easy consequence of convexity. It
also directly follows from (6.7).

Lemma 6.6.6 (Energy never decreases under refinement)
Let 𝐴 ⊆ F𝑛𝑝. For subspaces𝑈 ≤ 𝑊 ≤ F2

𝑝, we have 𝑞𝐴(𝑈) ≥ 𝑞𝐴(𝑊). □

The next lemma is analogous to the energy boost lemma for irregular pairs in the proof of
graph regularity (Lemma 2.1.13).

Lemma 6.6.7 (Local energy increment)
If 𝐴 ⊆ F𝑛𝑝 is not 𝜀-uniform, then there is some codimension-1 subspace𝑊 with 𝑞𝐴(𝑊) >
( |𝐴| /𝑝𝑛)2 + 𝜀2.

Proof. Suppose 𝐴 is not 𝜀-uniform. Then there is some 𝑟 ≠ 0 such that |1̂𝐴(𝑟) | > 𝜀. Let
𝑊 = 𝑟⊥. Then by (6.7),

𝑞𝐴(𝑊) = |1̂𝐴(0) |2 + |1̂𝐴(𝑟) |2 + |1̂𝐴(2𝑟) |2 + · · · + |1̂𝐴((𝑝 − 1)𝑟) |2

≥ |1̂𝐴(0) |2 + |1̂𝐴(𝑟) |2 > ( |𝐴| /𝑝𝑛)2 + 𝜀2. □

By applying the above lemmas locally to each 𝑊-coset, we obtain the following global
increment, analogous to Lemma 2.1.14

Lemma 6.6.8 (Global energy increment)
Let 𝐴 ⊆ F𝑛𝑝. Let𝑊 be a subspace of F𝑛𝑝. Suppose that 𝐴 is not 𝜀-uniform on > 𝜀-fraction
of 𝑊-cosets. Then there is some subspace 𝑈 of 𝑊 with codim𝑈 − codim𝑊 ≤ 𝑝codim𝑊

such that
𝑞𝐴(𝑈) > 𝑞𝐴(𝑊) + 𝜀3.

Proof. By Lemma 6.6.7, for each coset 𝑊 ′ of 𝑊 on which 𝐴 is not 𝜀-uniform, we can find
some 𝑟 ∈ F𝑛𝑝 \𝑊⊥ so that replacing𝑊 by its intersection with 𝑟⊥ increases its energy on𝑊 ′
by more than 𝜀2. In other words,

𝑞𝐴∩𝑊 ′ (𝑊 ′ ∩ 𝑟⊥) > |𝐴 ∩𝑊
′ |2

|𝑊 ′ |2
+ 𝜀2.
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Let 𝑅 be a set of such 𝑟s, one for each𝑊-coset on which 𝑓 is not 𝜀-uniform (allowing some
𝑟s to be chosen repeatedly).

Let𝑈 = 𝑊 ∩ 𝑅⊥. Then codim𝑈 − codim𝑊 ≤ |𝑅 | ≤ |F𝑝/𝑊 | = 𝑝codim𝑊 .
Applying the monotonicity of energy (Lemma 6.6.6) on each 𝑊-coset and using the

observation in the first paragraph in this proof, we see the “local” energy of 𝑈 is more than
that of𝑊 by > 𝜀2 on each of the > 𝜀-fraction of𝑊-cosets on which 𝐴 is not 𝜀-uniform, and
is at least as great as that of𝑊 on each of the remaining𝑊-cosets. There the energy increases
by > 𝜀2 when refining from𝑊 to𝑈. □

Proof of the arithmetic regularity lemma (Theorem 6.6.4). Starting with𝑊0 = F𝑛𝑝, we con-
struct a sequence of subspaces 𝑊0 ≥ 𝑊1 ≥ 𝑊2 ≥ · · · where each at step, unless 𝐴 is 𝜀-
uniform on all but ≤ 𝜀-fraction of𝑊-cosets, then we apply Lemma 6.6.8 to find𝑊𝑖+1 ≤ 𝑊𝑖.
The energy increases by > 𝜀3 at each iteration, so there are < 𝜀−3 iterations. We have
codim𝑊𝑖+1 ≤ codim𝑊𝑖 + 𝑝codim𝑊𝑖 at each 𝑖, so the final 𝑊 = 𝑊𝑚 has codimension at most
some function of 𝑝 and 𝜀 (one can check that it is an exponential tower of 𝑝s of height
𝑂 (𝜀−3)). This𝑊 satisfies the desired properties. □

Remark 6.6.9 (Lower bound). Recall that Gowers (1997) showed that there exist graphs
whose 𝜀-regular partition requires at least tower(Ω(𝜀−𝑐)) parts (Theorem 2.1.17). There is a
similar tower-type lower bound for the arithmetic regularity lemma (Green 2005a; Hosseini,
Lovett, Moshkovitz, and Shapira 2016).

Remark 6.6.10 (Abelian groups). Green (2005a) also established an arithmetic regularity
lemma over arbitrary finite abelian groups. Instead of subspaces, one uses Bohr sets (see
Remark 6.4.7).

You may wish to skip ahead to Section 6.7 to see an application of the arithmetic regularity
lemma.

Arithmetic Regularity Decomposition
Now let us give another arithmetic regularity result. It has the same spirit as the above
regularity lemma, but phrased in terms of a decomposition rather than a partition. This
perspective of regularity as decompositions, popularized by Tao, allows one to adapt the
ideas of regularity to more general settings where we cannot neatly partition the underlying
space into easily describable pieces. It is very useful and has many applications in additive
combinatorics.

Theorem 6.6.11 (Arithmetic regularity decomposition)
For every sequence 𝜀0 ≥ 𝜀1 ≥ 𝜀2 ≥ · · · > 0, there exists 𝑀 so that every 𝑓 : F𝑛𝑝 → [0, 1]
can be written as

𝑓 = 𝑓str + 𝑓psr + 𝑓sml

where
• (structured piece) 𝑓str = 𝑓 ∗ 𝜇𝑊 for some subspace𝑊 of codimension at most 𝑀;
• (pseudorandom piece) ∥ �̂�psr∥∞ ≤ 𝜀codim𝑊 ;
• (small piece) ∥ 𝑓sml∥2 ≤ 𝜀0.
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Remark 6.6.12. It is worth comparing Theorem 6.6.11 to the strong graph regularity lemma
(Theorem 2.8.3). It is important that the uniformity requirement on the pseudorandom piece
depends on the codim𝑊 .

In other more advanced applications, we would like 𝑓str to come from some structured
class of functions. For example, in higher order Fourier analysis, 𝑓str is a nilsequence.

Proof. Let 𝑘0 = 0 and 𝑘𝑖+1 = max{𝑘𝑖, ⌈𝜀−2
𝑘𝑖
⌉} for each 𝑖 ≥ 0. Note that 𝑘0 ≤ 𝑘1 ≤ · · · .

Let us label the elements 𝑟1, 𝑟2, . . . , 𝑟𝑝𝑛 of F𝑛𝑝 so that

| �̂� (𝑟1) | ≥ | �̂� (𝑟2) | ≥ · · · .
By Parseval (Theorem 6.1.3), we have

𝑝𝑛∑︁
𝑗=1

| �̂� (𝑟 𝑗) |2 = E 𝑓 2 ≤ 1.

There is some positive integer 𝑚 ≤ ⌈𝜀−2
0 ⌉ so that∑︁

𝑘𝑚< 𝑗≤𝑘𝑚+1
| �̂� (𝑟 𝑗) |2 ≤ 𝜀2

0, (6.8)

since otherwise adding up the sum over all𝑚 ≤ ⌈𝜀−2
0 ⌉ would contradict

∑
𝑟 | �̂� (𝑟) |2 ≤ 1. Also,

we have

| �̂� (𝑟𝑘) | ≤ 1√
𝑘

for every 𝑘. (6.9)

The idea now is to split

𝑓 (𝑥) =
𝑝𝑛∑︁
𝑗=1

�̂� (𝑟 𝑗)𝜔𝑟 𝑗 ·𝑥

into
𝑓 = 𝑓str + 𝑓sml + 𝑓psr

according to the sizes of the Fourier coefficients. Roughly speaking, the large spectrum will
go into the structured piece 𝑓str, the very small spectrum will go into pseudorandom piece
𝑓psr, and the remaining middle terms will form the small piece 𝑓sml (which has small 𝐿2 norm
by (6.8)).

Let𝑊 = {𝑟1, . . . , 𝑟𝑘𝑚}⊥ and set
𝑓str = 𝑓 ∗ 𝜇𝑊 .

Then, by (6.6),

�̂�str(𝑟) =
{
�̂� (𝑟) if 𝑟 ∈ 𝑊⊥,
0 if 𝑟 ∈ 𝑊⊥.

Let us define 𝑓psr and 𝑓sml via their Fourier transform (and we can recover the functions via
the inverse Fourier transform). For each 𝑗 = 1, 2, . . . , 𝑝𝑛, set

�̂�psr(𝑟 𝑗) =
{
�̂� (𝑟 𝑗) if 𝑗 > 𝑘𝑚+1 and 𝑟 𝑗 ∉ 𝑊⊥,
0 otherwise.
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Finally, let 𝑓sml = 𝑓 − 𝑓psr − 𝑓sml, so that

�̂�sml(𝑟 𝑗) =
{
�̂� (𝑟 𝑗) if 𝑘𝑚 < 𝑗 ≤ 𝑘𝑚+1 and 𝑟 𝑗 ∉ 𝑊⊥,
0 otherwise.

Now we check that all the conditions are satisfied.
Structured piece. We have 𝑓str = 𝑓 ∗ 𝜇𝑊 where codim𝑊 ≤ 𝑘𝑚 ≤ 𝑘 ⌈𝜀−2

0 ⌉ , which is bounded
as a function of the sequence 𝜀0 ≥ 𝜀1 ≥ . . . .

Pseudorandom piece. For every 𝑗 > 𝑘𝑚+1, we have | �̂� (𝑟 𝑗) | ≤ 1/√𝑘𝑚+1 by (6.9), which is
in turn ≤ 𝜀𝑘𝑚 ≤ 𝜀codim𝑊 by the definition of 𝑘𝑚. It follows that ∥ �̂�psr∥ ≤ 𝜀codim𝑊 .

Small piece. By (6.8),

∥ �̂�sml∥22 ≤
∑︁

𝑘𝑚< 𝑗≤𝑘𝑚+1
| �̂� (𝑟 𝑗) |2 ≤ 𝜀2

0. □

Exercise 6.6.13. Deduce Theorem 6.6.4 from Theorem 6.6.11 by using an appropriate
sequence 𝜀𝑖 and using the same𝑊 guaranteed by Theorem 6.6.11.

Remark 6.6.14 (Spectral proof of the graph regularity lemma). The proof technique of
Theorem 6.6.11 can be adapted to give an alternate proof of the graph regularity lemma
(along with certain weak and strong variants). Instead of iteratively refining partitions and
tracking energy increments as we did in Chapter 2, we can first take a spectral decomposition
of the adjacency matrix 𝐴 of a graph:

𝐴 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑣𝑖𝑣
⊺
𝑖 ,

where 𝑣1, . . . , 𝑣𝑛 is an orthonormal system of eigenvectors with eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛.
Then, as in the proof of Theorem 6.6.11, we can decompose 𝐴 as

𝐴 = 𝐴str + 𝐴psr + 𝐴sml

with
𝐴str =

∑︁
𝑖≤𝑘

𝜆𝑖𝑣𝑖𝑣
⊺
𝑖 , 𝐴psr =

∑︁
𝑖>𝑘′

𝜆𝑖𝑣𝑖𝑣
⊺
𝑖 , and 𝐴sml =

∑︁
𝑘<𝑖≤𝑘′

𝜆𝑖𝑣𝑖𝑣
⊺
𝑖 ,

for some appropriately chosen 𝑘 and 𝑘 ′ similar to the proof of Theorem 6.6.11.
We have

𝑛∑︁
𝑖=1

𝜆2
𝑖 = tr 𝐴2 ≤ 𝑛2.

So 𝜆𝑖 ≤ 𝑛/
√
𝑖 for each 𝑖. We can guarantee that the spectral norm of 𝐴psr is small enough as

a function of 𝑘 and 𝜀. Furthermore, we can guarantee that tr 𝐴2
sml =

∑
𝑘<𝑖≤𝑘′ 𝜆

2
𝑖 ≤ 𝜀.

To turn 𝐴str into a vertex partition, we can use the approximate level sets of the top 𝑘
eigenvectors 𝑣1, . . . , 𝑣𝑘 . Some bookkeeping calculations then shows that this is a regularity
partition. Intuitively, 𝐴psr provides us with regular pairs. Some of these regular pairs may not
stay regular after adding 𝐴sml, but since 𝐴sml has ≤ 𝜀 mass (in terms of 𝐿2 norm), it destroys
at most a negligible fraction of regular pairs.

See Tao (2007a, Lemma 2.11) or Tao’s blog post The Spectral Proof of the Szemerédi
Regularity Lemma (2012) for more details of the proof.
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The following exercise is the arithmetic analogue of the existence of an 𝜀-regular vertex
subset in a graph (Theorem 2.1.26 and Exercise 2.1.27).

Exercise 6.6.15 (𝜀-uniform subspace).
(a*) Prove that for every 0 < 𝜀 < 1/2 and 𝐴 ⊆ F𝑛2 , there exists a subspace𝑊 ⊆ F𝑛2 (note

that 0 ∈ 𝑊) with codimension at most exp(𝐶/𝜀) such that 𝐴 is 𝜀-uniform on 𝑊 .
Here 𝐶 is some absolute constant.

(b) Let 𝐴 = {𝑥 ∈ F𝑛3 : there exists 𝑖 such that 𝑥1 = · · · = 𝑥𝑖 = 0, 𝑥𝑖+1 = 1}. Prove that 𝐴
is not 𝑐-uniform on any positive dimensional subspace of F𝑛3 . Here 𝑐 > 0 is some
absolute constant.

6.7 Popular Common Difference
Roth’s theorem has the following qualitative strengthening. Given 𝐴 ⊆ F𝑛3 with density 𝛼,
there is some “popular common difference” 𝑦 ≠ 0 so that the number of 3-APs in 𝐴 with
common difference 𝑦 is ≥ (𝛼3 − 𝑜(1))32𝑛, which is what one expects for a random 𝐴 of
density 𝛼. This was proved by Green (2005a) as an application of his arithmetic regularity
lemma (from the previous section).

Theorem 6.7.1 (Roth’s theorem with popular common difference in F𝑛3 )
For all 𝜀 > 0, there exists 𝑛0 = 𝑛0(𝜀) such that for 𝑛 ≥ 𝑛0 and every 𝐴 ⊆ F𝑛3 with
|𝐴| = 𝛼3𝑛, there exists 𝑦 ≠ 0 such that��{𝑥 ∈ F𝑛3 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}

�� ≥ (𝛼3 − 𝜀)3𝑛.

In particular, Theorem 6.7.1 implies that every 3-AP-free subset of F𝑛3 has size 𝑜(3𝑛).
Exercise 6.7.2. Show that it is false that every 𝐴 ⊆ F𝑛3 with |𝐴| = 𝛼3𝑛, the number of
pairs (𝑥, 𝑦) ∈ F𝑛3 with 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴 is ≥ (𝛼3 − 𝑜(1))32𝑛, where 𝑜(1) → 0 as 𝑛→ 0.

We will prove Theorem 6.7.1 via the next result, which concerns the number of 3-APs
with common difference coming from some subspace of bounded codimension, which is
picked via the arithmetic regularity lemma.

Theorem 6.7.3 (Roth’s theorem with common difference in some subspace)
For every 𝜀 > 0, there exists 𝑀 so that for every 𝐴 ⊆ F𝑛3 , there exists a subspace𝑊 with
codimension at most 𝑀 , so that��{(𝑥, 𝑦) ∈ F𝑛3 ×𝑊 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}

�� ≥ (𝛼3 − 𝜀)3𝑛 |𝑊 | .

Proof. By the arithmetic regularity lemma (Theorem 6.6.4), there is some 𝑀 depending
only on 𝜀 and a subspace 𝑊 of F𝑛𝑝 of codimension ≤ 𝑀 so that 𝐴 is 𝜀-uniform on all but at
most 𝜀-fraction of𝑊-cosets.

Let 𝑢 +𝑊 be a𝑊-coset on which 𝐴 is 𝜀-uniform. Denote the density of 𝐴 in 𝑢 +𝑊 by

𝛼𝑢 =
|𝐴 ∩ (𝑢 +𝑊) |

|𝑊 | .
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Restricting ourselves inside 𝑢+𝑊 for a moment, by the 3-AP counting lemma, Lemma 6.2.4,
the number of 3-APs of 𝐴 (including trivial ones) that are contained in 𝑢 +𝑊 is

|{(𝑥, 𝑦) ∈ (𝑢 +𝑊) ×𝑊 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}| ≥ (𝛼3
𝑢 − 𝜀) |𝑊 |2 .

Since 𝐴 is 𝜀-uniform on all but at most 𝜀-fraction of𝑊-cosets, by varying 𝑢 +𝑊 over all
such cosets, we find that the total number of 3-APs in 𝐴 with common difference in𝑊 is��{(𝑥, 𝑦) ∈ F𝑛3 ×𝑊 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}

�� ≥ (1 − 𝜀) (𝛼3 − 𝜀)3𝑛 |𝑊 | ≥ (𝛼3 − 2𝜀)3𝑛 |𝑊 | .
This proves the theorem (with 𝜀 replaced by 2𝜀). □

Exercise 6.7.4. Give another proof of Theorem 6.7.3 using Theorem 6.6.11 (arithmetic
regularity decomposition 𝑓 = 𝑓str + 𝑓psr + 𝑓sml).

Proof of Theorem 6.7.1. First apply Theorem 6.7.3 to find a subspace 𝑊 of codimension
≤ 𝑀 = 𝑀 (𝜀). Choose 𝑛0 = 𝑀 + log3(1/𝜀). So 𝑛 ≥ 𝑛0 guarantees |𝑊 | ≥ 1/𝜀.

We need to exclude 3-APs with common difference zero. We have

(𝛼3 − 𝜀)3𝑛 |𝑊 | ≤
��{(𝑥, 𝑦) ∈ F𝑛3 ×𝑊 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}

��
=

��{(𝑥, 𝑦) ∈ F𝑛3 × (𝑊 \ {0}) : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}
�� + |𝐴| .

We have |𝐴| ≤ 3𝑛 ≤ 𝜀3𝑛 |𝑊 |, so

(𝛼3 − 2𝜀)3𝑛 |𝑊 | ≤
��{(𝑥, 𝑦) ∈ F𝑛3 × (𝑊 \ {0}) : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}

�� .
By averaging, there exists 𝑦 ∈ 𝑊 \ {0} satisfying��{𝑥 ∈ F𝑛3 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}

�� ≥ (𝛼3 − 2𝜀)3𝑛.
This proves the theorem (with 𝜀 replaced by 2𝜀). □

By adapting the above proof strategy with Bohr sets, Green (2005a) proved a Roth’s
theorem with popular differences in finite abelian groups of odd order, as well as in the
integers.

Theorem 6.7.5 (Roth’s theorem with popular difference in finite abelian groups)
For all 𝜀 > 0, there exists 𝑁0 = 𝑁0(𝜀) such that for all finite abelian groups Γ of odd
order |Γ| ≥ 𝑁0, and every 𝐴 ⊆ Γ with |𝐴| = 𝛼 |Γ|, there exists 𝑦 ∈ Γ \ {0} such that

|{𝑥 ∈ Γ : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}| ≥ (𝛼3 − 𝜀) |Γ| .

Theorem 6.7.6 (Roth’s theorem with popular difference in the integers)
For all 𝜀 > 0, there exists 𝑁0 = 𝑁0(𝜀) such that for every 𝑁 ≥ 𝑁0, and every 𝐴 ⊆ [𝑁]
with |𝐴| = 𝛼𝑁 , there exists 𝑦 ≠ 0 such that

|{𝑥 ∈ [𝑁] : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦 ∈ 𝐴}| ≥ (𝛼3 − 𝜀)𝑁.

See Tao’s blog post A Proof of Roth’s Theorem (2014) for a proof of Theorem 6.7.6 using
Bohr sets, following an arithmetic regularity decomposition in the spirit of Theorem 6.6.11.
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Remark 6.7.7 (Bounds). The above proof of Theorem 6.7.1 gives 𝑛0 = tower(𝜀−𝑂 (1) ). The
bounds Theorems 6.7.5 and 6.7.6 are also tower-type. What is the smallest 𝑛0(𝜀) for which
Theorem 6.7.1 holds? It turns out to be tower(Θ(log(1/𝜀))), as proved by Fox and Pham
(2019) over finite fields and Fox, Pham, and Zhao (2022) over the integers. Although it
had been known since Gowers (1997) that tower-type bounds are necessary for the regularity
lemmas themselves, Roth’s theorem with popular differences is the first regularity application
where a tower-type bound is shown to be indeed necessary.

Using quadratic Fourier analysis, Green and Tao (2010c) extended the popular difference
result over to 4-APs.

Theorem 6.7.8 (Popular difference for 4-APs)
For all 𝜀 > 0, there exists 𝑁0 = 𝑁0(𝜀) such that for every 𝑁 ≥ 𝑁0 and 𝐴 ⊆ [𝑁] with
|𝐴| = 𝛼𝑁 , there exists 𝑦 ≠ 0 such that

|{𝑥 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦, 𝑥 + 3𝑦 ∈ 𝐴}| ≥ (𝛼4 − 𝜀)𝑁.

Surprisingly, such a statement is false for APs of length 5 or longer. This was shown by
Bergelson, Host, and Kra (2005) with an appendix by Ruzsa giving a construction that is a
clever modification of the Behrend construction (Section 2.5).

Theorem 6.7.9 (Popular difference fails for 5-APs)
Let 0 < 𝛼 < 1/2. For all sufficiently large 𝑁 , there exists 𝐴 ⊆ [𝑁] with |𝐴| ≥ 𝛼𝑁 such
that for all 𝑦 ≠ 0,

|{𝑥 : 𝑥, 𝑥 + 𝑦, 𝑥 + 2𝑦, 𝑥 + 3𝑦, 𝑥 + 4𝑦 ∈ 𝐴}| ≤ 𝛼𝑐 log(1/𝛼)𝑁.

Here 𝑐 > 0 is some absolute constant.

For more on results of this type, as well as for popular difference for high dimensional
patterns, see Sah, Sawhney, and Zhao (2021).

Further Reading
Green has several excellent surveys and lecture notes:
• Finite Field Models in Additive Combinatorics (2005c) – For many additive combina-

torics problems, it is a good idea to first study them in the finite field setting (also see
the follow up by Wolf (2015)).
• Montreal Lecture Notes on Quadratic Fourier Analysis (2007a) – An introduction to

quadratic Fourier analysis and its application to the popular common difference theorem
for 4-APs in F𝑛5 .
• Lecture notes from his Cambridge course Additive Combinatorics (2009b).
Tao’s FOCS 2007 tutorial Structure and Randomness in Combinatorics (2007a) explains

many facets of arithmetic regularity and applications.
For more on algebraic methods in combinatorics (mostly predating methods in Section 6.5),

see the following books:
• Thirty-Three Miniatures by Matoušek (2010);
• Linear Algebra Methods in Combinatorics by Babai and Frankl;
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• Polynomial Methods in Combinatorics by Guth (2016);
• Polynomial Methods and Incidence Theory by Sheffer (2022).
In particular, the book Fourier Analysis by Stein and Shakarchi (2003) is a superb un-

dergraduate textbook on Fourier analysis. The analysis viewpoint has different emphases
compared to this chapter, though many standard tools (e.g., Parseval) are common to both.
It is helpful to become familiar with general principles of Fourier analysis, such as the
relationship between smoothness and decay.

Chapter Summary

• Basic tools of discrete Fourier analysis:
– Fourier transform,
– Fourier inversion formula,
– Parsevel / Plancherel identity (unitarity of the Fourier transform),
– convolution identity (Fourier transform converts convolutions to multiplication).

• The finite field model (e.g., F𝑛3 ) offers a convenient playground for Fourier analysis
in additive combinatorics. Many techniques can then be adapted to the integer setting,
although often with additional technicalities.

• Roth’s theorem. Using Fourier analysis, we proved that every 3-AP-free subset has size
at most
– 𝑂 (3𝑛/𝑛) in F𝑛, and
– 𝑂 (𝑁/log log 𝑁) in [𝑁] ⊆ Z.

• The Fourier analytic proof of Roth’s theorem (both in F𝑛3 and in Z) proceeds via a density
increment argument:
(1) A 3-AP-free set has a large Fourier coefficient;
(2) A large Fourier coefficient implies density increment on some hyperplane (in F𝑛3 ) or

subprogression (in Z);
(3) Iterate the density increment.

• Using the polynomial method, we showed that every 3-AP-free subset of F𝑛3 has size
𝑂 (2.76𝑛).

• Arithmetic regularity lemma. Given 𝐴 ⊆ F𝑛𝑝 , we can find a bounded codimensional
subspace so that 𝐴 is Fourier-uniform on almost all cosets.
– An application: Roth’s theorem with popular difference. For every 𝐴 ⊆ F𝑛3 , there is

some “popular 3-AP common difference” with frequency at least nearly as much as if
𝐴 were random.
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