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Graph Homomorphism Inequalities

Chapter Highlights

• A suite of techniques for proving inequalities between subgraph densities
• The maximum/minimum triangle density in a graph of given edge density.
• How to apply Cauchy–Schwarz and Hölder inequalities
• Lagrangian method (another proof of Turán’s theorem, and linear inequalities between

clique densities)
• Entropy method (and applications to Sidorenko’s conjecture)

In this chapter, we study inequalities between graph homomorphism densities. Here is a
typical example.

Question 5.0.1 (Linear inequality between homomorphism densities)
Given fixed graphs 𝐹1, . . . , 𝐹𝑘 and reals 𝑐1, . . . , 𝑐𝑘 , does

𝑐1𝑡 (𝐹1, 𝐺) + 𝑐2𝑡 (𝐹2, 𝐺) + · · · + 𝑐𝑘𝑡 (𝐹𝑘 , 𝐺) ≥ 0. (5.1)

hold for all graphs 𝐺? Recall 𝑡 (𝐹, 𝐺) = hom(𝐹, 𝐺)/𝑣(𝐺)𝑣 (𝐹 ) .

Although the left-hand side is a linear combination of various graph homomorphism
densities in 𝐺, polynomial combinations can also be written this way, as 𝑡 (𝐹1, 𝐺)𝑡 (𝐹2, 𝐺) =
𝑡 (𝐹1 ⊔ 𝐹2, 𝐺) where 𝐹1 ⊔ 𝐹2 is the disjoint union of the two graphs.

More generally, we would like to understand constrained optimization problems in terms
of graph homomorphism density. Many problems in extremal graph theory can be cast in
this framework. For example, Turán’s theorem from Chapter 1 on the maximum edge density
of a 𝐾𝑟 -free graph can be phrased in terms of the optimization problem

maximize 𝑡 (𝐾2, 𝐺) subject to 𝑡 (𝐾𝑟 , 𝐺) = 0.

Turán’s theorem (Corollary 1.2.6) says that the answer is 1/(𝑟 − 1), achieved by 𝐺 = 𝐾𝑟−1.
We will see another proof of Turán’s theorem in later in this Chapter, in Section 5.4 using
the method of Lagrangians.

Remark 5.0.2 (Undecidability). Perhaps surprisingly, Question 5.0.1 is undecidable, as
shown by Hatami and Norine (2011). This means that there is no algorithm that always
correctly decides whether a given inequality is true for all graphs (however, it does not
prevent us from proving/disproving specific inequalities). This undecidability stands in stark
contrast to the decidability of polynomial inequalities over the reals, which follows from a
classic result of Tarski (1948) that the first order theory of real numbers is decidable (via
quantifier elimination). This undecidability of graph homomorphism inequalities is related to
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164 Graph Homomorphism Inequalities

Matiyasevich’s theorem (1970) (also known as the Matiyasevich–Robinson–Davis–Putnam
theorem) giving a negative solution to Hilbert’s Tenth Problem, showing that diophantine
equations are undecidable (equivalently: polynomial inequalities over the integers are unde-
cidable). In fact, the proof of the former proceeds by converting polynomial inequalities over
the integers to inequalities between 𝑡 (𝐹, 𝐺) for various 𝐹.

As in the case of diophantine equations, the undecidability of graph homomorphism
inequalities should be positively viewed as evidence of the richness of this space of problems.
There are still many open problems, such as Sidorenko’s inequality that we will see shortly.

Remark 5.0.3 (Graphs vs. graphons). In the space of graphons with respect to the cut
norm,𝑊 ↦→ 𝑡 (𝐹,𝑊) is continuous (by the counting lemma, Theorem 4.5.1), and graphs are
a dense subset (Theorem 4.2.8). It follows any inequality for continuous functions of 𝑡 (𝐹, 𝐺)
over various 𝐹s (e.g., linear combinations as in Question 5.0.1) holds for all graphs 𝐺 if and
only if they hold for all graphons 𝑊 in place of 𝐺. Furthermore, due to the compactness
of the space of graphons, the extremum of continuous functions of 𝐹-densities is always
attained at some graphon. The graphon formulation of the results can be often succinct and
attractive.

For example, consider the following extremal problem (already mentioned in Chapter 4),
where 𝑝 ∈ [0, 1] is a given constant,

minimize 𝑡 (𝐶4, 𝐺) subject to 𝑡 (𝐾2, 𝐺) ≥ 𝑝.
The infimum 𝑝4 is not attained by any single graph, but rather by a sequence of quasirandom
graphs (see Section 3.1). However, if we enlarge the space from graphs 𝐺 to graphons 𝑊 ,
then the minimizer is attained, in this case by the constant graphon 𝑝.

Sidorenko’s Conjecture and Forcing Conjecture
There are many important open problems on graph homomorphism inequalities. A ma-
jor conjecture in extremal combinatorics is Sidorenko’s conjecture (1993) (an equivalent
conjecture was given earlier by Erdős and Simonovits).

Definition 5.0.4 (Sidorenko graphs)
We say that a graph 𝐹 is Sidorenko if for every graph 𝐺,

𝑡 (𝐹, 𝐺) ≥ 𝑡 (𝐾2, 𝐺)𝑒 (𝐹 ) .

Conjecture 5.0.5 (Sidorenko’s conjecture)
Every bipartite graph is Sidorenko.

In other words, the conjecture says that for a fixed bipartite graph 𝐹, the 𝐹-density in
a graph of a given edge density is asymptotically minimized by a random graph. We will
develop techniques in this chapter to prove several interesting special cases of Sidorenko’s
conjecture.

Every Sidorenko graph is necessarily bipartite. Indeed, given a nonbipartite 𝐹, we can
take a nonempty bipartite 𝐺 to get 𝑡 (𝐹, 𝐺) = 0 while 𝑡 (𝐾2, 𝐺) > 0.

A notable open case of Sidorenko’s conjecture is 𝐹 = 𝐾5,5 \ 𝐶10 (below left). This 𝐹 is
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called the Möbius graph since it is the point-face incidence graph of a minimum simplicial
decomposition of a Möbius strip (below right).
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Sidorenko’s conjecture has the equivalent graphon formulation: for every bipartite graph 𝐹
and graphon𝑊 ,

𝑡 (𝐹,𝑊) ≥ 𝑡 (𝐾2,𝑊)𝑒 (𝐹 ) .
Note that equality occurs when 𝑊 ≡ 𝑝, the constant graphon. One can think of Sidorenko’s
conjecture as a separate problem for each 𝐹, and asking to minimize 𝑡 (𝐹,𝑊) among graphons
𝑊 with

∫
𝑊 ≥ 𝑝. Whether the constant graphon is the unique minimizer is the subject of an

even stronger conjecture known as the forcing conjecture.

Definition 5.0.6 (Forcing graphs)
We say that a graph 𝐹 is forcing if every graphon 𝑊 with 𝑡 (𝐹,𝑊) = 𝑡 (𝐾2,𝑊)𝑒 (𝐹 ) is a
constant graphon (up to a set of measure zero).

By translating back and forth between graph limits and sequences of graphs, the forcing
property is equivalent to a quasirandomness condition. Thus any forcing graph can play the
role of𝐶4 in Theorem 3.1.1. This is what led Chung, Graham, and Wilson to consider forcing
graphs. In particular, 𝐶4 is forcing.

Proposition 5.0.7 (Forcing and quasirandomness)
A graph 𝐹 is forcing if and only if for every constant 𝑝 ∈ [0, 1], every sequence of graphs
𝐺 = 𝐺𝑛 with

𝑡 (𝐾2, 𝐺) = 𝑝 + 𝑜(1) and 𝑡 (𝐹, 𝐺) = 𝑝𝑒 (𝐹 ) + 𝑜(1)
is quasirandom in the sense of Definition 3.1.2.

Exercise 5.0.8. Prove Proposition 5.0.7.

The forcing conjecture states a complete characterization of forcing graphs (Skokan and
Thoma 2004; Conlon, Fox, and Sudakov 2010).

Conjecture 5.0.9 (Forcing conjecture)
A graph is forcing if and only if it is bipartite and has at least one cycle.

Exercise 5.0.10. Prove the “only if” direction of the forcing conjecture.

Exercise 5.0.11. Prove that every forcing graph is Sidorenko.
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Exercise 5.0.12 (Forcing and stability). Show that a graph 𝐹 is forcing if and only if for
every 𝜀 > 0, there exists 𝛿 > 0 such that if a graph 𝐺 satisfies 𝑡 (𝐹, 𝐺) ≤ 𝑡 (𝐾2, 𝐺)𝑒 (𝐹 ) + 𝛿,
then 𝛿□(𝐺, 𝑝) ≤ 𝜀.
The following exercise shows that to prove a graph is Sidorenko, we do not lose anything

by giving away a constant factor. The proof is a quick and neat application of the tensor
power trick.

Exercise 5.0.13 (Tensor power trick). Let 𝐹 be a bipartite graph. Suppose there is some
constant 𝑐 > 0 such that

𝑡 (𝐹, 𝐺) ≥ 𝑐 𝑡 (𝐾2, 𝐺)𝑒 (𝐹 ) for all graphs 𝐺.

Show that 𝐹 is Sidorenko.

5.1 Edge vs. Triangle Densities
What are all the pairs of edge and triangles densities that can occur in a graph (or graphon)?
Since the set of graphs is dense in the space of graphons, the closure of {(𝑡 (𝐾2, 𝐺), 𝑡 (𝐾3, 𝐺)) :
graph 𝐺} is the

edge-triangle region B {(𝑡 (𝐾2,𝑊), 𝑡 (𝐾3,𝑊)) : graphon𝑊} ⊆ [0, 1]2. (5.2)

This is a closed subset of [0, 1]2, due to the compactness of the space of graphons. This
set has been completely determined, and it is illustrated in Figure 5.1. We will discuss its
features in this section.

The upper and lower boundaries of this region correspond to the answers of the following
question.

Question 5.1.1 (Extremal triangle density given edge density)
Fix 𝑝 ∈ [0, 1]. What are the minimum and maximum possible 𝑡 (𝐾3,𝑊) among all
graphons with 𝑡 (𝐾2,𝑊) = 𝑝?

For a given 𝑝 ∈ [0, 1], the set {𝑡 (𝐾3,𝑊) : 𝑡 (𝐾2,𝑊) = 𝑝} is a closed interval. Indeed,
if 𝑊0 achieves the minimum triangle density, and 𝑊1 achieves the maximum, then their
linear interpolation 𝑊𝑡 = (1 − 𝑡)𝑊0 + 𝑡𝑊1, ranging over 0 ≤ 𝑡 ≤ 1, must have triangle
density continuously interpolating between those of𝑊0 and𝑊1, and therefore achieves every
intermediate value.

Maximum Triangle Density
The maximization part of Question 5.1.1 is easier. The answer is 𝑝3/2.

Theorem 5.1.2 (Max triangle density)
For every graph 𝐺,

𝑡 (𝐾3, 𝐺) ≤ 𝑡 (𝐾2, 𝐺)3/2.
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Figure 5.1 The top figure shows the edge-triangle region. This region is often
depicted as in the bottom figure, which better highlights the concave scallops on the
lower boundary but is a less accurate plot.

Graph Theory and Additive Combinatorics — Yufei Zhao
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This inequality is asymptotically tight for 𝐺 being a clique on a subset of vertices. The
equivalent graphon inequality 𝑡 (𝐾3,𝑊) ≤ 𝑡 (𝐾2,𝑊)3/2 attains equality for the clique graphon

𝑊 (𝑥, 𝑦) =
{

1 if 𝑥, 𝑦 ≤ 𝑎,
0 otherwise.

0 𝑎

𝑎

1

1

1

0

(5.3)

For the above𝑊 , we have 𝑡 (𝐾3, 𝐺) = 𝑎3 while 𝑡 (𝐾2, 𝐺) = 𝑎2.

Proof. The quantities hom(𝐾3, 𝐺) and hom(𝐾2, 𝐺) count the number of closed walks in the
graph of length 3 and 2, respectively. Let 𝜆1 ≥ · · · ≥ 𝜆𝑛 be the eigenvalues of the adjacency
matrix 𝐴𝐺 of 𝐺. Then

hom(𝐾3, 𝐺) = tr 𝐴3
𝐺 =

𝑘∑︁
𝑖=1

𝜆3
𝑖 and hom(𝐾2, 𝐺) = tr 𝐴2

𝐺 =
𝑘∑︁
𝑖=1

𝜆2
𝑖 .

Then (see lemma below)

hom(𝐾3, 𝐺) =
𝑛∑︁
𝑖=1

𝜆3
𝑖 ≤

(
𝑛∑︁
𝑖=1

𝜆2
𝑖

)3/2

= hom(𝐾2, 𝐺)3/2.

After dividing by 𝑣(𝐺)3 on both sides, the result follows. □

Lemma 5.1.3 (A power sum inequality)
Let 𝑡 ≥ 1, and 𝑎1, · · · , 𝑎𝑛 ≥ 0. Then,

𝑎𝑡1 + · · · + 𝑎𝑡𝑛 ≤ (𝑎1 + · · · + 𝑎𝑛)𝑡 .

Proof. Assume at least one 𝑎𝑖 is positive, or else both sides equal to zero. Then

LHS
RHS

=
𝑛∑︁
𝑖=1

(
𝑎𝑖

𝑎1 + · · · + 𝑎𝑛

) 𝑡
≤

𝑛∑︁
𝑖=1

𝑎𝑖
𝑎1 + · · · + 𝑎𝑛 = 1. □

Remark 5.1.4. We will see additional proofs of Theorem 5.1.2 not invoking eigenvalues
later in Exercise 5.2.14 and in Section 5.3. Theorem 5.1.2 is an inequality in “physical space”
(as opposed to going into the “frequency space” of the spectrum), and it is a good idea to
think about how to prove it while staying in the physical space.

More generally, the clique graphon (5.3) also maximizes 𝐾𝑟 -densities among all graphons
of given edge density.

Theorem 5.1.5 (Maximum clique density)
For any graphon𝑊 and integer 𝑘 ≥ 3,

𝑡 (𝐾𝑘 ,𝑊) ≤ 𝑡 (𝐾2,𝑊)𝑘/2.

Proof. There exist integers 𝑎, 𝑏 ≥ 0 such that 𝑘 = 3𝑎 + 2𝑏 (e.g., take 𝑎 = 1 if 𝑘 is odd and
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𝑎 = 0 if 𝑘 is even). Then 𝑎𝐾3 + 𝑏𝐾2 (a disjoint union of 𝑎 triangles and 𝑏 isolated edges) is
a subgraph of 𝐾𝑘 . So

𝑡 (𝐾𝑘 ,𝑊) ≤ 𝑡 (𝑎𝐾3 + 𝑏𝐾2,𝑊) = 𝑡 (𝐾3,𝑊)𝑎𝑡 (𝐾2,𝑊)𝑏 ≤ 𝑡 (𝐾2,𝑊)3𝑎/2+𝑏 = 𝑡 (𝐾2,𝑊)𝑘/2. □
Remark 5.1.6 (Kruskal–Katona theorem). Thanks to a theorem of Kruskal (1963) and
Katona (1968), the exact answer to the following nonasymptotic question is completely
known:

What is the maximum number of copies of 𝐾𝑘s in an 𝑛-vertex graph with 𝑚 edges?
When 𝑚 =

(𝑎
2
)

for some integer 𝑎, the optimal graph is a clique on 𝑎 vertices. More
generally, for any value of𝑚, the optimal graph is obtained by adding edges in colexicographic
order:

12, 13, 23, 14, 24, 34, 15, 25, 35, 45, . . .

This is stronger than Theorem 5.1.5, which only gives an asymptotically tight answer as
𝑛→∞. The full Kruskal–Katona theorem also answers:

What is the maximum number of 𝑘-cliques in an 𝑟-graph with 𝑛 vertices and 𝑚 edges?
When 𝑚 =

(𝑎
𝑟

)
, the optimal 𝑟-graph is a clique on 𝑎 vertices. (An asymptotic version of

this statement can be proved using techniques in Section 5.3.) More generally, the optimal
𝑟-graph is obtained by adding the edges in colexicographic order. For example, for 3-graphs,
the edges should be added in the following order:

123, 124, 134, 234, 125, 135, 235, 145, 245, 345, . . .

Here 𝑎1 . . . 𝑎𝑟 < 𝑏1 . . . 𝑏𝑟 in colexicographic order if 𝑎𝑖 < 𝑏𝑖 at the last 𝑖 where 𝑎𝑖 ≠ 𝑏𝑖 (i.e.,
dictionary order when read from right to left). Here we sort the elements of each 𝑟-tuple in
increasing order.

The Kruskal–Katona theorem can be proved by a compression/shifting argument. The
idea is to repeatedly modify the graph so that we eventually end up at the optimal graph. At
each step, we “push” all the edges toward a clique along some “direction” in a way that does
not reduce the number of 𝑘-cliques in the graph.

Minimum Triangle Density
Now we turn to the lower boundary of the edge-triangle region. What is the minimum triangle
density in a graph of given edge density 𝑝?

For 𝑝 ≤ 1/2, we can have complete bipartite graphs of density 𝑝 + 𝑜(1), which are
triangle-free. For 𝑝 > 1/2, the triangle density must be positive due to Mantel’s theorem
(Theorem 1.1.1) and supersaturation (Theorem 1.3.4). It turns out that among graphs with
edge density 𝑝 + 𝑜(1), the triangle density is asymptotically minimized by certain complete
multipartite graphs, although this is not easy to prove.

For each positive integer 𝑘 , we have

𝑡 (𝐾2, 𝐾𝑘) = 1 − 1
𝑘

and 𝑡 (𝐾3, 𝐾𝑘) =
(
1 − 1

𝑘

) (
1 − 2

𝑘

)
.

As 𝑘 ranges over all positive integers, these pairs form special points on the lower boundary of
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the edge-triangle region, as illustrated in Figure 5.1 on page 167. (Recall that 𝐾𝑘 is associated
to the same graphon as a complete 𝑘-partite graph with equal parts.)

Now suppose the given edge density 𝑝 lies strictly between 1 − 1/(𝑘 − 1) and 1 − 1/𝑘
for some integer 𝑘 ≥ 2. To obtain the graphon with edge density 𝑝 and minimum triangle
density, we first start with 𝐾𝑘 with all vertices having equal weight. And then shrink the
relative weight of exactly one of the 𝑘 vertices (while keeping the remaining 𝑘 − 1 vertices
to have the same vertex weight). For example, the graphon illustrated below is obtained by
starting with 𝐾4 and shrinking the weight on one vertex.

0
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1

1

𝐼1
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1

0

1

1

𝐼2

𝐼2

1

1

0

1

𝐼3

𝐼3

1

1

1

0𝐼4

𝐼4

During this process, the total edge density (account for vertex weights) decreases continuously
from 1− 1/𝑘 to 1− 1/(𝑘 − 1). At some point, the edge density is equal to 𝑝. It turns out that
this vertex-weighted 𝑘-clique 𝑊 minimizes triangle density among all graphons with edge
density 𝑝.

The above claim is much more difficult to prove than the maximum triangle density result.
This theorem, stated below, due to Razborov (2008), was proved using an involved Cauchy–
Schwarz calculus that he coined flag algebra. We will say a bit more about this method in
Section 5.2.

Theorem 5.1.7 (Minimum triangle density)
Fix 0 ≤ 𝑝 ≤ 1 and 𝑘 = ⌈1/(1 − 𝑝)⌉. The minimum of 𝑡 (𝐾3,𝑊) among graphons 𝑊
with 𝑡 (𝐾2,𝑊) = 𝑝 is attained by the stepfunction 𝑊 associated to a 𝑘-clique with node
weights 𝑎1, 𝑎2, · · · , 𝑎𝑘 with sum equal to 1, 𝑎1 = · · · = 𝑎𝑘−1 ≥ 𝑎𝑘 , and 𝑡 (𝐾2,𝑊) = 𝑝.

We will not prove this theorem in full here. See Lovász (2012, Section 16.3.2) for a proof
of Theorem 5.1.7. Later in this chapter, we give lower bounds that match the edge-triangle
region at the cliques. In particular, Theorem 5.4.4 will allow us to determine the convex hull
of the region.

The graphon described in Theorem 5.1.7 turns out to be not unique unless 𝑝 = 1 − 1/𝑘
for some positive integer 𝑘 . Indeed, suppose 1 − 1/(𝑘 − 1) < 𝑝 < 1 − 1/𝑘 . Let 𝐼1, . . . , 𝐼𝑘 be
the partition of [0, 1] into the intervals corresponding to the vertices of the vertex-weighted
𝑘-clique, with 𝐼1, . . . , 𝐼𝑘−1 all having equal length, and 𝐼𝑘 strictly smaller length. Now replace
the graphon on 𝐼𝑘−1 ∪ 𝐼𝑘 by an arbitrary triangle-free graphon of the same edge density.
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This operation does not change the edge-density or the triangle-density of the graphon
(check!). The nonuniqueness of the minimizer hints at the difficulty of the result.

This completes our discussion of the edge-triangle region (Figure 5.1 on page 167).

Theorem 5.1.7 was generalized from 𝐾3 to 𝐾4 (Nikiforov 2011), and then to all cliques 𝐾𝑟
(Reiher 2016). The construction for the minimizing graphon is the same as for the triangle
case.

Theorem 5.1.8 (Minimum clique density)
Fix 0 ≤ 𝑝 ≤ 1 and 𝑘 = ⌈1/(1 − 𝑝)⌉. The minimum of 𝑡 (𝐾𝑟 ,𝑊) among graphons 𝑊
with 𝑡 (𝐾2,𝑊) = 𝑝 is attained by the stepfunction 𝑊 associated to a 𝑘-clique with node
weights 𝑎1, 𝑎2, · · · , 𝑎𝑘 with sum equal to 1, 𝑎1 = · · · = 𝑎𝑘−1 ≥ 𝑎𝑘 , and 𝑡 (𝐾2,𝑊) = 𝑝.

Exercise 5.1.9. Prove that 𝐶6 is Sidorenko.

Hint:Writehom(𝐶6,𝐺)andhom(𝐾2,𝐺)intermsofthespectrumof𝐺.

5.2 Cauchy–Schwarz
We will apply the Cauchy–Schwarz inequality in the following form: given real-valued
functions 𝑓 and 𝑔 on the same space (always assuming the usual measurability assumptions
without further comments), we have(∫

𝑋

𝑓 𝑔

)2

≤
(∫
𝑋

𝑓 2
) (∫

𝑋

𝑔2
)
.

It is one of the most versatile inequalities in combinatorics.
We write the variables being integrated underneath the integral sign. The domain of

integration (usually [0, 1] for each variable) is omitted to avoid clutter. We write∫
𝑥,𝑦,...

𝑓 (𝑥, 𝑦, . . . ) for
∫

𝑓 (𝑥, 𝑦, . . . ) 𝑑𝑥𝑑𝑦 · · · .

In practice, we will often apply the Cauchy–Schwarz inequality by changing the order of
integration, and separating an integral into an outer integral and an inner integral. A typical
application of the Cauchy–Schwarz inequality is demonstrated in the following calculation
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(here one should think of 𝑥, 𝑦, 𝑧 each as collections of variables):∫
𝑥,𝑦,𝑧

𝑓 (𝑥, 𝑦)𝑔(𝑥, 𝑧) =
∫
𝑥

(∫
𝑦

𝑓 (𝑥, 𝑦)
) (∫

𝑧

𝑔(𝑥, 𝑧)
)

≤
(∫

𝑥

(∫
𝑦

𝑓 (𝑥, 𝑦)
)2

)1/2 (∫
𝑥

(∫
𝑧

𝑔(𝑥, 𝑧)
)2

)1/2

=

(∫
𝑥,𝑦,𝑦′

𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦′)
)1/2 (∫

𝑥,𝑧,𝑧′
𝑔(𝑥, 𝑧)𝑔(𝑥, 𝑧′)

)1/2
.

Note that in the final step, “expanding a square” has the effect of “duplicating a variable.”
It is useful to recognize expressions with duplicated variables that can be folded back into a
square.

Let us warm up by proving that𝐾2,2 is Sidorenko. We actually already proved this statement
in Proposition 3.1.14 in the context of the Chung–Graham–Wilson theorem on quasirandom
graphs. We repeat the same calculations here to demonstrate the integral notation.

Theorem 5.2.1 (𝐾2,2 is Sidorenko)

𝑡 (𝐾2,2,𝑊) ≥ 𝑡 (𝐾2,𝑊)4

The theorem follows from the next two lemmas.

Lemma 5.2.2

𝑡 (𝐾1,2,𝑊) ≥ 𝑡 (𝐾2,𝑊)2

Proof. By rewriting as a square and then applying the Cauchy–Schwarz inequality,

𝑡 (𝐾1,2,𝑊) =
∫
𝑥,𝑦,𝑦′

𝑊 (𝑥, 𝑦)𝑊 (𝑥, 𝑦′) =
∫
𝑥

(∫
𝑦

𝑊 (𝑥, 𝑦)
)2

≥
(∫
𝑥,𝑦

𝑊 (𝑥, 𝑦)
)2

= 𝑡 (𝐾2,𝑊)2. □

Lemma 5.2.3

𝑡 (𝐾2,2,𝑊) ≥ 𝑡 (𝐾1,2,𝑊)2

Proof. Similar to the previous proof, we have

𝑡 (𝐾2,2,𝑊) =
∫
𝑥,𝑦,𝑧,𝑧′

𝑊 (𝑥, 𝑧)𝑊 (𝑥, 𝑧′)𝑊 (𝑦, 𝑧)𝑊 (𝑦, 𝑧′)

=
∫
𝑥,𝑦

(∫
𝑧

𝑊 (𝑥, 𝑧)𝑊 (𝑦, 𝑧)
)2

≥
(∫
𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑧)𝑊 (𝑦, 𝑧)
)2

= 𝑡 (𝐾1,2,𝑊)2. □

Proofs involving Cauchy–Schwarz are sometimes called “sum-of-square” proofs. The
Cauchy–Schwarz inequality can be proved by writing the difference between the two sides
as a sum-of-squares quantity:(∫

𝑓 2
) (∫

𝑔2
)
−

(∫
𝑓 𝑔

)2

=
1
2

∫
𝑥,𝑦

( 𝑓 (𝑥)𝑔(𝑦) − 𝑓 (𝑦)𝑔(𝑥))2 .
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Commonly, 𝑔 = 1, in which case we can also write(∫
𝑓 2

)
−

(∫
𝑓

)2

=
∫
𝑥

(
𝑓 (𝑥) −

∫
𝑦

𝑓 (𝑦)
)2

.

For example, We can write the proof of Lemma 5.2.3 as

𝑡 (𝐾1,2,𝑊) − 𝑡 (𝐾2,𝑊)2 ≥
∫
𝑥

(∫
𝑦

𝑊 (𝑥, 𝑦) − 𝑡 (𝐾2,𝑊)
)2

.

Exercise 5.2.4. Write 𝑡 (𝐾2,2,𝑊) − 𝑡 (𝐾2,𝑊)4 as a single sum-of-squares expression.

The next inequality tells us that if we color the edges of 𝐾𝑛 using two colors, then at least
1/4 + 𝑜(1) fraction of all triangles are monochromatic (Goodman 1959). Note that this 1/4
constant is tight since it is obtained by a uniform random coloring. In the graphon formulation
below, the graphons 𝑊 and 1 −𝑊 correspond to edges of each color. We have equality for
the constant 1/2 graphon.

Theorem 5.2.5 (Triangle is common)

𝑡 (𝐾3,𝑊) + 𝑡 (𝐾3, 1 −𝑊) ≥ 1/4

Proof. Expanding, we have

𝑡 (𝐾3, 1 −𝑊) =
∫
(1 −𝑊 (𝑥, 𝑦)) (1 −𝑊 (𝑥, 𝑧)) (1 −𝑊 (𝑦, 𝑧)) 𝑑𝑥𝑑𝑦𝑑𝑧

= 1 − 3𝑡 (𝐾2,𝑊) + 3𝑡 (𝐾1,2,𝑊) − 𝑡 (𝐾3,𝑊).
So

𝑡 (𝐾3,𝑊) + 𝑡 (𝐾3, 1 −𝑊) = 1 − 3𝑡 (𝐾2,𝑊) + 3𝑡 (𝐾1,2,𝑊)
≥ 1 − 3𝑡 (𝐾2,𝑊) + 3𝑡 (𝐾2,𝑊)2

=
1
4
+ 3

(
𝑡 (𝐾2,𝑊) − 1

2

)2

≥ 1
4
. □

Which graphs, other than triangles, have the above property? We do not know the full
answer.

Definition 5.2.6 (Common graphs)
We say that a graph 𝐹 is common if for all graphons𝑊 ,

𝑡 (𝐹,𝑊) + 𝑡 (𝐹, 1 −𝑊) ≥ 2−𝑒 (𝐹 )+1.

In other words, the left-hand side is minimized by the constant 1/2 graphon.

Although it was initially conjectured that all graphs are common, this turns out to be false.
In particular, 𝐾𝑡 is not common for all 𝑡 ≥ 4 (Thomason 1989).

Proposition 5.2.7
Every Sidorenko graph is common.
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Proof. Suppose 𝐹 were Sidorenko. Let 𝑝 = 𝑡 (𝐾2,𝑊). Then 𝑡 (𝐹,𝑊) ≥ 𝑝𝑒 (𝐹 ) and 𝑡 (𝐹, 1 −
𝑊) ≥ 𝑡 (𝐾2, 1 −𝑊)𝑒 (𝐹 ) = (1 − 𝑝)𝑒 (𝐹 ) . Adding up and using convexity,

𝑡 (𝐹,𝑊) + 𝑡 (𝐹, 1 −𝑊) ≥ 𝑝𝑒 (𝐹 ) + (1 − 𝑝)𝑒 (𝐹 ) ≥ 2−𝑒 (𝐹 )+1. □

The converse is false. The triangle is common but not Sidorenko (recall that every
Sidorenko graph is bipartite).

We also have the following lower bound on the minimum triangle density given edge
density (Goodman 1959). See Figure 5.2 for a plot.

Theorem 5.2.8 (Lower bound on triangle density)

𝑡 (𝐾3,𝑊) ≥ 𝑡 (𝐾2,𝑊) (2𝑡 (𝐾2,𝑊) − 1).

The inequality is tight whenever𝑊 = 𝐾𝑛, in which case 𝑡 (𝐾2,𝑊) = 1−1/𝑛 and 𝑡 (𝐾3,𝑊) =(𝑛
3
)/𝑛3 = (1 − 1/𝑛) (1 − 2/𝑛). In particular, Goodman’s bound implies that 𝑡 (𝐾3,𝑊) > 0

whenever 𝑡 (𝐾2,𝑊) > 1/2, which we saw from Mantel’s theorem.

0 1

1

𝑡 (𝐾2,𝑊)

𝑡 (𝐾3,𝑊)

𝑦 = 𝑥(2𝑥 − 1)

Figure 5.2 The Goodman lower bound on the triangle density from Theorem 5.2.8
plotted on top of the edge-triangle region (Figure 5.1 on page 167).

Proof. Since 0 ≤ 𝑊 ≤ 1, we have (1 −𝑊 (𝑥, 𝑧)) (1 −𝑊 (𝑦, 𝑧)) ≥ 0, and so

𝑊 (𝑥, 𝑧)𝑊 (𝑦, 𝑧) ≥ 𝑊 (𝑥, 𝑧) +𝑊 (𝑦, 𝑧) − 1.

Graph Theory and Additive Combinatorics — Yufei Zhao



5.2 Cauchy–Schwarz 175

Thus

𝑡 (𝐾3, 𝐺) =
∫
𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑦)𝑊 (𝑥, 𝑧)𝑊 (𝑦, 𝑧)

≥
∫
𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑦) (𝑊 (𝑥, 𝑧) +𝑊 (𝑦, 𝑧) − 1)

= 2𝑡 (𝐾1,2,𝑊) − 𝑡 (𝐾2,𝑊)
≥ 2𝑡 (𝐾2,𝑊)2 − 𝑡 (𝐾2,𝑊). □

Finally, let us demonstrate an application of the Cauchy–Schwarz inequality in the follow-
ing form, for nonnegative functions 𝑓 and 𝑔:(∫

𝑓 2𝑔

) (∫
𝑔

)
≥

(∫
𝑓 𝑔

)2

.

Recall that a graph 𝐹 is Sidorenko if 𝑡 (𝐹,𝑊) ≥ 𝑡 (𝐾2,𝑊)𝑒 (𝐹 ) for all graphons 𝑊 (Defini-
tion 5.0.4).

Theorem 5.2.9
is Sidorenko.

Proof. The idea is the “fold” the above graph 𝐹 in half along the middle using the Cauchy–
Schwarz inequality. Using 𝑤 and 𝑥 to indicate the two vertices in the middle, we have

𝑡 (𝐹,𝑊) =
∫
𝑤,𝑥

(∫
𝑦,𝑧

𝑊 (𝑤, 𝑦)𝑊 (𝑦, 𝑧)𝑊 (𝑧, 𝑥)
)2

𝑊 (𝑤, 𝑥).
𝑤𝑦

𝑧 𝑥

So

𝑡 (𝐹,𝑊)𝑡 (𝐾2,𝑊) ≥
(∫
𝑤,𝑥,𝑦,𝑧

𝑊 (𝑤, 𝑦)𝑊 (𝑦, 𝑧)𝑊 (𝑧, 𝑥)𝑊 (𝑤, 𝑥)
)2

= 𝑡 (𝐶4,𝑊)2 ≥ 𝑡 (𝐾2,𝑊)8,
with the last step due to Theorem 5.2.1. Therefore 𝑡 (𝐹,𝑊) ≥ 𝑡 (𝐾2,𝑊)7 and hence 𝐹 is
Sidorenko. □

Remark 5.2.10 (Flag algebra). The above examples were all simple enough to be found
by hand. As mentioned earlier, every application of the Cauchy–Schwarz inequality can be
rewritten in the form of a sum of a squares. One could actually search for these sum-of-
squares proofs more systematically using a computer program. This idea, first introduced
by Razborov (2007), can be combined with other sophisticated methods to determine the
lower boundary of the edge-triangle region (Razborov 2008). Razborov coined the term flag
algebra to describe a formalization of such calculations. The technique is also sometimes
called graph algebra, Cauchy–Schwarz calculus, sum-of-squares proof.

Conceptually, the idea is that we are looking for all the ways to obtain nonnegative linear
combinations of squared expressions. In a typical application, one is asked to solve an
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extremal problem of the form

Minimize 𝑡 (𝐹0,𝑊)
Subject to 𝑡 (𝐹1,𝑊) = 𝑞1, . . . , 𝑡 (𝐹ℓ ,𝑊) = 𝑞ℓ ,

𝑊 a graphon.

The technique is very flexible. The objectives and constraints could be any linear combi-
nations of densities. It could be maximization instead of minimization. Extensions of the
techniques can handle wider classes of extremal problems, such as for hypergraphs, directed
graphs, edge-colored graphs, permutations, and more.

Let us illustrate the technique. The nonnegativity of squares implies inequalities such as∫
𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑦)𝑊 (𝑥, 𝑧)
(∫
𝑢,𝑤

(𝑎𝑊 (𝑥, 𝑢)𝑊 (𝑦, 𝑢) − 𝑏𝑊 (𝑥, 𝑤)𝑊 (𝑤, 𝑢)𝑊 (𝑢, 𝑧) + 𝑐)
)2

≥ 0.

Here 𝑎, 𝑏, 𝑐 ∈ R are constants (to be chosen). We can expand the above expression, and then,
for instance,

replace
(∫
𝑢,𝑤

𝐺 𝑥,𝑦,𝑧 (𝑢, 𝑤)
)2

by
∫
𝑢,𝑤,𝑢′ ,𝑤′

𝐺 𝑥,𝑦,𝑧 (𝑢, 𝑤)𝐺 𝑥,𝑦,𝑧 (𝑢′, 𝑤′).

We obtain a nonnegative linear combination of 𝑡 (𝐹,𝑊) over various 𝐹 with undetermined
real coefficients.

The idea is to now consider all such nonnegative expressions (in practice, on a computer,
we consider a large but finite set of such inequalities). Then we try to optimize the previously
undetermined real coefficients (𝑎, 𝑏, 𝑐 above). By adding together an optimized nonnegative
linear combination of all such inequalities, and combining with the given constraints, we
aim to obtain an inequality 𝑡 (𝐹0,𝑊) ≥ 𝛼 for some real 𝛼. This would prove a bound
on the minimization problem stated earlier. We can find such coefficient and nonnegative
combinations efficiently using a semidefinite program (SDP) solver. If we also happen to
have an example of𝑊 satisfying the constraints and matching the bound (i.e., 𝑡 (𝐹0,𝑊) = 𝛼),
then we would have solved the extremal problem.

The flag algebra method, with computer assistance, has successfully solved many inter-
esting extremal problems in graph theory. For example, a conjecture of Erdős (1984) on the
maximum pentagon density in a triangle-free graph was solved using flag algebra methods;
the extremal construction is a blow-up of a 5-cycle (Grzesik 2012; Hatami, Hladký, Kráľ,
Norine, and Razborov 2013).

Theorem 5.2.11 (Maximum number 5-cycles in a triangle-free graph)
Every 𝑛-vertex triangle-free graph has at most (𝑛/5)5 cycles of length 5.
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Let us mention another nice result obtained using the flag algebra method. What is the
maximum possible number of induced copies of a given graph 𝐻 among all 𝑛-vertex graphs
(Pippenger and Golumbic 1975)?

The optimal limiting density (as a fraction of
( 𝑛
𝑣 (𝐻 )

)
, as 𝑛→ ∞) is called the inducibility

of graph𝐻. They conjectured that for every 𝑘 ≥ 5, the inducibility of a 𝑘-cycle is 𝑘!/(𝑘 𝑘−𝑘),
obtained by an iterated blow-up of a 𝑘-cycle (𝑘 = 5 illustrated here; in the limit there should
be infinitely many fractal-like iterations).

The conjecture for 5-cycles was proved by using flag algebra methods combined with addi-
tional “stability” methods (Balogh, Hu, Lidický, and Pfender 2016). The constant factor in
the following theorem is tight.

Theorem 5.2.12 (Inducibility of the 5-cycle)
Every 𝑛-vertex graph has at most 𝑛5/(55 − 5) induced 5-cycles.

Although the flag algebra method has successfully solved several extremal problems, in
many interesting cases, the method does not give a tight bound. Nevertheless, for many open
extremal problems, such as the tetrahedron hypergraph Turán problem, the best known bound
comes from this approach.

Remark 5.2.13 (Incompleteness). Can every true linear inequality for graph homomor-
phism densities be proved via Cauchy–Schwarz/sum-of-squares?

Before giving the answer, we first discuss classical results about real polynomials. Suppose
𝑝(𝑥1, . . . , 𝑥𝑛) is a real polynomial such that 𝑝(𝑥1, . . . , 𝑥𝑛) ≥ 0 for all 𝑥1, . . . , 𝑥𝑛 ∈ R. Can
such a nonnegative polynomial always be written as a sum of squares? Hilbert (1888; 1893)
proved that the answer is yes for 𝑛 ≤ 2 and no in general for 𝑛 ≥ 3. The first explicit
counterexample was given by Motzkin (1967):

𝑝(𝑥, 𝑦) = 𝑥4𝑦2 + 𝑥2𝑦4 + 1 − 3𝑥2𝑦2

is always nonnegative due to the AM-GM inequality, but it cannot be written as a non-
negative sum of squares. Solving Hilbert’s 17th problem, Artin (1927) proved that every
𝑝(𝑥1, . . . , 𝑥𝑛) ≥ 0 can be written as a sum of squares of rational functions, meaning that
there is some nonzero polynomial 𝑞 such that 𝑝𝑞2 can be written as a sum of squares of
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polynomials. For the earlier example,

𝑝(𝑥, 𝑦) = 𝑥2𝑦2(𝑥2 + 𝑦2 + 1) (𝑥2 + 𝑦2 − 2)2 + (𝑥2 − 𝑦2)2
(𝑥2 + 𝑦2)2 .

Let us return to the topic of inequalities between graph homomorphism densities. If
𝑓 (𝑊) = ∑

𝑖 𝑐𝑖𝑡 (𝐹𝑖,𝑊) is nonnegative for every graphon 𝑊 , can 𝑓 always be written as a
nonnegative sum of squares of rational functions in 𝑡 (𝐹,𝑊)? In other words, can every true
inequality be proved using a finite number of Cauchy–Schwarz inequalities (i.e., via vanilla
flag algebra calculations).

It turns out that the answer is no (Hatami and Norine 2011). Indeed, if there were always
a sum-of-squares proof, then we could obtain an algorithm for deciding whether 𝑓 (𝑊) ≥ 0
(with rational coefficients, say) holds for all graphons 𝑊 , thereby contradicting the unde-
cidability of the problem (Remark 5.0.2). Consider the algorithm that enumerates over all
possible forms of sum-of-squares expressions (with undetermined coefficients that can then
be solved for) and in parallel enumerates over all graphs 𝐺 and checks whether 𝑓 (𝐺) ≥ 0. If
every true inequality had a sum-of-squares proof, then this algorithm would always terminate
and tell us whether 𝑓 (𝑊) ≥ 0 for all graphons𝑊 .

Exercise 5.2.14 (Another proof of maximum triangle density). Let 𝑊 : [0, 1]2 → R be
a symmetric measurable function. Write 𝑊2 for the function taking value 𝑊2(𝑥, 𝑦) =
𝑊 (𝑥, 𝑦)2.

(a) Show that 𝑡 (𝐶4,𝑊) ≤ 𝑡 (𝐾2,𝑊
2)2.

(b) Show that 𝑡 (𝐾3,𝑊) ≤ 𝑡 (𝐾2,𝑊
2)1/2𝑡 (𝐶4,𝑊)1/2.

Combining the two inequalities we deduce 𝑡 (𝐾3,𝑊) ≤ 𝑡 (𝐾2,𝑊
2)3/2, which is somewhat

stronger than Theorem 5.1.2. We will see another proof below in Corollary 5.3.10.

Exercise 5.2.15. Prove that the skeleton of the 3-cube (below) is Sidorenko.

Exercise 5.2.16. Prove that 𝐾−4 is common, where 𝐾−4 is 𝐾4 with one edge removed.

Exercise 5.2.17. Prove that every path is Sidorenko, by extending the proof of Theo-
rem 5.3.4.

Exercise 5.2.18 (A lower bound on clique density). Show that for every positive integer
𝑟 ≥ 3, and graphon𝑊 , writing 𝑝 = 𝑡 (𝐾2,𝑊),

𝑡 (𝐾𝑟 ,𝑊) ≥ 𝑝(2𝑝 − 1) (3𝑝 − 2) · · · ((𝑟 − 1)𝑝 − (𝑟 − 2)) .
Note that this inequality is tight when𝑊 is the associated graphon of a clique.
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Exercise 5.2.19 (Triangle vs. diamond). Prove there is a function 𝑓 : [0, 1] → [0, 1]
with 𝑓 (𝑥) ≥ 𝑥2 and lim𝑥→0 𝑓 (𝑥)/𝑥2 = ∞ such that

𝑡 (𝐾−4 ,𝑊) ≥ 𝑓 (𝑡 (𝐾3,𝑊))
for all graphons𝑊 . Here 𝐾−4 is 𝐾4 with one edge removed.

Hint:Applythetriangleremovallemma

5.3 Hölder
Hölder’s inequality is a generalization of the Cauchy–Schwarz inequality. It says that given
𝑝1, . . . , 𝑝𝑘 ≥ 1 with 1/𝑝1+· · ·+1/𝑝𝑘 = 1, and real-valued functions 𝑓1, . . . , 𝑓𝑘 on a common
space, we have ∫

𝑓1 𝑓2 · · · 𝑓𝑘 ≤ ∥ 𝑓1∥ 𝑝1
· · · ∥ 𝑓𝑘 ∥ 𝑝𝑘 ,

where the 𝒑-norm of a function 𝑓 is defined by

∥ 𝒇 ∥𝒑 B

(∫
| 𝑓 |𝑝

)1/𝑝
.

In practice, the case 𝑝1 = · · · = 𝑝𝑘 = 𝑘 of Hölder’s inequality is used often.
We can apply Hölder’s inequality to show that 𝐾𝑠,𝑡 is Sidorenko. The proof is essentially

verbatim to the proof of Theorem 5.2.1 that 𝑡 (𝐾2,2,𝑊) ≥ 𝑡 (𝐾2,𝑊)4 from the previous section,
except that we now apply Hölder’s inequality instead of the Cauchy–Schwarz inequality. We
outline the steps below and leave the details as an exercise.

Theorem 5.3.1 (Complete bipartite graphs are Sidorenko)

𝑡 (𝐾𝑠,𝑡 ,𝑊) ≥ 𝑡 (𝐾2,𝑊)𝑠𝑡

Lemma 5.3.2

𝑡 (𝐾𝑠,1,𝑊) ≥ 𝑡 (𝐾2,𝑊)𝑠

Lemma 5.3.3

𝑡 (𝐾𝑠,𝑡 ,𝑊) ≥ 𝑡 (𝐾𝑠,1,𝑊)𝑡

Sidorenko’s Conjecture for 3-Edge Path
It is already quite a nontrivial fact that all paths are Sidorenko (Mulholland and Smith 1959;
Atkinson, Watterson, and Moran 1960; Blakley and Roy 1965). You are encouraged to try it
yourself before looking at the next proof.

Theorem 5.3.4
The 3-edge path is Sidorenko.
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Let us give two short proofs that both appeared as answers to a MathOverflow question
https://mathoverflow.net/q/189222. Later in Section 5.5 we will see another proof
using the entropy method.

The first proof is a special case of a more general technique by Sidorenko (1991).
𝑤

𝑥
𝑦

𝑧

First proof that the 3-edge path is Sidorenko. Let𝑃4 be the 3-edge path. Let𝑊 be a graphon.
Let 𝑔(𝑥) =

∫
𝑦
𝑊 (𝑥, 𝑦), representing the “degree” of vertex 𝑥. We have

𝑡 (𝑃4,𝑊) =
∫
𝑤,𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑤)𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦) =
∫
𝑥,𝑦,𝑧

𝑔(𝑥)𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦).

By relabeling, we can also write it as

𝑡 (𝑃4,𝑊) =
∫
𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦)𝑔(𝑧).

Applying the Cauchy–Schwarz inequality twice, followed by Hölder’s inequality,

𝑡 (𝑃4,𝑊) =
√︄∫

𝑥,𝑦,𝑧

𝑔(𝑥)𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦)
√︄∫

𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦)𝑔(𝑧)

≥
∫
𝑥,𝑦,𝑧

√︁
𝑔(𝑥)𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦)

√︁
𝑔(𝑧)

=
∫
𝑦

(∫
𝑥

√︁
𝑔(𝑥)𝑊 (𝑥, 𝑦)

)2

≥
(∫
𝑥,𝑦

√︁
𝑔(𝑥)𝑊 (𝑥, 𝑦)

)2

=

(∫
𝑥

𝑔(𝑥)3/2
)2

≥
(∫
𝑥

𝑔(𝑥)
)3

=

(∫
𝑥,𝑦

𝑊 (𝑥, 𝑦)
)3

. □

The second proof is due to Lee (2019).

Second proof that the 3-edge path is Sidorenko. Define 𝑔(𝑥) =
∫
𝑦
𝑊 (𝑥, 𝑦) as earlier. We

have

𝑡 (𝑃4,𝑊) =
∫
𝑤,𝑥,𝑦,𝑧

𝑊 (𝑥, 𝑤)𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦) =
∫
𝑥,𝑦

𝑔(𝑥)𝑊 (𝑥, 𝑦)𝑔(𝑦).

Note that ∫
𝑥,𝑦

𝑊 (𝑥, 𝑦)
𝑔(𝑥) =

∫
𝑥

𝑔(𝑥)
𝑔(𝑥) = 1.

Similarly we have ∫
𝑥,𝑦

𝑊 (𝑥, 𝑦)
𝑔(𝑦) = 1.
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So by Hölder’s inequality

𝑡 (𝑃4,𝑊) =
(∫
𝑥,𝑦

𝑔(𝑥)𝑊 (𝑥, 𝑦)𝑔(𝑦)
) (∫

𝑥,𝑦

𝑊 (𝑥, 𝑦)
𝑔(𝑥)

) (∫
𝑥,𝑦

𝑊 (𝑥, 𝑦)
𝑔(𝑦)

)

≥
(∫
𝑥,𝑦

𝑊 (𝑥, 𝑦)
)3

. □

A Generalization of Hölder’s Inequality
Now we discuss a powerful variant of Hölder’s inequality due to Finner (1992), which is
related more generally to Brascamp–Lieb inequalities. Here is a representative example.

Theorem 5.3.5 (Generalized Hölder inequality for a triangle)
Let 𝑋,𝑌, 𝑍 be measure spaces. Let 𝑓 : 𝑋 × 𝑌 → R, 𝑔 : 𝑋 × 𝑍 → R, and ℎ : 𝑌 × 𝑍 → R
be measurable functions (assuming integrability whenever needed). Then∫

𝑥,𝑦,𝑧

𝑓 (𝑥, 𝑦)𝑔(𝑥, 𝑧)ℎ(𝑦, 𝑧) ≤ ∥ 𝑓 ∥2 ∥𝑔∥2 ∥ℎ∥2 .

Note that a straightforward application of Hölder’s inequality, when 𝑋,𝑌, 𝑍 are probability
spaces (so that

∫
𝑥,𝑦,𝑧

𝑓 (𝑥, 𝑦) =
∫
𝑥,𝑦

𝑓 (𝑥, 𝑦)), would yield∫
𝑥,𝑦,𝑧

𝑓 (𝑥, 𝑦)𝑔(𝑥, 𝑧)ℎ(𝑦, 𝑧) ≤ ∥ 𝑓 ∥3 ∥𝑔∥3 ∥ℎ∥3 .

This is weaker than Theorem 5.3.5. Indeed, in a probability space, ∥ 𝑓 ∥2 ≤ ∥ 𝑓 ∥3 by Hölder’s
inequality.

Proof of Theorem 5.3.5. We apply the Cauchy–Schwarz inequality three times. First to the
integral over 𝑥 (this affects 𝑓 and 𝑔 while leaving ℎ intact):∫

𝑥,𝑦,𝑧

𝑓 (𝑥, 𝑦)𝑔(𝑥, 𝑧)ℎ(𝑦, 𝑧) ≤
∫
𝑦,𝑧

(∫
𝑥

𝑓 (𝑥, 𝑦)2
)1/2 (∫

𝑥

𝑔(𝑥, 𝑧)2
)1/2

ℎ(𝑦, 𝑧).

Next, we apply the Cauchy–Schwarz inequality to the variable 𝑦 (this affects 𝑓 and ℎ while
leaving 𝑔 intact). Continuing the above inequality,

≤
∫
𝑧

(∫
𝑥,𝑦

𝑓 (𝑥, 𝑦)2
)1/2 (∫

𝑥

𝑔(𝑥, 𝑧)2
)1/2 (∫

𝑦

ℎ(𝑦, 𝑧)2
)1/2

.

Finally, we apply the Cauchy–Schwarz inequality to the variable 𝑧 (this affects 𝑔 and ℎ while
leaving 𝑥 intact). Continuing the above inequality,

≤
(∫
𝑥,𝑦

𝑓 (𝑥, 𝑦)2
)1/2 (∫

𝑥,𝑧

𝑔(𝑥, 𝑧)2
)1/2 (∫

𝑦,𝑧

ℎ(𝑦, 𝑧)2
)1/2

.

This completes the proof of Theorem 5.3.5. □

Remark 5.3.6 (Projection inequalities). What is the maximum volume of a body 𝐾 ⊆ R3

whose projection on each coordinate plane is at most 1? A unit cube has volume 1, but is
this the largest possible?
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Letting | · | denote both volume and area (depending on the dimension) and 𝜋𝑥𝑦 (𝐾)
denote the projection of 𝐾 onto the 𝑥𝑦-plane, and likewise with the other planes. Using
1𝐾 (𝑥, 𝑦, 𝑧) ≤ 𝑓 (𝑥, 𝑦)𝑔(𝑥, 𝑧)ℎ(𝑦, 𝑧), Theorem 5.3.5 implies

|𝐾 |2 ≤ |𝜋𝑥𝑦 (𝐾) | |𝜋𝑥𝑧 (𝐾) | |𝜋𝑦𝑧 (𝐾) |. (5.4)

In particular, if all three projections have volume at most 1, then |𝐾 | ≤ 1.
The inequality (5.4), which holds more generally in higher dimensions, is due to Loomis

and Whitney (1949). See Exercise 5.3.9 below. It has important applications in combinatorics.
A powerful generalization known as Shearer’s entropy inequality will be discussed in
Section 5.5. Also see Exercise 5.5.19 for a strengthening of the projection inequalities.

Now let us state a more general form of Theorem 5.3.5, which can be proved using the
same techniques. The key point of the inequality in Theorem 5.3.5 is that each variable
(i.e., 𝑥, 𝑦, and 𝑧) is contained in exactly 2 of the factors (i.e., 𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑧), and ℎ(𝑦, 𝑧)).
Everything works the same way as long as each variable is contained in exactly 𝑘 factors, as
long as we use 𝐿𝑘 norms on the right-hand side.

For example,∫
𝑢,𝑣,𝑤,𝑥,𝑦,𝑧

𝑓1(𝑢, 𝑣) 𝑓2(𝑣, 𝑤) 𝑓3(𝑤, 𝑧) 𝑓4(𝑥, 𝑦)

· 𝑓5(𝑦, 𝑧) 𝑓6(𝑧, 𝑢) 𝑓7(𝑢, 𝑥) 𝑓8(𝑢, 𝑧) 𝑓9(𝑤, 𝑦) ≤
9∏
𝑖=1

∥ 𝑓𝑖 ∥3 .
𝑥

𝑤𝑣

𝑢

𝑧 𝑦

Here the factors in the integral correspond to edges of a 3-regular graph shown. In particular,
every variable lies in exactly 3 factors.

More generally, each function 𝑓𝑖 can take as input any number of variables, as long as
every variable appears in exactly 𝑘 functions. For example∫

𝑤,𝑥,𝑦,𝑧

𝑓 (𝑤, 𝑥, 𝑦)𝑔(𝑤, 𝑦, 𝑧)ℎ(𝑥, 𝑧) ≤ ∥ 𝑓 ∥2∥𝑔∥2∥ℎ∥2.

The inequality is stated more generally below. Given 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝑋1 × · · · × 𝑋𝑚 and
𝐼 ⊆ [𝑚], we write 𝜋𝐼 (𝑥) = (𝑥𝑖)𝑖∈𝐼 ∈

∏
𝑖∈𝐼 𝑋𝑖 for the projection onto the coordinate subspace

of 𝐼.

Theorem 5.3.7 (Generalized Hölder inequality)
Let 𝑋1, . . . , 𝑋𝑚 be measure spaces. Let 𝐼1, . . . , 𝐼ℓ ⊆ [𝑚] such that each element of [𝑚]
appears in exactly 𝑘 different 𝐼 ′𝑖 𝑠. For each 𝑖 ∈ [ℓ], let 𝑓𝑖 :

∏
𝑗∈𝐼𝑖 𝑋 𝑗 → R. Then∫

𝑋1×···×𝑋𝑚
𝑓1(𝜋𝐼1 (𝑥)) · · · 𝑓ℓ (𝜋𝐼ℓ (𝑥)) 𝑑𝑥 ≤ ∥ 𝑓1∥𝑘 · · · ∥ 𝑓ℓ ∥𝑘 .

Furthermore, if every 𝑋𝑖 is a probability space, then we can relax the hypothesis to “each
element of [𝑚] appears in at most 𝑘 different 𝐼𝑖s.”

Exercise 5.3.8. Prove Theorem 5.3.7 by generalizing the proof of Theorem 5.3.5.

The next exercise generalizes the projection inequality from Remark 5.3.6. Also see
Exercise 5.5.19 for a strengthening.
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Exercise 5.3.9 (Projection inequalities). Let 𝐼1, . . . , 𝐼ℓ ⊆ [𝑑] such that each element of
[𝑑] appears in exactly 𝑘 different 𝐼 ′𝑖 𝑠. Prove that for any compact body 𝐾 ⊆ R𝑑 , with | · |
denoting volume in the appropriate dimension,

|𝐾 |𝑘 ≤ |𝜋𝐼1 (𝐾) | · · · |𝜋𝐼ℓ (𝐾) |.
The version of Theorem 5.3.7 with each 𝑋𝑖 being a probability space is useful for graphons.

Corollary 5.3.10 (Upper bound on 𝐹-density)
For any graph 𝐹 with maximum degree at most 𝑘 , and graphon𝑊 ,

𝑡 (𝐹,𝑊) ≤ ∥𝑊 ∥𝑒 (𝐹 )𝑘 .

In particular, since

∥𝑊 ∥𝑘𝑘 =
∫
𝑊 𝑘 ≤ 𝑡 (𝐾2,𝑊),

the inequality implies that
𝑡 (𝐹,𝑊) ≤ 𝑡 (𝐾2,𝑊)𝑒 (𝐹 )/𝑘 .

This implies the upper bound on clique densities (Theorems 5.1.2 and 5.1.5). The stronger
statement of Corollary 5.3.10 with the 𝐿𝑘 norm of 𝑊 on the right-hand side has no direct
interpretations for subgraph densities, but it is important for certain applications such as to
understanding large deviation rates in random graphs (Lubetzky and Zhao 2017).

More generally, using different 𝐿 𝑝 norms for different factors in Hölder’s inequality, we
have the following statement (Finner 1992).

Theorem 5.3.11 (Generalized Hölder inequality)
Let 𝑋1, . . . , 𝑋𝑚 be measure spaces. For each 𝑖 ∈ [ℓ], let 𝑝𝑖 ≥ 1, let 𝐼𝑖 ⊆ [𝑚], and
𝑓𝑖 :

∏
𝑗∈𝐼𝑖 𝑋 𝑗 → R. If either

(a)
∑
𝑖: 𝑗∈𝐼𝑖 1/𝑝𝑖 = 1 for each 𝑗 ∈ [𝑚],

OR
(b) each 𝑋𝑖 is a probability space and

∑
𝑖: 𝑗∈𝐼𝑖 1/𝑝𝑖 ≤ 1 for each 𝑗 ∈ [𝑚],

then ∫
𝑋1×···×𝑋ℓ

𝑓1(𝜋𝐼1 (𝑥)) · · · 𝑓ℓ (𝜋𝐼ℓ (𝑥)) 𝑑𝑥 ≤ ∥ 𝑓1∥ 𝑝1
· · · ∥ 𝑓ℓ ∥ 𝑝ℓ .

Exercise 5.3.12. Prove Theorem 5.3.11.

An Application of Generalized Hölder Inequalities
Now we turn to another graph inequality where the above generalization of Hölder’s inequality
plays a key role.

Question 5.3.13 (Maximum number of independent sets in a regular graph)
Fix 𝑑. Among 𝑑-regular graphs, which graph 𝐺 maximizes 𝑖(𝐺)1/𝑣 (𝐺) , where 𝑖(𝐺)
denotes the number of independent sets of 𝐺.

Graph Theory and Additive Combinatorics — Yufei Zhao



184 Graph Homomorphism Inequalities

The answer turns out to be 𝐺 = 𝐾𝑑,𝑑 . We can also take 𝐺 to be a disjoint union of copies
of 𝐾𝑑,𝑑s, and this would not change 𝑖(𝐺)1/𝑣 (𝐺) . This result, stated below, was shown by Kahn
(2001) for bipartite regular graphs𝐺, and later extended by Zhao (2010) to all regular graphs
𝐺.

Theorem 5.3.14 (Maximum number of independent sets in a regular graph)
For every 𝑛-vertex 𝑑-regular graph 𝐺,

𝑖(𝐺) ≤ 𝑖(𝐾𝑑,𝑑)𝑛/(2𝑑) = (2𝑑+1 − 1)𝑛/(2𝑑) .

The set of independent sets of 𝐺 is in bĳection with the set of graph homomorphisms
from 𝐺 to the following graph:

Indeed, a map between their vertex sets forms a graph homomorphism if and only if the
vertices of 𝐺 that map to the nonlooped vertex is an independent set of 𝐺.

Let us first prove Theorem 5.3.14 for bipartite regular 𝐺. The following more general
inequality was shown by Galvin and Tetali (2004). It implies the bipartite case of Theo-
rem 5.3.14 by the above discussion.

Theorem 5.3.15 (The maximum number of 𝐻-colorings in a regular graph)
For every 𝑛-vertex 𝑑-regular bipartite graph𝐺, and any graph𝐻 (allowing looped vertices
on 𝐻)

hom(𝐺, 𝐻) ≤ hom(𝐾𝑑,𝑑 , 𝐻)𝑛/(2𝑑) .

This is equivalent to the following statement.

Theorem 5.3.16
For any 𝑑-regular bipartite graph 𝐹,

𝑡 (𝐹,𝑊) ≤ 𝑡 (𝐾𝑑,𝑑 ,𝑊)𝑒 (𝐹 )/𝑑2
.

Let us prove this theorem in the case 𝐹 = 𝐶6 to illustrate the technique more concretely.
The general proof is basically the same. Let

𝑓 (𝑥1, 𝑥2) =
∫
𝑦

𝑊 (𝑥1, 𝑦)𝑊 (𝑥2, 𝑦).

This function should be thought of as the codegree of vertices 𝑥1 and 𝑥2. Then, grouping the
factors in the integral according to their right endpoint, we have

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
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𝑡 (𝐶6,𝑊) =
∫
𝑥1 ,𝑥2 ,𝑥3 ,𝑦1 ,𝑦2 ,𝑦3

𝑊 (𝑥1, 𝑦1)𝑊 (𝑥2, 𝑦1)𝑊 (𝑥1, 𝑦2)𝑊 (𝑥3, 𝑦2)𝑊 (𝑥2, 𝑦3)𝑊 (𝑥2, 𝑦3)

=
∫
𝑥1 ,𝑥2 ,𝑥3

(∫
𝑦1

𝑊 (𝑥1, 𝑦1)𝑊 (𝑥2, 𝑦1)
) (∫

𝑦2

𝑊 (𝑥1, 𝑦2)𝑊 (𝑥3, 𝑦2)
)

·
(∫
𝑦3

𝑊 (𝑥2, 𝑦3)𝑊 (𝑥3, 𝑦3)
)

=
∫
𝑥1 ,𝑥2 ,𝑥3

𝑓 (𝑥1, 𝑥2) 𝑓 (𝑥1, 𝑥3) 𝑓 (𝑥2, 𝑥3)

≤ ∥ 𝑓 ∥32 [by generalized Hölder, Theorem 5.3.5 / 5.3.7].

On the other hand, we have

∥ 𝑓 ∥22 =
∫
𝑥1 ,𝑥2

𝑓 (𝑥1, 𝑥2)2

=
∫
𝑥1 ,𝑥2

(∫
𝑦1

𝑊 (𝑥1, 𝑦1)𝑊 (𝑥2, 𝑦1)
) (∫

𝑦2

𝑊 (𝑥1, 𝑦2)𝑊 (𝑥2, 𝑦2)
)

=
∫
𝑥1 ,𝑥2 ,𝑦1 ,𝑦2

𝑊 (𝑥1, 𝑦1)𝑊 (𝑥2, 𝑦1)𝑊 (𝑥1, 𝑦2)𝑊 (𝑥2, 𝑦2)

= 𝑡 (𝐶4,𝑊).
𝑥1 𝑦1
𝑥2 𝑦2

This proves Theorem 5.3.16 in the case 𝐹 = 𝐶6. The theorem in general can be proved via
a similar calculation.

Exercise 5.3.17. Complete the proof of Theorem 5.3.16 by generalizing the above argu-
ment.

Remark 5.3.18. Kahn (2001) first proved the bipartite case of Theorem 5.3.14 using
Shearer’s entropy inequality, which we will see in Section 5.5. His technique was extended by
Galvin and Tetali (2004) to prove Theorem 5.3.15. The proof using the generalized Hölder’s
inequality presented here was given by Lubetzky and Zhao (2017).

So far we proved Theorem 5.3.14 for bipartite regular graphs. To prove it for all regular
graphs, we apply the following inequality by Zhao (2010). Here 𝐺 × 𝐾2 (tensor product) is
the bipartite double cover of 𝐺. An example is illustrated below:

𝐺 𝐺 × 𝐾2

The vertex set of 𝐺 × 𝐾2 is 𝑉 (𝐺) × {0, 1}. Its vertices are labeled 𝑣𝑖 with 𝑣 ∈ 𝑉 (𝐺) and
𝑖 ∈ {0, 1}. Its edges are 𝑢0𝑣1 for all 𝑢𝑣 ∈ 𝐸 (𝐺). Note that 𝐺 ×𝐾2 is always a bipartite graph.
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Theorem 5.3.19 (Bipartite double cover for independent sets)
For every graph 𝐺,

𝑖(𝐺)2 ≤ 𝑖(𝐺 × 𝐾2).

Assuming Theorem 5.3.19, we can now prove Theorem 5.3.14 by reducing the statement
to the bipartite case, which we proved earlier. Indeed, for every 𝑑-regular graph 𝐺,

𝑖(𝐺) ≤ 𝑖(𝐺 × 𝐾2)1/2 ≤ 𝑖(𝐾𝑑,𝑑)𝑛/(2𝑑) ,
where the last step follows from applying Theorem 5.3.14 to the bipartite graph 𝐺 × 𝐾2.

Proof of Theorem 5.3.19. Let 2𝐺 denote a disjoint union of two copies of 𝐺. Label its
vertices by 𝑣𝑖 with 𝑣 ∈ 𝑉 and 𝑖 ∈ {0, 1} so that its edges are 𝑢𝑖𝑣𝑖 with 𝑢𝑣 ∈ 𝐸 (𝐺) and
𝑖 ∈ {0, 1}. We will give an injection 𝜙 : 𝐼 (2𝐺) → 𝐼 (𝐺 × 𝐾2). Recall that 𝐼 (𝐺) is the set of
independent sets of 𝐺. The injection would imply 𝑖(𝐺)2 = 𝑖(2𝐺) ≤ 𝑖(𝐺 × 𝐾2) as desired.

Fix an arbitrary order on all subsets of 𝑉 (𝐺). Let 𝑆 be an independent set of 2𝐺. Let

𝐸bad(𝑆) B {𝑢𝑣 ∈ 𝐸 (𝐺) : 𝑢0, 𝑣1 ∈ 𝑆}.
Note that 𝐸bad(𝑆) is a bipartite subgraph of 𝐺, since each edge of 𝐸bad has exactly one
endpoint in {𝑣 ∈ 𝑉 (𝐺) : 𝑣0 ∈ 𝑆} but not both (or else 𝑆 would not be independent). Let 𝐴
denote the first subset (in the previously fixed ordering) of𝑉 (𝐺) such that all edges in 𝐸bad(𝑆)
have one vertex in 𝐴 and the other outside 𝐴. Define 𝜙(𝑆) to be the subset of 𝑉 (𝐺) × {0, 1}
obtained by “swapping” the pairs in 𝐴. That is, for all 𝑣 ∈ 𝐴, 𝑣𝑖 ∈ 𝜙(𝑆) if and only if 𝑣1−𝑖 ∈ 𝑆
for each 𝑖 ∈ {0, 1}, and for all 𝑣 ∉ 𝐴, 𝑣𝑖 ∈ 𝜙(𝑆) if and only if 𝑣𝑖 ∈ 𝑆 for each 𝑖 ∈ {0, 1}. It is
not hard to verify that 𝜙(𝑆) is an independent set in 𝐺 × 𝐾2. The swapping procedure fixes
the “bad” edges.

2𝐺

bad edges

highlighted

𝐺 × 𝐾2

swap to get

indep set

𝐺 × 𝐾2

It remains to verify that 𝜙 is an injection. For every 𝑆 ∈ 𝐼 (2𝐺), once we know 𝑇 = 𝜙(𝑆),
we can recover 𝑆 by first setting

𝐸 ′bad(𝑇) = {𝑢𝑣 ∈ 𝐸 (𝐺) : 𝑢𝑖, 𝑣𝑖 ∈ 𝑇 for some 𝑖 ∈ {0, 1}},
so that 𝐸bad(𝑆) = 𝐸 ′bad(𝑇), and then finding 𝐴 as earlier and swapping the pairs of 𝐴 back.
(Remark: it follows that 𝑇 ∈ 𝐼 (𝐺 × 𝐾2) lies in the image of 𝜙 if and only if 𝐸 ′bad(𝑇) is
bipartite.) □

Remark 5.3.20 (Reverse Sidorenko). Does Theorem 5.3.15 generalize to all regular graphs
𝐺 like Theorem 5.3.14? Unfortunately, no. For example, when 𝐻 = consists of two
isolated loops, hom(𝐺, 𝐻) = 2𝑐 (𝐺) , with 𝑐(𝐺) being the number of connected components
of 𝐺. So hom(𝐺, 𝐻)1/𝑣 (𝐺) is minimized among 𝑑-regular graphs 𝐺 for 𝐺 = 𝐾𝑑+1, which is
the connected 𝑑-regular graph with the fewest vertices.

Theorem 5.3.15 actually extends to every triangle-free regular graph 𝐺. Furthermore, for
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every nontriangle-free regular graph 𝐺, there is some graph 𝐻 for which the inequality in
Theorem 5.3.15 fails.

There are several interesting families of graphs 𝐻 where Theorem 5.3.15 is known to
extend to all regular graphs 𝐺. Notably, this is true for 𝐻 = 𝐾𝑞, which is significant since
hom(𝐺, 𝐾𝑞) is the number of proper 𝑞-colorings of 𝐺.

There are also generalizations of the above to nonregular graphs. For example, for a graph
𝐺 without isolated vertices, letting 𝑑𝑢 denote the degree of 𝑢 ∈ 𝑉 (𝐺), we have

𝑖(𝐺) ≤
∏

𝑢𝑣∈𝐸 (𝐺)
𝑖(𝐾𝑑𝑢 ,𝑑𝑣 )1/(𝑑𝑢𝑑𝑣 ) .

And similarly for the number of proper 𝑞-colorings. In fact, the results mentioned in this
remark about regular graphs are proved by induction on vertices of 𝐺, and thus require
considering the larger family of not necessarily regular graphs 𝐺.

The results discussed in this remark are due to Sah, Sawhney, Stoner, and Zhao (2019;
2020). The term reverse Sidorenko inequalities was introduced to describe inequalities such
as 𝑡 (𝐹,𝑊)1/𝑒 (𝐹 ) ≤ 𝑡 (𝐾𝑑,𝑑 ,𝑊)1/𝑑2 , which mirror the inequality 𝑡 (𝐹,𝑊)1/𝑒 (𝐹 ) ≥ 𝑡 (𝐾2,𝑊) in
Sidorenko’s conjecture. Also see the earlier survey by Zhao (2017) for discussions of related
results and open problems.

We already know through the quasirandom graph equivalences (Theorem 3.1.1) that 𝐶4 is
forcing. The following exercise generalizes this fact.

Exercise 5.3.21. Prove that 𝐾𝑠,𝑡 is forcing whenever 𝑠, 𝑡 ≥ 2.

Exercise 5.3.22. Let 𝐹 be a bipartite graph with vertex bipartition 𝐴 ∪ 𝐵 such that every
vertex in 𝐵 has degree 𝑑. Let 𝑑𝑢 denote the degree of 𝑢 in 𝐹. Prove that for every graphon
𝑊 ,

𝑡 (𝐹,𝑊) ≤
∏

𝑢𝑣∈𝐸 (𝐹 )
𝑡 (𝐾𝑑𝑢 ,𝑑𝑣 ,𝑊)1/(𝑑𝑢𝑑𝑣 ) .

Exercise 5.3.23 (Sidorenko for 3-edge path with vertex weights). Let 𝑊 : [0, 1]2 →
[0,∞) be a measurable function (not necessarily symmetric). Let 𝑝, 𝑞, 𝑟, 𝑠 : [0, 1] →
[0,∞) be measurable functions. Prove that∫

𝑤,𝑥,𝑦,𝑧

𝑝(𝑤)𝑞(𝑥)𝑟 (𝑦)𝑠(𝑧)𝑊 (𝑥, 𝑤)𝑊 (𝑥, 𝑦)𝑊 (𝑧, 𝑦)

≥
(∫
𝑥,𝑦

(𝑝(𝑥)𝑞(𝑥)𝑟 (𝑦)𝑠(𝑦))1/3𝑊 (𝑥, 𝑦)
)3

.

𝑤
𝑥

𝑦
𝑧

Exercise 5.3.24. For a graph𝐺, let 𝑓𝑞 (𝐺) denote the number of maps𝑉 (𝐺) → {0, 1, . . . , 𝑞}
such that 𝑓 (𝑢) + 𝑓 (𝑣) ≤ 𝑞 for every 𝑢𝑣 ∈ 𝐸 (𝐺). Prove that for every 𝑛-vertex 𝑑-regular
graph 𝐺 (not necessarily bipartite),

𝑓𝑞 (𝐺) ≤ 𝑓𝑞 (𝐾𝑑,𝑑)𝑛/(2𝑑) .
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5.4 Lagrangian
Another Proof of Turán’s Theorem

Here is another proof of Turán’s theorem due to Motzkin and Straus (1965). It can be viewed
as a continuous/analytic analogue of the Zykov symmetrization proof of Turán’s theorem
from Section 1.2 (the third proof there).

Theorem 5.4.1 (Turán’s theorem)
The number of edges in an 𝑛-vertex 𝐾𝑟+1-free graph is at most(

1 − 1
𝑟

)
𝑛2

2
.

Proof. Let 𝐺 be a 𝐾𝑟+1-free graph on vertex set [𝑛]. Consider the function

𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑︁

𝑖 𝑗∈𝐸 (𝐺)
𝑥𝑖𝑥 𝑗 .

We want to show that

𝑓

(
1
𝑛
, . . . ,

1
𝑛

)
≤ 1

2

(
1 − 1

𝑟

)
.

In fact, we will show that

max
𝑥1 ,...,𝑥𝑛≥0
𝑥1+···+𝑥𝑛=1

𝑓 (𝑥1, . . . , 𝑥𝑛) ≤ 1
2

(
1 − 1

𝑟

)
.

By compactness, the maximum is achieved at some 𝑥 = (𝑥1, . . . , 𝑥𝑛). Let us choose such a
maximizing vector with the minimum support size (i.e., the number of nonzero coordinates).

Suppose 𝑖 𝑗 ∉ 𝐸 (𝐺) for some pair of distinct 𝑥𝑖, 𝑥 𝑗 > 0. If we replace (𝑥𝑖, 𝑥 𝑗) by (𝑠, 𝑥𝑖 +
𝑥 𝑗 − 𝑠), then 𝑓 changes linearly in 𝑠 (since 𝑥𝑖𝑥 𝑗 does not come up as a summand in 𝑓 ), and
since 𝑓 is already maximized at 𝑥, it must not actually change with 𝑠. So we can replace
(𝑥𝑖, 𝑥 𝑗) by (𝑥𝑖 + 𝑥 𝑗 , 0), which keeps 𝑓 the same while decreasing the number of nonzero
coordinates of 𝑥.

Thus the support of 𝑥 is a clique in 𝐺. By labeling vertices, say that 𝑥1, . . . , 𝑥𝑘 > 0 and
𝑥𝑘+1 = 𝑥𝑘+2 = · · · = 𝑥𝑛 = 0. Since 𝐺 is 𝐾𝑟+1-free, this clique has size 𝑘 ≤ 𝑟 . So

𝑓 (𝑥) =
∑︁

1≤𝑖< 𝑗≤𝑘
𝑥𝑖𝑥 𝑗 ≤ 1

2

(
1 − 1

𝑘

) (
𝑘∑︁
𝑖=1

𝑥𝑖

)2

=
1
2

(
1 − 1

𝑘

)
≤ 1

2

(
1 − 1

𝑟

)
. □

Remark 5.4.2 (Hypergraph Lagrangians). The Lagrangian of a hypergraph 𝐻 with vertex
set [𝑛] is defined to be

𝝀(𝑯) B max
𝑥1 ,...,𝑥𝑛≥0
𝑥1+···+𝑥𝑛=1

𝑓 (𝑥1, . . . , 𝑥𝑛), where 𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑︁

𝑒∈𝐸 (𝐻 )

∏
𝑖∈𝑒

𝑥𝑖 .

It is a useful tool for certain hypergraph Turán problems. The above proof of Turán’s theorem
shows that for every graph 𝐺, 𝜆(𝐺) = (1− 1/𝜔(𝐺))/2, where 𝜔(𝐺) is the size of the largest
clique in 𝐺. A maximizing 𝑥 has coordinate 1/𝜔(𝐺) on vertices of the clique and zero
elsewhere.
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As an alternate but equivalent perspective, the above proof can rephrased in terms of
maximizing the edge density among 𝐾𝑟+1-free vertex-weighted graphs (vertex weights are
given by the vector 𝑥 above). The proof shifts weights between nonadjacent vertices while
not decreasing the edge density, and this process preserves 𝐾𝑟+1-freeness.

Linear Inequalities Between Clique Densities
The next theorem shows that to check whether a linear inequality in clique densities in
𝐺 holds, it suffices to check it for 𝐺 being cliques (Bollobás 1976; Schelp and Thomason
1998). The 𝐾𝑟 density in a vertex-weighted clique can be expressed in terms of elementary
symmetric polynomials, which we recall are given as follows:

𝑒0(𝑥1, . . . , 𝑥𝑛) = 1,
𝑒1(𝑥1, . . . , 𝑥𝑛) = 𝑥1 + · · · + 𝑥𝑛,
𝑒2(𝑥1, . . . , 𝑥𝑛) =

∑︁
1≤𝑖< 𝑗≤𝑛

𝑥𝑖𝑥 𝑗 ,

𝑒3(𝑥1, . . . , 𝑥𝑛) =
∑︁

1≤𝑖< 𝑗<𝑘≤𝑛
𝑥𝑖𝑥 𝑗𝑥𝑘 ,

...

𝑒𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝑥1 · · · 𝑥𝑛.

Lemma 5.4.3 (Extreme points of a linear combination of symmetric polynomials)
Let 𝑓 (𝑥1, . . . , 𝑥𝑛) be a real linear combination of elementary symmetric polynomials in
𝑥1, . . . , 𝑥𝑛. Suppose 𝑥 = (𝑥1, . . . , 𝑥𝑛) minimizes 𝑓 (𝑥) among all vectors 𝑥 ∈ R𝑛 with
𝑥1, . . . , 𝑥𝑛 ≥ 0 and 𝑥1 + · · · +𝑥𝑛 = 1, and furthermore 𝑥 has minimum support size among
all such minimizers. Then, up to permuting the coordinates of 𝑥, there is some 1 ≤ 𝑘 ≤ 𝑛
so that

𝑥1 = · · · = 𝑥𝑘 = 1/𝑘 and 𝑥𝑘+1 = · · · = 𝑥𝑛 = 0.

Proof. Suppose 𝑥1, . . . , 𝑥𝑘 > 0 and 𝑥𝑘+1 = · · · = 𝑥𝑛 = 0 with 𝑘 ≥ 2. Fixing 𝑥3, . . . , 𝑥𝑛, we
see that as a function of (𝑥1, 𝑥2), 𝑓 has the form

𝐴𝑥1𝑥2 + 𝐵𝑥1 + 𝐵𝑥2 + 𝐶
where 𝐴, 𝐵, 𝐶 depend on 𝑥3, . . . , 𝑥𝑛. Notably the coefficients of 𝑥1 and 𝑥2 agree due since 𝑓
is a symmetric polynomial. Holding 𝑥1 + 𝑥2 fixed, 𝑓 has the form

𝐴𝑥1𝑥2 + 𝐶′.
If 𝐴 ≥ 0, then holding 𝑥1 + 𝑥2 fixed, we can set either 𝑥1 or 𝑥2 to be zero while not increasing
𝑓 , which contradicts the hypothesis that the minimizing 𝑥 has minimum support size. So
𝐴 < 0, so that with 𝑥1 + 𝑥2 held fixed, 𝐴𝑥1𝑥2 + 𝐶′ is minimized uniquely at 𝑥1 = 𝑥2. Thus
𝑥1 = 𝑥2. Likewise, 𝑥1 = · · · = 𝑥𝑘 , as claimed. □
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Theorem 5.4.4 (Linear inequalities between clique densities)
Let 𝑐1, · · · , 𝑐ℓ ∈ R. The inequality

ℓ∑︁
𝑟=1

𝑐𝑟 𝑡 (𝐾𝑟 , 𝐺) ≥ 0

is true for every graph 𝐺 if and only if it is true with 𝐺 = 𝐾𝑛 for every positive integer 𝑛.

More explicitly, the above inequality holds for all graphs 𝐺 if and only if
ℓ∑︁
𝑟=1

𝑐𝑟 · 𝑛(𝑛 − 1) · · · (𝑛 − 𝑟 + 1)
𝑛𝑟

≥ 0 for every 𝑛 ∈ N.

Since this is a single variable polynomial in 𝑛, it is usually easy to check this inequality. We
will see some examples right after the proof.

Proof. The only nontrivial direction is the “if” implication. Suppose the displayed inequality
holds for all cliques 𝐺. Let 𝐺 be an arbitrary graph with vertex set [𝑛]. Let

𝑓 (𝑥1, . . . , 𝑥𝑛) =
ℓ∑︁
𝑟=1

𝑟!𝑐𝑟
∑︁

{𝑖1 ,...,𝑖𝑟 }
𝑟-clique in𝐺

𝑥𝑖1 · · · 𝑥𝑖𝑟 .

So

𝑓

(
1
𝑛
, . . . ,

1
𝑛

)
=

ℓ∑︁
𝑟=1

𝑐𝑟 𝑡 (𝐾𝑟 , 𝐺).

It suffices to prove that
min

𝑥1 ,...,𝑥𝑛≥0
𝑥1+···+𝑥𝑛=1

𝑓 (𝑥1, . . . , 𝑥𝑛) ≥ 0.

By compactness, we can assume that the minimum is attained at some 𝑥. Among all
minimizing 𝑥, choose one with the smallest support (i.e., the number of nonzero coordinates).

As in the previous proof, if 𝑖 𝑗 ∉ 𝐸 (𝐺) for some pair of distinct 𝑥𝑖, 𝑥 𝑗 > 0, then, replacing
(𝑥𝑖, 𝑥 𝑗) by (𝑠, 𝑥𝑖 + 𝑥 𝑗 − 𝑠), 𝑓 changes linearly in 𝑠. Since 𝑓 is already minimized at 𝑥, it must
stay constant as 𝑠 changes. So we can replace (𝑥𝑖, 𝑥 𝑗) by (𝑥𝑖 + 𝑥 𝑗 , 0), which keeps 𝑓 the same
while decreasing the number of nonzero coordinates of 𝑥. Thus the support of 𝑥 is a clique
in 𝐺. Suppose 𝑥 is supported on the first 𝑘 coordinates. Then 𝑓 is a linear combination of
elementary symmetric polynomials in 𝑥1, . . . , 𝑥𝑘 . By Lemma 5.4.3, 𝑥1 = · · · = 𝑥𝑘 = 1/𝑘 .
Then 𝑓 (𝑥) = ∑ℓ

𝑟=1 𝑐𝑟 𝑡 (𝐾𝑟 , 𝐾𝑘) ≥ 0 by hypothesis. □

Remark 5.4.5. This proof technique can be adapted to show the stronger result that among
all graphs 𝐺 with a given number of vertices, the quantity

∑ℓ
𝑟=1 𝑐𝑟 𝑡 (𝐾𝑟 , 𝐺) is minimized

when 𝐺 is a multipartite graph. Compare with the Zykov symmetrization proof of Turán’s
theorem (Theorem 1.2.4).

The theorem only considers linear inequalities between clique densities. The statement
fails in general for inequalities with other graph densities (why?).
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Theorem 5.4.4 can be equivalently stated in terms of the convex hull of the region of all
possible clique density tuples.

Corollary 5.4.6 (Convex hull of feasible clique densities)
Let ℓ ≥ 3. In Rℓ−1, the convex hull of

{(𝑡 (𝐾2,𝑊), 𝑡 (𝐾3,𝑊), . . . , 𝑡 (𝐾ℓ ,𝑊)) : graphons𝑊}
is the same as the convex hull of

{(𝑡 (𝐾2, 𝐾𝑛), 𝑡 (𝐾3, 𝐾𝑛), . . . , 𝑡 (𝐾ℓ , 𝐾𝑛)) : 𝑛 ∈ N} .

For ℓ = 3, the points

(𝑡 (𝐾2, 𝐾𝑛), 𝑡 (𝐾3, 𝐾𝑛)) =
(
1 − 1

𝑛
,

(
1 − 1

𝑛

) (
1 − 2

𝑛

))
, 𝑛 ∈ N,

are the extremal points of the convex hull of the edge-triangle region from (5.2). The actual
region, illustrated in Figure 5.1, has a lower boundary consisting of concave curves connecting
the points (𝑡 (𝐾2, 𝐾𝑛), 𝑡 (𝐾3, 𝐾𝑛)).

Exercise 5.4.7 (Turán’s theorem from the convex hull of feasible clique densities). Show
that Corollary 5.4.6 implies the following version of Turán’s theorem: 𝑡 (𝐾2, 𝐺) ≤ 1 − 1/𝑟
for every 𝐾𝑟+1-free graph 𝐺.

Exercise 5.4.8 (A generalization of Turán’s theorem). In an 𝑛-vertex graph, assign weight
𝑟/(𝑟 − 1) to each edge, where 𝑟 is the number of vertices in the largest clique containing
that edge. Prove that the sum of all edge weights is at most 𝑛2/2.

Exercise 5.4.9. For each graph 𝐹, let 𝑐𝐹 ∈ R be such that 𝑐𝐹 ≥ 0 whenever 𝐹 is not a
clique (no restrictions when 𝐹 is a clique). Assume that 𝑐𝐹 ≠ 0 for finitely many 𝐹s. Prove
that the inequality ∑︁

𝐹

𝑐𝐹 𝑡inj(𝐹, 𝐺) ≥ 0

is true for every graph 𝐺 if and only if it is true with 𝐺 = 𝐾𝑛 for every positive integer 𝑛.

Exercise 5.4.10 (Cliquey edges). Let 𝑛, 𝑟, 𝑡 be nonnegative integers. Show that every
𝑛-vertex graph with at least (1 − 1

𝑟
) 𝑛2

2 + 𝑡 edges contains at least 𝑟𝑡 edges that belong to a
𝐾𝑟+1.

Hint:Rephrasethestatementasalinearinequalitybetweenthenumberofedgesandthenumberof
cliqueyedgesineverygraph.

Exercise 5.4.11 (A hypergraph Turán density). Let 𝐹 be the 3-graph with 10 vertices and
6 edges illustrated below (lines denotes edges). Prove that the hypergraph Turán density of
𝐹 is 2/9.
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Exercise 5.4.12∗ (Maximizing 𝐾1,2 density). Prove that, for every 𝑝 ∈ [0, 1], among all
graphons 𝑊 with 𝑡 (𝐾2,𝑊) = 𝑝, the maximum possible value of 𝑡 (𝐾1,2,𝑊) is attained by
either a “clique” or a “hub” graphon, illustrated below.

0 𝑎

𝑎

1

1

1

0

0 𝑎

𝑎

1

1

1

0

clique graphon hub graphon
𝑊 (𝑥, 𝑦) = 1max{𝑥,𝑦}≤𝑎 𝑊 (𝑥, 𝑦) = 1min{𝑥,𝑦}≤𝑎

5.5 Entropy
In this section, we explain how to use entropy to prove certain graph homomorphism in-
equalities.

Entropy Basics

Definition 5.5.1 (Entropy)
Let 𝑋 be a discrete random variable taking values in some set 𝑆. For each 𝑠 ∈ 𝑆, let
𝑝𝑠 = P(𝑋 = 𝑠). We define the (binary) entropy of 𝑋 to be

𝑯(𝑿) B
∑︁
𝑠∈𝑆
−𝑝𝑠 log2 𝑝𝑠 .

(By convention, if 𝑝𝑠 = 0, then the corresponding summand is set to zero).

Exercise 5.5.2. Show that 𝐻 (𝑋) ≥ 0 always.

Intuitively, 𝐻 (𝑋) measures the amount of “surprise” in the randomness of 𝑋 . A more
rigorous interpretation of this intuition is given by the Shannon noiseless coding theorem,
which says that the minimum number of bits needed to encode 𝑛 independent copies of 𝑋 is
𝑛𝐻 (𝑋) + 𝑜(𝑛).

Here are some basic properties of entropy.

Lemma 5.5.3 (Uniform bound)
If 𝑋 is a random variable supported on a finite set 𝑆, then

𝐻 (𝑋) ≤ log2 |𝑆 | .
Equality holds if and only if 𝑋 is uniformly distributed on 𝑆.

Proof. Let function 𝑓 (𝑥) = −𝑥 log2 𝑥 is concave for 𝑥 ∈ [0, 1]. We have, by concavity,

𝐻 (𝑋) =
∑︁
𝑠∈𝑆

𝑓 (𝑝𝑠) ≤ |𝑆 | 𝑓
(

1
|𝑆 |

∑︁
𝑠∈𝑆

𝑝𝑠

)
= |𝑆 | 𝑓

(
1
|𝑆 |

)
= log2 |𝑆 | . □
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We write 𝑯(𝑿,𝒀) for the entropy of the joint random variables (𝑋,𝑌 ). This means that

𝑯(𝑿,𝒀) B 𝐻 (𝑍) =
∑︁
(𝑥,𝑦)
−P(𝑋 = 𝑥,𝑌 = 𝑦) log2 P(𝑋 = 𝑥,𝑌 = 𝑦).

In particular,

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ) if 𝑋 and 𝑌 are independent.

We can similarly define 𝐻 (𝑋,𝑌, 𝑍), and so on.

Definition 5.5.4 (Conditional entropy)
Given jointly distributed discrete random variables 𝑋 and 𝑌 , define

𝑯(𝑿 |𝒀) B
∑︁
𝑦

P(𝑌 = 𝑦)𝐻 (𝑋 |𝑌 = 𝑦).

Here 𝐻 (𝑋 |𝑌 = 𝑦) = ∑
𝑥 −P(𝑋 = 𝑥 |𝑌 = 𝑦) log2 P(𝑋 = 𝑥 |𝑌 = 𝑦) is entropy of the random

variable 𝑋 conditioned on the event 𝑌 = 𝑦.

Intuitively, 𝐻 (𝑋 |𝑌 ) measures the expected amount of new information or surprise in 𝑋
after 𝑌 has already been revealed. For example:
• If 𝑋 is completely determined by𝑌 (i.e., 𝑋 = 𝑓 (𝑌 ) for some function 𝑓 ), then𝐻 (𝑋 |𝑌 ) =

0.
• If 𝑋 and 𝑌 are independent, then 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑋);
• If 𝑋 and 𝑌 are conditionally independent on 𝑍 , then 𝐻 (𝑋,𝑌 |𝑍) = 𝐻 (𝑋 |𝑍) + 𝐻 (𝑌 |𝑍)

and 𝐻 (𝑋 |𝑌, 𝑍) = 𝐻 (𝑋 |𝑍).

Lemma 5.5.5 (Chain rule)

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋)

Proof. Writing 𝑝(𝑥, 𝑦) = P(𝑋 = 𝑥,𝑌 = 𝑦) and so on, we have by Bayes’s rule

𝑝(𝑥 |𝑦)𝑝(𝑦) = 𝑝(𝑥, 𝑦),
and so (below we skip 𝑦 if 𝑝(𝑦) = 0)

𝐻 (𝑋 |𝑌 ) =
∑︁
𝑦

P(𝑌 = 𝑦)𝐻 (𝑋 |𝑌 = 𝑦)

=
∑︁
𝑦

−𝑝(𝑦)
∑︁
𝑥

𝑝(𝑥 |𝑦) log2 𝑝(𝑥 |𝑦)

=
∑︁
𝑥,𝑦

−𝑝(𝑥, 𝑦) log2
𝑝(𝑥, 𝑦)
𝑝(𝑦)

=
∑︁
𝑥,𝑦

−𝑝(𝑥, 𝑦) log2 𝑝(𝑥, 𝑦) +
∑︁
𝑦

𝑝(𝑦) log2 𝑝(𝑦)

= 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 ). □
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Lemma 5.5.6 (Subadditivity)
𝐻 (𝑋,𝑌 ) ≤ 𝐻 (𝑋) + 𝐻 (𝑌 ). More generally,

𝐻 (𝑋1, . . . , 𝑋𝑛) ≤ 𝐻 (𝑋1) + · · · + 𝐻 (𝑋𝑛).

Proof. Let 𝑓 (𝑡) = log2(1/𝑡), which is convex. We have

𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 )
=

∑︁
𝑥,𝑦

(−𝑝(𝑥, 𝑦) log2 𝑝(𝑥) − 𝑝(𝑥, 𝑦) log2 𝑝(𝑦) + 𝑝(𝑥, 𝑦) log2 𝑝(𝑥, 𝑦)
)

=
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) log2
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

=
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝑓
(
𝑝(𝑥)𝑝(𝑦)
𝑝(𝑥, 𝑦)

)

≥ 𝑓

(∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝑝(𝑥)𝑝(𝑦)
𝑝(𝑥, 𝑦)

)
= 𝑓 (1) = 0.

More generally, by iterating the above inequality for two random variables, we have

𝐻 (𝑋1, . . . , 𝑋𝑛) ≤ 𝐻 (𝑋1, . . . , 𝑋𝑛−1) + 𝐻 (𝑋𝑛)
≤ 𝐻 (𝑋1, . . . , 𝑋𝑛−2) + 𝐻 (𝑋𝑛−1) + 𝐻 (𝑋𝑛)
≤ · · · ≤ 𝐻 (𝑋1) + · · · + 𝐻 (𝑋𝑛). □

Remark 5.5.7. The nonnegative quantity

𝐼 (𝑋;𝑌 ) B 𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 )
is called mutual information. Intuitively, it measures the amount of common information
between 𝑋 and 𝑌 .

Lemma 5.5.8 (Dropping conditioning)
𝐻 (𝑋 |𝑌 ) ≤ 𝐻 (𝑋). More generally,

𝐻 (𝑋 |𝑌, 𝑍) ≤ 𝐻 (𝑋 |𝑍).

Proof. By chain rule and subadditivity, we have

𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑋,𝑌 ) − 𝐻 (𝑌 ) ≤ 𝐻 (𝑋).
The inequality conditioning on 𝑍 follows since the above implies that

𝐻 (𝑋 |𝑌, 𝑍 = 𝑧) ≥ 𝐻 (𝑋 |𝑍 = 𝑧)
holds for every 𝑧, and taking expectation of 𝑧 yields 𝐻 (𝑋 |𝑌, 𝑍) ≤ 𝐻 (𝑋 |𝑍). □

Remark 5.5.9. Another way to state the dropping condition inequality is the data processing
inequality: 𝐻 (𝑋 | 𝑓 (𝑌 )) ≥ 𝐻 (𝑋 |𝑌 ) for any function 𝑓 .
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Applications to Sidorenko’s Conjecture
Now let us use entropy to establish some interesting cases of Sidorenko’s conjecture. Recall
that a bipartite graph 𝐹 is said to be Sidorenko if

𝑡 (𝐹, 𝐺) ≥ 𝑡 (𝐾2, 𝐺)𝑒 (𝐹 )

for every graph 𝐺. Sidorenko’s conjecture says that every bipartite graph is Sidorenko.
The entropy approach to Sidorenko’s conjecture was first introduced by Li and Szegedy

(2011) and further developed in subsequent works (Szegedy (2015); Conlon, Kim, Lee, and
Lee (2018)). Here we illustrate the entropy approach to Sidorenko’s conjecture with several
examples.

To show that 𝐹 is Sidorenko, we need to show that for every graph 𝐺,

hom(𝐹, 𝐺)
𝑣(𝐺)𝑣 (𝐹 ) ≥

(
2𝑒(𝐺)
𝑣(𝐺)2

)𝑒 (𝐹 )
. (5.5)

We write Hom(𝑭, 𝑮) for the the set of all maps 𝑉 (𝐹) → 𝑉 (𝐺) that give a graph
homomorphism 𝐹 → 𝐺. This set has cardinality hom(𝐹, 𝐺). Our strategy is to construct a
random element Φ ∈ Hom(𝐹, 𝐺) whose entropy satisfies

𝐻 (Φ) ≥ 𝑒(𝐹) log2(2𝑒(𝐺)) − (2𝑒(𝐹) − 𝑣(𝐹)) log2 𝑣(𝐺). (5.6)

The uniform bound 𝐻 (Φ) ≤ log2 hom(𝐹, 𝐺) then implies (5.5).
Let us illustrate this technique for a three-edge path. We have already seen two proofs of

the following inequality in Section 5.3. Now we present a different proof using the entropy
method along with generalizations.

Theorem 5.5.10
The 3-edge path is Sidorenko.

Proof. Let 𝑃4 denote the 3-edge path and 𝐺 a graph. An element of Hom(𝑃4, 𝐺) is a walk
of length three. We choose randomly a walk 𝑋𝑌𝑍𝑊 in 𝐺 as follows:
• 𝑋𝑌 is a uniform random edge of 𝐺 (by this we mean first choosing an edge of 𝐺

uniformly at random, and then let 𝑋 be a uniformly chosen endpoint of this edge, and
then 𝑌 the other endpoint);
• 𝑍 is a uniform random neighbor of 𝑌 ;
• 𝑊 is a uniform random neighbor of 𝑍 .
A key observation is that 𝑌𝑍 is also distributed as a uniform random edge of 𝐺 (pause

and think about why). Indeed, conditioned on the choice of 𝑌 , the vertices 𝑋 and 𝑍 are both
independent and uniform neighbors of𝑌 , so 𝑋𝑌 and𝑌𝑍 are identically distributed, and hence
𝑌𝑍 is a uniform random edge of 𝐺.

Similarly, 𝑍𝑊 is distributed as uniform random edge.
Also, since 𝑋 and 𝑍 are conditionally independent given 𝑌

𝐻 (𝑍 |𝑋,𝑌 ) = 𝐻 (𝑍 |𝑌 ) and similarly 𝐻 (𝑊 |𝑋,𝑌, 𝑍) = 𝐻 (𝑊 |𝑍).
Furthermore,

𝐻 (𝑌 |𝑋) = 𝐻 (𝑍 |𝑌 ) = 𝐻 (𝑊 |𝑍)
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since 𝑋𝑌,𝑌𝑍, 𝑍𝑊 are each identically distributed as a uniform random edge.
Thus

𝐻 (𝑋,𝑌, 𝑍,𝑊) = 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋) + 𝐻 (𝑍 |𝑋,𝑌 ) + 𝐻 (𝑊 |𝑋,𝑌, 𝑍) [chain rule]

= 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋) + 𝐻 (𝑍 |𝑌 ) + 𝐻 (𝑊 |𝑍) [cond. indep.]

= 𝐻 (𝑋) + 3𝐻 (𝑌 |𝑋) [prev. paragraph]

= 3𝐻 (𝑋,𝑌 ) − 2𝐻 (𝑋) [chain rule]

= 3 log2(2𝑒(𝐺)) − 2𝐻 (𝑋) [𝑋𝑌 uniform]

≥ 3 log2(2𝑒(𝐺)) − 2 log2 𝑣(𝐺) [uniform bound]

This proves (5.6), and thus shows that 𝑃4 is Sidorenko. Indeed, by the uniform bound,

log2 hom(𝑃4, 𝐹) ≥ 𝐻 (𝑋,𝑌, 𝑍,𝑊) ≥ 3 log2(2𝑒(𝐺)) − 2 log2 𝑣(𝐺),
and hence

𝑡 (𝑃4, 𝐺) = hom(𝑃4, 𝐺)
𝑣(𝐺)4 ≥

(
2𝑒(𝐺)
𝑣(𝐺)2

)3

= 𝑡 (𝐾2, 𝐺)3. □

Let us outline how to extend the above proof strategy from the 3-edge path to any tree 𝑇 .
Define a 𝑻-branching random walk in a graph 𝐺 to be a random Φ ∈ Hom(𝑇, 𝐺) defined
by fixing an arbitrary root 𝑣 of 𝑇 (the choice of 𝑣 will not matter in the end). Then set Φ(𝑣)
to be a random vertex of 𝐺 with each vertex of 𝐺 chosen proportional to its degree. Then
extend Φ to a random homomorphism 𝑇 → 𝐺 one vertex at a time: if 𝑢 ∈ 𝑉 (𝑇) is already
mapped to Φ(𝑢) and its neighbor 𝑤 ∈ 𝑉 (𝑇) has not yet been mapped, then set Φ(𝑤) to
be a uniform random neighbor of Φ(𝑢), independent of all previous choices. The resulting
random Φ ∈ Hom(𝑇, 𝐺) has the following properties:
• for each edge of 𝑇 , its image under Φ is a uniform random edge of 𝐺 and with the two

possible edge orientations equally likely; and
• for each vertex 𝑣 of 𝑇 , conditioned on Φ(𝑣), the neighbors of 𝑣 in 𝑇 are mapped by Φ

to conditionally independent and uniform neighbors of Φ(𝑣) in 𝐺.
Furthermore, as in the proof of Theorem 5.5.10,

𝐻 (Φ) = 𝑒(𝑇) log2(2𝑒(𝐺)) − (𝑒(𝑇) − 1)𝐻 (Φ(𝑣))
≥ 𝑒(𝑇) log2(2𝑒(𝐺)) − (𝑒(𝑇) − 1) log2 𝑣(𝐺). (5.7)

(Exercise: fill in the details.) Together with the uniform bound 𝐻 (Φ) ≤ log2 hom(𝑇, 𝐺), we
proved the following.

Theorem 5.5.11
Every tree is Sidorenko.

We saw earlier that 𝐾𝑠,𝑡 is Sidorenko, which can be proved by two applications of Hölder’s
inequality (see Section 5.3). Here let us give another proof using entropy. This entropy proof
is subtler than the earlier Hölder’s inequality proof, but it will soon lead us more naturally to
the next generalization.

Graph Theory and Additive Combinatorics — Yufei Zhao



5.5 Entropy 197

Theorem 5.5.12
Every complete bipartite graph is Sidorenko.

Let us demonstrate the proof for 𝐾2,2 for concreteness. The same proof extends to all 𝐾𝑠,𝑡 .

𝑥1

𝑥2

𝑦1

𝑦2

Proof that 𝐾2,2 is Sidorenko. As earlier, we construct a random element of Hom(𝐾2,2, 𝐺).
Pick a random (𝑋1, 𝑋2, 𝑌1, 𝑌2) ∈ 𝑉 (𝐺)4 with 𝑋𝑖𝑌 𝑗 ∈ 𝐸 (𝐺) for all 𝑖, 𝑗 as follows:
• 𝑋1𝑌1 is a uniform random edge;
• 𝑌2 is a uniform random neighbor of 𝑋1;
• 𝑋2 is a conditionally independent copy of 𝑋1 given (𝑌1, 𝑌2).

The last point deserves some attention. It does not say that we choose a uniform random
common neighbor of 𝑌1 and 𝑌2, as one might naively attempt. Instead, one can think of
the first two steps as defining the 𝐾1,2-branching random walk for (𝑋1, 𝑌1, 𝑌2). Under this
distribution, we can first sample (𝑌1, 𝑌2) according to its marginal, and then produce two
conditionally independent copies of 𝑋1 (with the second copy now called 𝑋2).

We have

𝐻 (𝑋1, 𝑋2, 𝑌1, 𝑌2)
= 𝐻 (𝑌1, 𝑌2) + 𝐻 (𝑋1, 𝑋2 |𝑌1, 𝑌2) [chain rule]

= 𝐻 (𝑌1, 𝑌2) + 2𝐻 (𝑋1 |𝑌1, 𝑌2) [cond. indep.]

= 2𝐻 (𝑋1, 𝑌1, 𝑌2) − 𝐻 (𝑌1, 𝑌2) [chain rule]

≥ 2(2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺)) − 𝐻 (𝑌1, 𝑌2). [(5.7)]

≥ 2(2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺)) − 2 log2 𝑣(𝐺). [uniform bound]

= 4 log(2𝑒(𝐺)) − 4 log2 𝑣(𝐺).
Together with the uniform bound 𝐻 (𝑋1, 𝑋2, 𝑌1, 𝑌2) ≤ log2 hom(𝐾2,2, 𝐺), we deduce that 𝐾2,2
is Sidorenko. □

Exercise 5.5.13. Complete the proof of Theorem 5.5.12 for general 𝐾𝑠,𝑡 .

The following result was first proved by Conlon, Fox, and Sudakov (2010) using the
dependent random choice technique. The entropy proof was found later by Li and Szegedy
(2011).

Theorem 5.5.14
Let 𝐹 be a bipartite graph that has a vertex adjacent to all vertices in the other part. Then
𝐹 is Sidorenko.

Let us illustrate the proof for the following graph 𝐹. The proof extends to the general case.
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𝑥0

𝑦1

𝑦2

𝑦3

𝑥1

𝑥2

Proof that the above graph is Sidorenko. Pick (𝑋0, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3) ∈ 𝑉 (𝐺)6 randomly as
follows:
• 𝑋0𝑌1 is a uniform random edge;
• 𝑌2 and 𝑌3 are independent uniform random neighbors of 𝑋0;
• 𝑋1 is a conditionally independent copy of 𝑋0 given (𝑌1, 𝑌2);
• 𝑋2 is a conditionally independent copy of 𝑋0 given (𝑌2, 𝑌3).

We have the following properties:
• 𝑋0, 𝑋1, 𝑋2 are conditionally independent given (𝑌1, 𝑌2, 𝑌3);
• 𝑋1 and (𝑋0, 𝑌3, 𝑋2) are conditionally independent given (𝑌1, 𝑌2);
• The distribution of (𝑋0, 𝑌1, 𝑌2) is identical to the distribution of (𝑋1, 𝑌1, 𝑌2).

So (the first and fourth steps by chain rule, and the second and third steps by conditional
independence)

𝐻 (𝑋0, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3)
= 𝐻 (𝑋0, 𝑋1, 𝑋2 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑌1, 𝑌2, 𝑌3)
= 𝐻 (𝑋0 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋1 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋2 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑌1, 𝑌2, 𝑌3)
= 𝐻 (𝑋0 |𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋1 |𝑌1, 𝑌2) + 𝐻 (𝑋2 |𝑌2, 𝑌3) + 𝐻 (𝑌1, 𝑌2, 𝑌3)
= 𝐻 (𝑋0, 𝑌1, 𝑌2, 𝑌3) + 𝐻 (𝑋1, 𝑌1, 𝑌2) + 𝐻 (𝑋2, 𝑌2, 𝑌3) − 𝐻 (𝑌1, 𝑌2) − 𝐻 (𝑌2, 𝑌3).

By (5.7),

𝐻 (𝑋0, 𝑌1, 𝑌2, 𝑌3) ≥ 3 log2(2𝑒(𝐺)) − 2 log2 𝑣(𝐺),
𝐻 (𝑋1, 𝑌1, 𝑌2) ≥ 2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺),

and 𝐻 (𝑋2, 𝑌2, 𝑌3) ≥ 2 log2(2𝑒(𝐺)) − log2 𝑣(𝐺).
And by the uniform bound,

𝐻 (𝑌1, 𝑌2) = 𝐻 (𝑌2, 𝑌3) ≤ 2 log2 𝑣(𝐺).
Putting everything together, we have

log2 hom(𝐹, 𝐺) ≥ 𝐻 (𝑋0, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑌3) ≥ 7 log2(2𝑒(𝐺)) − 8 log2 𝑣(𝐺).
Thereby verifying (5.6), showing that 𝐹 is Sidorenko. □

(Where did we use the assumption that 𝐹 has vertex complete to the other part?)

Exercise 5.5.15. Complete the proof of Theorem 5.5.14.
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Shearer’s Inequality
Another important tool in the entropy method is Shearer’s inequality, which is a powerful
generalization of subadditivity. Before stating it in full generality, let us first see a simple
instance of Shearer’s lemma.

Theorem 5.5.16 (Shearer’s entropy inequality, special case)

2𝐻 (𝑋,𝑌, 𝑍) ≤ 𝐻 (𝑋,𝑌 ) + 𝐻 (𝑋, 𝑍) + 𝐻 (𝑌, 𝑍)

Proof. Using the chain rule and conditioning dropping, we have

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 |𝑋),
𝐻 (𝑋, 𝑍) = 𝐻 (𝑋) + 𝐻 (𝑍 |𝑋),

and 𝐻 (𝑌, 𝑍) = 𝐻 (𝑌 ) + 𝐻 (𝑍 |𝑌 ).
Adding up, and applying conditioning dropping, we see that the sum of the three right-hand
side expressons is at at least

2𝐻 (𝑋) + 2𝐻 (𝑌 |𝑋) + 2𝐻 (𝑍 |𝑋,𝑌 ) = 2𝐻 (𝑋,𝑌, 𝑍),
with the final equality due to the chain rule. □

Here is the general form of Shearer’s inequality (Chung, Graham, Frankl, and Shearer
1986).

Theorem 5.5.17 (Shearer’s entropy inequality)
Let 𝐴1, . . . , 𝐴𝑠 ⊆ [𝑛] where each 𝑖 ∈ [𝑛] appears in at least 𝑘 sets 𝐴 𝑗s. Let 𝑋1, . . . , 𝑋𝑛
be a jointly distributed discrete random variables. Writing 𝑋𝐴 B (𝑋𝑖)𝑖∈𝐴, we have

𝑘𝐻 (𝑋1, . . . , 𝑋𝑛) ≤
∑︁
𝑗∈[𝑠]

𝐻 (𝑋𝐴 𝑗 ).

Exercise 5.5.18. Prove Theorem 5.5.17 by generalizing the proof of Theorem 5.5.16.

Shearer’s entropy inequality is related to the generalized Hölder inequality from Sec-
tion 5.3. It is a significant generalization of the projection inequality discussed in Re-
mark 5.3.6. See Friedgut (2004) for more on these connections.

The next exercise asks you to prove a strengthening of the projection inequalities (Re-
mark 5.3.6 and Exercise 5.3.9) by mimicking the entropy proof of Shearer’s entropy inequal-
ity. The result is due to Bollobás and Thomason (1995), though their original proof does not
use the entropy method.

Exercise 5.5.19 (Box theorem). For each 𝐼 ⊆ [𝑑], write 𝜋 : R𝑑 → R𝐼 to denote the
projection obtained by omitting coordinates outside 𝐼. Show that for every compact body
𝐾 ⊆ R𝑑 , there exists a box 𝐵 = [𝑎1, 𝑏1] × · · · × [𝑎𝑑 , 𝑏𝑑] ⊆ R𝑑 such that |𝐵| = |𝐾 | and
|𝜋𝐼 (𝐵) | ≤ |𝜋𝐼 (𝐾) | for every 𝐼 ⊆ [𝑑] (here | · | denotes volume).

Use this result to give another proof of the projection inequality from Exercise 5.3.9.

Hint:Firstproveitfor𝐾beingaunionofgridboxes.Thenextendittogeneral𝐾viacompactness.

Let us use the entropy method to give another proof of Theorem 5.3.15, restated below.
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Theorem 5.5.20 (The maximum number of 𝐻-colorings in a regular graph)
For every 𝑛-vertex 𝑑-regular bipartite graph 𝐹, and any graph𝐺 (allowing looped vertices
on 𝐺)

hom(𝐹, 𝐺) ≤ hom(𝐾𝑑,𝑑 , 𝐺)𝑛/(2𝑑) .

The proof below is based on (with some further simplifications) the entropy proofs of
Galvin and Tetali (2004), which was in turn based on the proof by Kahn (2001) for independent
sets.

Proof. Let us first illustrate the proof for 𝐹 being the following graph

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3

Choose Φ ∈ Hom(𝐹, 𝐺) uniformly at random among all homomorphisms from 𝐹 to 𝐺. Let
𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3 ∈ 𝑉 (𝐺) be the respective images of the vertices of 𝐺. We have

2 log2 hom(𝐹, 𝐺)
= 2𝐻 (𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3)
= 2𝐻 (𝑋1, 𝑋2, 𝑋3) + 2𝐻 (𝑌1, 𝑌2, 𝑌3 |𝑋1, 𝑋2, 𝑋3) [chain rule]

≤ 𝐻 (𝑋1, 𝑋2) + 𝐻 (𝑋1, 𝑋3) + 𝐻 (𝑋2, 𝑋3)
+ 2𝐻 (𝑌1 |𝑋1, 𝑋2, 𝑋3) + 2𝐻 (𝑌2 |𝑋1, 𝑋2, 𝑋3) + 2𝐻 (𝑌3 |𝑋1, 𝑋2, 𝑋3) [Shearer]

= 𝐻 (𝑋1, 𝑋2) + 𝐻 (𝑋1, 𝑋3) + 𝐻 (𝑋2, 𝑋3)
+ 2𝐻 (𝑌1 |𝑋1, 𝑋2) + 2𝐻 (𝑌2 |𝑋1, 𝑋3) + 2𝐻 (𝑌3 |𝑋2, 𝑋3) [cond. indep.]

In the final step, we use the fact that 𝑋3 and 𝑌1 are conditionally independent given 𝑋1
and 𝑋2 (why?), along with two other analogous statements. A more general statement is
that if 𝑆 ⊆ 𝑉 (𝐹), then the restrictions to the different connected components of 𝐹 − 𝑆 are
conditionally independent given (𝑋𝑠)𝑠∈𝑆 .

To complete the proof, it remains to show

𝐻 (𝑋1, 𝑋2) + 2𝐻 (𝑌1 |𝑋1, 𝑋2) ≤ log2 hom(𝐾2,2, 𝐺),
𝐻 (𝑋1, 𝑋3) + 2𝐻 (𝑌2 |𝑋1, 𝑋3) ≤ log2 hom(𝐾2,2, 𝐺),

and 𝐻 (𝑋2, 𝑋3) + 2𝐻 (𝑌3 |𝑋2, 𝑋3) ≤ log2 hom(𝐾2,2, 𝐺).
They are analogous so let us just show the first inequality. Let 𝑌 ′1 be a conditionally indepen-
dent copy of 𝑌1 given (𝑋1, 𝑋2). Then (𝑋1, 𝑋2, 𝑌1, 𝑌

′
1) is the image of a homomorphism from

𝐾2,2 to 𝐺 (though not necessarily chosen uniformly).
𝑥1

𝑥2

𝑦1

𝑦′1
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Thus we have

𝐻 (𝑋1, 𝑋2) + 2𝐻 (𝑌1 |𝑋1, 𝑋2) = 𝐻 (𝑋1, 𝑋2) + 𝐻 (𝑌1, 𝑌
′
1 |𝑋1, 𝑋2)

= 𝐻 (𝑋1, 𝑋2, 𝑌1, 𝑌
′
1) [chain rule]

≤ log2 hom(𝐾2,2, 𝐺) [uniform bound]

This concludes the proof for 𝐹 = 𝐶6.
Now let 𝐹 be an arbitrary bipartite graph with vertex bipartition 𝑉 = 𝐴 ∪ 𝐵. Let Φ ∈

Hom(𝐹, 𝐺) be chosen uniformly at random. For each 𝑣 ∈ 𝑉 , let 𝑋𝑣 = Φ(𝑣). For each 𝑆 ⊆ 𝑉 ,
write 𝑋𝑆 B (𝑋𝑣)𝑣∈𝑆 . We have

𝑑 log2 hom(𝐹, 𝐺) = 𝑑𝐻 (Φ) = 𝑑𝐻 (𝑋𝐴) + 𝑑𝐻 (𝑋𝐵 |𝑋𝐴) [chain rule]

≤
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑁 (𝑏) ) + 𝑑
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑏 |𝑋𝐴) [Shearer]

=
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑁 (𝑏) ) + 𝑑
∑︁
𝑏∈𝐵

𝐻 (𝑋𝑏 |𝑋𝑁 (𝑏) ). [cond. indep.]

For each 𝑏 ∈ 𝐵, let 𝑋 (1)𝑏 , . . . , 𝑋 (𝑑)𝑏 be conditionally independent copies of 𝑋𝑏 given 𝑋𝑁 (𝑏) .
We have

𝐻 (𝑋𝑁 (𝑏) ) + 𝑑𝐻 (𝑋𝑏 |𝑋𝑁 (𝑏) ) = 𝐻 (𝑋𝑁 (𝑏) ) + 𝐻 (𝑋 (1)𝑏 , . . . , 𝑋 (𝑑)𝑏 |𝑋𝑁 (𝑏) )
= 𝐻 (𝑋 (1)𝑏 , . . . , 𝑋 (𝑑)𝑏 , 𝑋𝑁 (𝑏) ) [chain rule]

≤ log2 hom(𝐾𝑑,𝑑 , 𝐺). [uniform bound]

Summing over all 𝑏 ∈ 𝐵, and using the previous equality, we obtain

𝑑 log2 hom(𝐹, 𝐺) ≤ 𝑛
2

log2 hom(𝐾𝑑,𝑑 , 𝐺). □

Exercise 5.5.21. Prove that the following graph is Sidorenko.

Exercise 5.5.22 (△ vs. ∧ in a directed graph). Let 𝑉 be a finite set, 𝐸 ⊆ 𝑉 ×𝑉 , and

△ =
��{(𝑥, 𝑦, 𝑧) ∈ 𝑉3 : (𝑥, 𝑦), (𝑦, 𝑧), (𝑧, 𝑥) ∈ 𝐸}��

(i.e., cyclic triangles; note the direction of edges) and

∧ =
��{(𝑥, 𝑦, 𝑧) ∈ 𝑉3 : (𝑥, 𝑦), (𝑥, 𝑧) ∈ 𝐸}�� .

Prove that △ ≤ ∧.

Further Reading
The book Large Networks and Graph Limits by Lovász (2012) contains an excellent treatment
of graph homomorphism inequalities in Section 2.1 and Chapter 16.
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The survey Flag Algebras: An Interim Report by Razborov (2013) contains a survey of
results obtained using the flag algebra method.

For combinatorial applications of the entropy method, see the following surveys:
• Entropy and Counting by Radhakrishnan (2003), and
• Three Tutorial Lectures on Entropy and Counting by Galvin (2014).

Chapter Summary

• Many problems in extremal graph theory can be phrased in terms of graph homomorphism
inequalities.
– Homomorphism density inequalities are undecidable in general.
– Many open problems remain, such as Sidorenko’s conjecture, which says that if 𝐹 is

bipartite, then 𝑡 (𝐹, 𝐺) ≥ 𝑡 (𝐾2, 𝐺)𝑒 (𝐹 ) for all graphs 𝐺.
• The set of all possible (edge, triangle) density pairs is known.

– For a given edge density, the triangle density is maximized by a clique.
– For a given edge density, the triangle density is minimized by a certain multipartite

graph. (We did not prove this result in full and only established the convex hull in
Section 5.4.)

• Cauchy–Schwarz and Hölder inequalities are versatile tools.
– Simple applications of Cauchy–Schwarz inequalities can often be recognized by “re-

flection symmetries” in a graph that can be “folded in half.”
– Flag algebra leads to computerized searches of Cauchy–Schwarz proofs of subgraph

density inequalities.
– Generalized Hölder inequality tells us that, as an example,∫

𝑥,𝑦,𝑧
𝑓 (𝑥, 𝑦)𝑔(𝑥, 𝑧)ℎ(𝑦, 𝑧) ≤ ∥ 𝑓 ∥2 ∥𝑔∥2 ∥ℎ∥2 .

It can be proved by repeated applications of Hölder’s inequality, once for each variable.
The inequality is related to Shearer’s entropy inequality, an example of which says
that for joint random variables 𝑋,𝑌, 𝑍 ,

2𝐻 (𝑋,𝑌, 𝑍) ≤ 𝐻 (𝑋,𝑌 ) + 𝐻 (𝑋, 𝑍) + 𝐻 (𝑌, 𝑍).
• The Lagrangian method relaxes an optimization problem on graphs to one about vertex-

weighted graphs, and then argues by shifting weights between vertices. We used the
method to prove
– Turán’s theorem (again);
– A linear inequality between clique densities in𝐺 is true if and only if it holds whenever
𝐺 is a clique.

• The entropy method can be used to establish various cases of Sidorenko’s conjecture,
including for trees, as well as for a bipartite graph with one vertex complete to the other
side.
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