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Pseudorandom Graphs

Chapter Highlights

• Equivalent notions of graph quasirandomness
• Role of eigenvalues in pseudorandomness
• Expander mixing lemma
• Eigenvalues of abelian Cayley graphs and the Fourier transform
• Quasirandom groups and representations theory
• Quasirandom Cayley graphs and Grothendieck’s inequality
• Alon–Boppana bound on the second eigenvalue of a 𝑑-regular graph

In the previous chapter on the graph regularity method, we saw that every graph can
be partitioned into a bounded number of vertex parts so that the graph looks “random-
like” between most pairs of parts. In this chapter, we dive further into how a graph can be
random-like.

Pseudorandomness is a concept prevalent in combinatorics, theoretical computer science,
and in many other areas. It specifies how a nonrandom object can behave like a truly random
object.

Example 3.0.1 (Pseudorandom generators). Suppose you want to generate a random num-
ber on a computer. In most systems and programming languages, you can do this easily with
a single command (e.g., rand()). The output is not actually truly random. Instead, the output
came from a pseudorandom generator, which is some function/algorithm that takes a seed as
input, and passes it through some sophisticated function, so that there is no practical way to
distinguish the output from a truly random object. In other words, the output is not actually
truly random, but for all practical purposes the output cannot be distinguished from a truly
random output.

Example 3.0.2 (Primes). In number theory, the prime numbers behave like a random se-
quence in many ways. The celebrated Riemann hypothesis and its generalizations give quanti-
tative predictions about how closely the primes behave in a certain specific way like a random
sequence. There is also something called Cramér’s random model for the primes that allows
one to make predictions about the asymptotic density of certain patterns in the primes (e.g.,
how many twin primes up to 𝑁 are there?). Empirical data support these predictions, and
they have been proved in certain cases. Nevertheless, there are still notorious open problems
such as the twin prime and Goldbach conjectures. Despite their pseudorandom behavior, the
primes are not random!

Example 3.0.3 (Normal numbers). It is very much believed that the digits of 𝜋 behave in
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92 Pseudorandom Graphs

a random-like way, where every digit or block of digits appears with frequency similar to
that of a truly random number. Such numbers are called normal. It is widely believed that
numbers such as

√
2, 𝜋, and 𝑒 are normal, but proofs remain elusive. Again, the digits of 𝜋

are deterministic, not random, but they are believed to behave pseudorandomly. On the other
hand, nearly all real numbers are normal, with the exceptions occupying only a measure zero
subset of the reals.

Coming back to graph theory. The Erdős–Rényi random graph 𝑮 (𝒏, 𝒑) is a random
𝑛-vertex graph where each edge appears with probability 𝑝 independently. Now, given some
specific graph (perhaps an instance of the random graph, or perhaps generated via some
other means), we can ask whether this graph, for the purpose of some intended application,
behaves similarly to that of a typical random graph. What are some useful ways to measure
the pseudorandomness of a graph? This is the main theme that we explore in this chapter.

3.1 Quasirandom Graphs
Here are several natural notions of how a graph (or rather, a sequence of graphs) can look
random. The main theorem of this section says that, surprisingly, these notions are all
equivalent. This result is due to Chung, Graham, and Wilson (1989), who coined the term
quasirandom graphs. Similar ideas also appeared in the work of Thomason (1987). These
results had an important impact in the field.

Theorem 3.1.1 (Quasirandom graphs)
Let 𝑝 ∈ [0, 1] be fixed. Let (𝐺𝑛) be a sequence of graphs with 𝐺𝑛 having 𝑛 vertices and
(𝑝 + 𝑜(1)) (𝑛2) edges (here 𝑛→∞ along some subsequence of integers, and is allowed to
skip some integers). Denote 𝐺𝑛 by 𝐺. The following properties are all equivalent:

DISC (discrepancy) 𝑒(𝑋,𝑌 ) = 𝑝 |𝑋 | |𝑌 | + 𝑜(𝑛2) for all 𝑋,𝑌 ⊆ 𝑉 (𝐺).
DISC’ 𝑒(𝑋) = 𝑝 ( |𝑋 |2

) + 𝑜(𝑛2) for all 𝑋 ⊆ 𝑉 (𝐺).
COUNT For every graph 𝐻, the number of labeled copies of 𝐻 in 𝐺 is (𝑝𝑒 (𝐻 ) +
𝑜(1))𝑛𝑣 (𝐻 ) .
(Here a labeled copy of 𝐻 is the same as an injective map 𝑉 (𝐻) → 𝑉 (𝐺) that sends every edge of
𝐻 to an edge of 𝐺. The rate that the 𝑜(1) goes to zero is allowed to depend on 𝐻.)

C4 (4-cycle) The number of labeled 4-cycles is at most (𝑝4 + 𝑜(1))𝑛4.

CODEG (codegree) Letting codeg(𝑢, 𝑣) denote the number of common neighbors
of 𝑢 and 𝑣, ∑︁

𝑢,𝑣∈𝑉 (𝐺)

��codeg(𝑢, 𝑣) − 𝑝2𝑛
�� = 𝑜(𝑛3).

EIG (eigenvalue) If _1 ≥ _2 ≥ · · · ≥ _𝑛 are the eigenvalues of the adjacency matrix
of 𝐺, then _1 = 𝑝𝑛 + 𝑜(𝑛) and max𝑖≠1 |_𝑖 | = 𝑜(𝑛).
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3.1 Quasirandom Graphs 93

Definition 3.1.2 (Quasirandom graphs)
We say a sequence of graphs is quasirandom (at edge density 𝑝) if it satisfies the above
conditions for some constant 𝑝 ∈ [0, 1].

Remark 3.1.3 (Single graph vs. a sequence of graphs). Strictly speaking, it does not make
sense to say whether a single graph is quasirandom, but we will abuse the definition as such
when it is clear that the graph we are referring to is part of a sequence.

Remark 3.1.4 (C4 condition). The C4 condition is surprising. It says that the 4-cycle density,
a single statistic, is equivalent to all the other quasirandomness conditions.

We will soon see below in Proposition 3.1.14 that the C4 can be replaced by the equivalent
condition that the number of labeled 4-cycles is (𝑝4 + 𝑜(1))𝑛4 (rather than at most this
quantity).

Remark 3.1.5 (Checking quasirandomness). The discrepancy conditions are hard to verify
since they involve checking exponentially many sets. The other conditions can all be checked
in time polynomial in the size of the graph. So the equivalence gives us an algorithmically
efficient way to certify the discrepancy condition.

Remark 3.1.6 (Quantitative equivalences). Rather than stating these properties for a se-
quence of graphs using a decaying error term 𝑜(1), we can state a quantitative quasirandom-
ness hypothesis for a specific graph using an error tolerance parameter Y. For example, we
can restate the discrepancy condition as follows.

DISC(Y): For all 𝑋,𝑌 ⊆ 𝑉 (𝐺), |𝑒(𝑋,𝑌 ) − 𝑝 |𝑋 | |𝑌 | | < Y𝑛2.
Similar statements can be made for other quasirandom graph notions. The proof below

shows that these notions are equivalent up to a polynomial change in Y; that is, for each pair
of properties, Prop1(Y) implies Prop2(𝐶Y𝑐) for some constants 𝐶, 𝑐 > 0.

Examples of Quasirandom Graphs
First let us check that random graphs are quasirandom (hence justifying the name). Recall
the following basic tail bound for a sum of independent random variables.

Theorem 3.1.7 (Chernoff bound)
Let 𝑋 be a sum of𝑚 independent Bernoulli random variables (not necessarily identically
distributed). Then, for every 𝑡 > 0,

P( |𝑋 − E𝑋 | ≥ 𝑡) ≤ 2𝑒−𝑡2/(2𝑚) .

Proposition 3.1.8 (Edge densities in a random graph)
Let 𝑝 ∈ [0, 1] and Y > 0. With probability at least 1 − 2𝑛+1𝑒−Y2𝑛2 , the Erdős–Rényi
random graph G(𝑛, 𝑝) has the property that for every vertex subset 𝑋 ,����𝑒(𝑋) − 𝑝

( |𝑋 |
2

)���� ≤ Y𝑛2.
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94 Pseudorandom Graphs

Proof. Applying the Chernoff bound to 𝑒(𝑋), we see that

P

(����𝑒(𝑋) − 𝑝
(|𝑋 |

2

)���� > Y𝑛2
)
≤ 2 exp

(
−(Y𝑛2)2
2
( |𝑋 |

2
)

)
≤ 2 exp

(−Y2𝑛2) .
The result then follows by taking a union bound over all 2𝑛 subsets 𝑋 of the 𝑛-vertex
graph. □

Applying the Borel–Cantelli lemma with the above bound, we obtain the following con-
sequence.

Corollary 3.1.9 (Random graphs are quasirandom)
Fix 𝑝 ∈ [0, 1]. With probability 1, a sequence of random graphs 𝐺𝑛 ∼ G(𝑛, 𝑝) is
quasirandom at edge density 𝑝.

It would be somewhat disappointing if the only interesting example of quasirandom graph
were actual random graphs. Fortunately we have more explicit constructions. In the rest of
the chapter, we will see several constructions using Cayley graphs on groups. A notable
example, which we will prove in Section 3.3, is that the Paley graph is quasirandom.

Example 3.1.10 (Paley graph). Let 𝑝 ≡ 1 (mod 4) be a prime. Form a graph with vertex
set F𝑝, with two vertices 𝑥, 𝑦 joined if 𝑥 − 𝑦 is a quadratic residue. Then this graph is
quasirandom at edge density 1/2 as 𝑝 → ∞. (By a standard fact from elementary number
theory, since 𝑝 ≡ 1 (mod 4), −1 is a quadratic residue, and hence 𝑥− 𝑦 is a quadratic residue
if and only if 𝑦 − 𝑥 is. So the graph is well defined.)

In Section 3.4, we will show that for certain sequences of groups, the Cayley graphs are
always quasirandom provided that the edge densities converge. We will call such groups
quasirandom. We will later prove the following important example.

Example 3.1.11 (PSL(2, 𝑝)). Let 𝑝 be a prime. Let 𝑆 ⊆ PSL(2, 𝑝) be a subset of nonzero
elements with 𝑆 = 𝑆−1. Let 𝐺 be the Cayley graph on PSL(2, 𝑝) with generator 𝑆, meaning
that the vertices are elements of PSL(2, 𝑝), and two vertices 𝑥, 𝑦 are adjacent if 𝑥−1𝑦 ∈ 𝑆.
Then 𝐺 is quasirandom as 𝑝 →∞ as long as |𝑆 | /𝑝3 converges.

Finally, here is an explicit construction using finite geometry. We leave it as an exercise to
verify its quasirandomness using the conditions given earlier.

Example 3.1.12. Let 𝑝 be a prime. Let 𝑆 ⊆ F𝑝 ∪ {∞}. Let 𝐺 be a graph on vertex set F2
𝑝

where two points are joined if the slope of the line connecting them lies in 𝑆. Then 𝐺 is
quasirandom as 𝑝 →∞ as long as |𝑆 | /𝑝 converges.

Exercise 3.1.13. Prove that the construction in Example 3.1.12 is quasirandom.

Proof of Equivalence of Graph Quasirandomness Conditions
We will now start to prove Theorem 3.1.1. Let us begin with a warm-up on how to apply the
Cauchy–Schwarz inequality in graph theory since it will come up several times in the proof
(we will revisit this topic in Section 5.2).
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3.1 Quasirandom Graphs 95

The following statement says that the 4-cycle density is always roughly at least as much as
random. Later in Chapter 5, we will see Sidorenko’s conjecture, which says that all bipartite
graphs have this property.

As a consequence, the C4 condition is equivalent to saying that the number of labeled
4-cycles is (𝑝4 + 𝑜(1))𝑛4 (rather than at most).

Proposition 3.1.14 (Minimum 4-cycle density)
Every 𝑛-vertex graph with at least 𝑝𝑛2/2 edges has at least 𝑝4𝑛4 labeled closed walks of
length 4.

Remark 3.1.15. Since all but 𝑂 (𝑛3) such closed walks use four distinct vertices, the above
statement implies that the number of labeled 4-cycles is at least (𝑝4 − 𝑜(1))𝑛4.

Proof. The number of closed walks of length 4 is

|{(𝑤, 𝑥, 𝑦, 𝑧) closed walk}| =
∑︁
𝑤,𝑦

|{𝑥 : 𝑤 ∼ 𝑥 ∼ 𝑦}|2 𝑦𝑤

≥ 1
𝑛2

(∑︁
𝑤,𝑦

|{𝑥 : 𝑤 ∼ 𝑥 ∼ 𝑦}|
)2

𝑦𝑤

=
1
𝑛2

(∑︁
𝑥

|{(𝑤, 𝑦) : 𝑤 ∼ 𝑥 ∼ 𝑦}|
)2

𝑥

=
1
𝑛2

(∑︁
𝑥

(deg 𝑥)2
)2

𝑥

≥ 1
𝑛4

(∑︁
𝑥

deg 𝑥

)4

𝑥

= (2𝑒(𝐺))4/𝑛4 ≥ 𝑝4𝑛4

Here both inequality steps are due to Cauchy–Schwarz. On the right column is a pictorial
depiction of what is being counted by the inner sum on each line. These diagrams are
a useful way to keep track of the graph inequalities, especially when dealing with much
larger graphs, where the algebraic expressions get unwieldy. Note that each application of the
Cauchy–Schwarz inequality corresponds to “folding” the graph along a line of reflection. □

We shall prove the equivalences of Theorem 3.1.1 in the following way:

DISC′ DISC COUNT

CODEG C4 EIG

Proof that DISC implies DISC′. Take 𝑌 = 𝑋 in DISC. (Note that 𝑒(𝑋, 𝑋) = 2𝑒(𝑋) and( |𝑋 |
2
)
= |𝑋 |2 /2 −𝑂 (𝑛).) □
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96 Pseudorandom Graphs

Proof that DISC′ implies DISC. We have the following “polarization identity,” together
with a proof by picture (recall 2𝑒(𝑋) = 𝑒(𝑋, 𝑋)):

𝑒(𝑋,𝑌 ) = 𝑒(𝑋 ∪ 𝑌 ) + 𝑒(𝑋 ∩ 𝑌 ) − 𝑒(𝑋 \ 𝑌 ) − 𝑒(𝑌 \ 𝑋).

𝑋 \ 𝑌
𝑋 ∩ 𝑌
𝑌 \ 𝑋

𝑋
\ 𝑌
𝑋
∩ 𝑌
𝑌
\ 𝑋

+ = + − −

If DISC′ holds, then the right-hand side above equals

𝑝

( |𝑋 ∪ 𝑌 |
2

)
+ 𝑝

(|𝑋 ∩ 𝑌 |
2

)
− 𝑝

( |𝑋 \ 𝑌 |
2

)
− 𝑝

( |𝑌 \ 𝑋 |
2

)
+ 𝑜(𝑛2) = 𝑝 |𝑋 | |𝑌 | + 𝑜(𝑛2),

where the final step applies the polarization identity again, this time on the complete graph.
So we have 𝑒(𝑋,𝑌 ) = 𝑝 |𝑋 | |𝑌 | + 𝑜(𝑛2) thereby confirming DISC. □

Proof (deferred) that DISC implies COUNT. This is essentially a counting lemma. In Sec-
tion 2.6 we proved a version of the counting lemma but for lower bounds. The same proof
can be modified to a two-sided bound. We will see another proof of a counting lemma (The-
orem 4.5.1) in the next chapter on graph limits, which gives us a convenient language to set
up a more streamlined proof. So we will defer this proof until then. □

Proof that COUNT implies C4. C4 is a special case of COUNT. □

Proof that C4 implies CODEG. Assuming C4, we have

∑︁
𝑢,𝑣

codeg(𝑢, 𝑣) =
∑︁
𝑥∈𝐺

deg(𝑥)2 ≥ 1
𝑛

(∑︁
𝑥∈𝐺

deg(𝑥)
)2

=
1
𝑛

(
𝑝𝑛2 + 𝑜(𝑛2))2

= 𝑝2𝑛3 + 𝑜(𝑛3).

We also have (below the 𝑂 (𝑛3) error term is due to walks of length 4 that use repeated
vertices) ∑︁

𝑢,𝑣

codeg(𝑢, 𝑣)2 = # labeled 𝐶4 +𝑂 (𝑛3)

≤ 𝑝4𝑛4 + 𝑜(𝑛4).
Thus, by the Cauchy–Schwarz inequality,

1
𝑛2

(∑︁
𝑢,𝑣

��codeg(𝑢, 𝑣) − 𝑝2𝑛
��)2

≤
∑︁
𝑢,𝑣

(
codeg(𝑢, 𝑣) − 𝑝2𝑛

)2

=
∑︁
𝑢,𝑣

codeg(𝑢, 𝑣)2 − 2𝑝2𝑛
∑︁
𝑢,𝑣

codeg(𝑢, 𝑣) + 𝑝4𝑛4

≤ 𝑝4𝑛4 − 2𝑝2𝑛 · 𝑝2𝑛3 + 𝑝4𝑛4 + 𝑜(𝑛4)
= 𝑜(𝑛4). □
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3.1 Quasirandom Graphs 97

Remark 3.1.16. These calculations share the spirit of the second moment method in proba-
bilistic combinatorics. The condition C4 says that the variance of the codegree of two random
vertices is small.

Exercise 3.1.17. Show that if we modify the CODEG condition to∑︁
𝑢,𝑣∈𝑉 (𝐺)

(
codeg(𝑢, 𝑣) − 𝑝2𝑛

)
= 𝑜(𝑛3),

then it would not be enough to imply quasirandomness.

Proof that CODEG implies DISC. We first show that the codegree condition implies the
concentration of degrees:

1
𝑛

(∑︁
𝑢

|deg 𝑢 − 𝑝𝑛|
)2

≤
∑︁
𝑢

(deg 𝑢 − 𝑝𝑛)2

=
∑︁
𝑢

(deg 𝑢)2 − 2𝑝𝑛
∑︁
𝑢

deg 𝑢 + 𝑝2𝑛3

=
∑︁
𝑥,𝑦

codeg(𝑥, 𝑦) − 4𝑝𝑛 𝑒(𝐺) + 𝑝2𝑛3

= 𝑝2𝑛3 − 2𝑝2𝑛3 + 𝑝2𝑛3 + 𝑜(𝑛3)
= 𝑜(𝑛3). (3.1)

Now we bound the expression in DISC. We have

1
𝑛
|𝑒(𝑋,𝑌 ) − 𝑝 |𝑋 | |𝑌 | |2 = 1

𝑛

(∑︁
𝑥∈𝑋
(deg(𝑥,𝑌 ) − 𝑝 |𝑌 |)

)2

≤
∑︁
𝑥∈𝑋
(deg(𝑥,𝑌 ) − 𝑝 |𝑌 |)2 .

The above Cauchy–Schwarz step turned all the summands nonnegative, which allows us to
expand the domain of summation from 𝑋 to all of 𝑉 = 𝑉 (𝐺) in the next step. Continuing,

≤
∑︁
𝑥∈𝑉
(deg(𝑥,𝑌 ) − 𝑝 |𝑌 |)2

=
∑︁
𝑥∈𝑉

deg(𝑥,𝑌 )2 − 2𝑝 |𝑌 |
∑︁
𝑥∈𝑉

deg(𝑥,𝑌 ) + 𝑝2𝑛 |𝑌 |2

=
∑︁
𝑦,𝑦′∈𝑌

codeg(𝑦, 𝑦′) − 2𝑝 |𝑌 |
∑︁
𝑦∈𝑌

deg 𝑦 + 𝑝2𝑛 |𝑌 |2

= |𝑌 |2 𝑝2𝑛 − 2𝑝 |𝑌 | · |𝑌 | 𝑝𝑛 + 𝑝2𝑛 |𝑌 |2 + 𝑜(𝑛3) [by CODEG and (3.1)]

= 𝑜(𝑛3). □

Finally, let us consider the graph spectrum, which consists of the eigenvalues of the graph
adjacency matrix, accounting for eigenvalue multiplicities. Eigenvalues are core to the study
of pseudorandomness and they will play a central role in the rest of this chapter.

In this book, when we talk about the eigenvalues of a graph, we always mean the
eigenvalues of the adjacency matrix of the graph. In other contexts, it may be useful to
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98 Pseudorandom Graphs

consider other related matrices, such as the Laplacian matrix, or a normalized adjacency
matrix.

We will generally consider only real symmetric matrices, whose eigenvalues are always
all real (Hermitian matrices also have this property). Our usual convention is to list all the
eigenvalues in order (including multiplicities): _1 ≥ _2 ≥ · · · ≥ _𝑛. We refer to _1 as
the top eigenvalue (or largest eigenvalue), and _𝑖 as the 𝒊th eigenvalue (or the 𝒊th largest
eigenvalue). The second eigenvalue plays an important role. We write _𝑖 (𝐴) for the 𝑖th
eigenvalue of the matrix 𝐴 and _𝑖 (𝐺) = _𝑖 (𝐴𝐺) where 𝐴𝐺 is the adjacency matrix of 𝐺.

Remark 3.1.18 (Linear algebra review). For every 𝑛 × 𝑛 real symmetric matrix 𝐴 with
eigenvalues _1 ≥ · · · ≥ _𝑛, we can choose an eigenvector 𝑣𝑖 ∈ R𝑛 for each eigenvalue _𝑖
(so that 𝐴𝑣𝑖 = _𝑖𝑣𝑖) and such that {𝑣1, . . . , 𝑣𝑛} is an orthogonal basis of R𝑛 (this is false for
general nonsymmetric matrices).

The Courant–Fischer min-max theorem is an important characterization of eigenvalues
in terms of a variational problem. Here we only state some consequences most useful for us.
We have

_1 = max
𝑣∈R𝑛\{0}

⟨𝑣, 𝐴𝑣⟩
⟨𝑣, 𝑣⟩ .

Once we have fixed a choice of an eigenvector 𝑣1 for the top eigenvalue _1, we have

_2 = max
𝑣⊥𝑣1

𝑣∈R𝑛\{0}

⟨𝑣, 𝐴𝑣⟩
⟨𝑣, 𝑣⟩ .

In particular, if 𝐺 is a 𝑑-regular graph, then the all-1 vector, denoted 1 ∈ R𝑣 (𝐺) , is an
eigenvector for the top eigenvalue 𝑑.

The Perron–Frobenius theorem tells us some important information about the top eigen-
vector and eigenvalue of a nonnegative matrix. For every connected graph 𝐺, the top eigen-
vector is simple (i.e., multiplicity one), so that _𝑖 < _1 for all 𝑖 > 1. We also have |_𝑖 | ≤ _1
for all 𝑖 (one has _𝑛 = −_1 if and only if 𝐺 is bipartite; see Remark 3.1.23 below). Also, the
top eigenvector 𝑣1 (which is unique up to scalar multiplication) has all coordinates positive.

If 𝐺 has multiple connected components 𝐺1, . . . , 𝐺𝑘 , then the eigenvalues of 𝐺 (with
multiplicities) are obtained by taking a multiset union of the eigenvalues of its connected
components. An orthogonal system of eigenvectors can also be derived as such, by extending
each eigenvector of 𝐺 𝑖 to an eigenvector of 𝐺 via padding the eigenvector by zeros outside
the vertices of 𝐺 𝑖.

Here is a useful formula:
tr 𝐴𝑘 = _𝑘1 + · · · + _𝑘𝑛.

When 𝐴 is the adjacency matrix of a graph 𝐺, tr 𝐴𝑘 counts the number of closed walks of
length 𝑘 . In particular, tr 𝐴2 = 2𝑒(𝐺).
Proof that EIG implies C4. Let 𝐴 denote the adjacency matrix of𝐺. The number of labeled
4-cycles is within 𝑂 (𝑛3) of the number of closed walks of length 4, and the latter equals

tr 𝐴4 = _4
1 + · · · + _4

𝑛 = 𝑝
4𝑛4 + 𝑜(𝑛4) +

𝑛∑︁
𝑖=2

_4
𝑖 .
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3.1 Quasirandom Graphs 99

Since tr 𝐴2 = 2𝑒(𝐺) ≤ 𝑛2, we have
𝑛∑︁
𝑖=2

_4
𝑖 ≤ max

𝑖≠1
_2
𝑖 ·

𝑛∑︁
𝑖=1

_2
𝑖 . = 𝑜(𝑛2) · tr 𝐴2 = 𝑜(𝑛4).

So tr 𝐴4 ≤ 𝑝4𝑛4 + 𝑜(𝑛4). □

Remark 3.1.19. A rookie error would be to bound
∑
𝑖≥2 _

4
𝑖 by 𝑛max𝑖≥2 _

4
𝑖 = 𝑜(𝑛5), but this

would not be enough. (Where do we save in the above proof?) We will see a similar situation
later in Chapter 6 when we discuss the Fourier analytic proof of Roth’s theorem.

Lemma 3.1.20 (Top eigenvalue and average degree)
The top eigenvalue of the adjacency matrix of a graph is always at least its average degree.

Proof. Let 1 ∈ R𝑛 be the all-1 vector. By the Courant–Fischer min-max theorem, the
adjacency matrix 𝐴 of the graph 𝐺 has top eigenvalue

_1 = sup
𝑥∈R𝑛
𝑥≠0

⟨𝑥, 𝐴𝑥⟩
⟨𝑥, 𝑥⟩ ≥

⟨1, 𝐴1⟩
⟨1, 1⟩ =

2𝑒(𝐺)
𝑣(𝐺) = avgdeg(𝐺). □

Proof that C4 implies EIG. Again writing 𝐴 for the adjacency matrix,
𝑛∑︁
𝑖=1

_4
𝑖 = tr 𝐴4 = # {closed walks of length 4} ≤ 𝑝4𝑛4 + 𝑜(𝑛4).

On the other hand, by Lemma 3.1.20 above, we have _1 ≥ 𝑝𝑛 + 𝑜(𝑛). So we must have
_1 = 𝑝𝑛 + 𝑜(𝑛) and max𝑖≥2 |_𝑖 | = 𝑜(𝑛). □

This completes all the implications in the proof of Theorem 3.1.1.

Additional Remarks
Remark 3.1.21 (Forcing graphs). The C4 hypothesis says that having 4-cycle density
asymptotically the same as random implies quasirandomness. Which other graphs besides
𝐶4 have this property?

Chung, Graham, and Wilson (1989) called a graph 𝐹 forcing if every graph with edge
density 𝑝 + 𝑜(1) and 𝐹-density 𝑝𝑒 (𝐹 ) + 𝑜(1) (i.e., asymptotically the same as random) is
automatically quasirandom. Theorem 3.1.1 implies that 𝐶4 is forcing. Here is a conjectural
characterization of forcing graphs (Skokan and Thoma 2004; Conlon, Fox, and Sudakov
2010).

Conjecture 3.1.22 (Forcing conjecture)
A graph is forcing if and only if it is bipartite and not a tree.

We will revisit this conjecture in Chapter 5 where we will reformulate it using the language
of graphons.

More generally, one says that a family of graphs F is forcing if having 𝐹-density being
𝑝𝑒 (𝐹 ) + 𝑜(1) for each 𝐹 ∈ F implies quasirandomness. So {𝐾2, 𝐶4} is forcing. It seems to
be a difficult problem to classify forcing families.
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Even though many other graphs can potentially play the role of the 4-cycle, the 4-cycle
nevertheless occupies an important role in the study of quasirandomness. The 4-cycle comes
up naturally in the proofs, as we will see below. It also is closely tied to other impor-
tant pseudorandomness measurements such as the Gowers 𝑈2 uniformity norm in additive
combinatorics.

Let us formulate a bipartite analogue of Theorem 3.1.1 since we will need it later. It is
easy to adapt the above proofs to the bipartite version – we encourage the readers to think
about the differences between the two settings.

Remark 3.1.23 (Eigenvalues of bipartite graphs). Given a bipartite graph 𝐺 with vertex
bipartition 𝑉 ∪𝑊 , we can write its adjacency matrix as

𝐴 =

(
0 𝐵
𝐵⊺ 0

)
, (3.2)

where 𝐵 is an |𝑉 | × |𝑊 | matrix with rows indexed by 𝑉 and columns indexed by 𝑊 . The
eigenvalues _1 ≥ · · · ≥ _𝑛 of 𝐴 always satisfy

_𝑖 = −_𝑛+1−𝑖 for every 1 ≤ 𝑖 ≤ 𝑛.
In other words, the eigenvalues are symmetric around zero. One way to see this is that if
𝑥 = (𝑣, 𝑤) is an eigenvector of 𝐴, where 𝑣 ∈ R𝑉 is the restriction of 𝑥 to the first |𝑉 |
coordinates, and 𝑤 is the restriction of 𝑥 to the last |𝑊 | coordinates, then(

_𝑣
_𝑤

)
= _𝑥 = 𝐴𝑥 =

(
0 𝐵
𝐵⊺ 0

) (
𝑣
𝑤

)
=

(
𝐵𝑤
𝐵⊺𝑣

)
,

so that
𝐵𝑤 = _𝑣 and 𝐵⊺𝑣 = _𝑤.

Then the vector 𝑥′ = (𝑣,−𝑤) satisfies

𝐴𝑥′ =

(
0 𝐵
𝐵⊺ 0

) (
𝑣
−𝑤

)
=

( −𝐵𝑤
𝐵⊺𝑣

)
=

( −_𝑣
_𝑤

)
= −_𝑥′.

So we can pair each eigenvalue of 𝐴 with its negation.

Exercise 3.1.24. Using the notation from (3.2), show that the positive eigenvalues of the
adjacency matrix 𝐴 coincide with the positive singular values of 𝐵 (the singular values of
𝐵 are also the positive square roots of the eigenvalues of 𝐵⊺𝐵).

Theorem 3.1.25 (Bipartite quasirandom graphs)
Fix 𝑝 ∈ [0, 1]. Let (𝐺𝑛)𝑛≥1 be a sequence of bipartite graphs 𝐺𝑛. Write 𝐺𝑛 as 𝐺, with
vertex bipartition𝑉 ∪𝑊 . Suppose |𝑉 | , |𝑊 | → ∞ and |𝐸 | = (𝑝+𝑜(1)) |𝑉 | |𝑊 | as 𝑛→∞.
The following properties are all equivalent:

DISC 𝑒(𝑋,𝑌 ) = 𝑝 |𝑋 | |𝑌 | + 𝑜(𝑛2) for all 𝑋 ⊆ 𝑉 and 𝑌 ⊆ 𝑊 .

COUNT For every bipartite graph 𝐻 with vertex bipartition (𝑆, 𝑇), the number of
labeled copies of 𝐻 in 𝐺 with 𝑆 embedded in 𝑉 and 𝑇 embedded in 𝑊 is (𝑝𝑒 (𝐻 ) +
𝑜(1)) |𝑉 | |𝑆 | |𝑊 | |𝑇 | .
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C4 The number of closed walks of length 4 in 𝐺 starting in 𝑉 is at most (𝑝4 +
𝑜(1)) |𝑉 |2 |𝑊 |2.
Left-CODEG ∑

𝑥,𝑦∈𝑉
��codeg(𝑥, 𝑦) − 𝑝2 |𝑊 |

�� = 𝑜( |𝑉 |2 |𝑊 |).
Right-CODEG ∑

𝑥,𝑦∈𝑊
��codeg(𝑥, 𝑦) − 𝑝2 |𝑉 |

�� = 𝑜( |𝑉 | |𝑊 |2).
EIG The adjacency matrix of 𝐺 has top eigenvalue (𝑝 + 𝑜(1))

√︁
|𝑉 | |𝑊 | and second

largest eigenvalue 𝑜(
√︁
|𝑉 | |𝑊 |).

The bipartite discrepancy condition DISC is equivalent to being an 𝑜(1)-regular pair
(Definition 2.1.2, Exercise 2.1.5).

Remark 3.1.26 (Bipartite double cover). Theorem 3.1.25 implies the nonbipartite version
Theorem 3.1.1, since every graph 𝐺 can be transformed into a bipartite graph 𝐺 × 𝐾2 (a
graph tensor power) whose two vertex parts are both copies of 𝑉 (𝐺). Each edge 𝑢 ∼ 𝑣 of 𝐺
lifts to two edges (𝑢, 0) ∼ (𝑣, 1) and (𝑢, 1) ∼ (𝑣, 0) in 𝐺 × 𝐾2. An example is shown below.

𝐺 𝐺 × 𝐾2

Exercise 3.1.27. Show that a graph 𝐺 satisfies each property in Theorem 3.1.1 if and
only if 𝐺 × 𝐾2 satisfies the corresponding bipartite property in Theorem 3.1.25.

Like earlier, random bipartite graphs are bipartite quasirandom. The proof (omitted) is
essentially the same as Proposition 3.1.8 and Corollary 3.1.9.

Proposition 3.1.28 (Random bipartite graphs are typically quasirandom)
Fix 𝑝 ∈ [0, 1]. With probability 1, a sequence of bipartite random graphs𝐺𝑛 ∼ G(𝑛, 𝑛, 𝑝)
(obtained by keeping every edge of𝐾𝑛,𝑛 with probability 𝑝 independently) is quasirandom
in the sense of Theorem 3.1.25.

Remark 3.1.29 (Sparse graphs). We stated quasirandom properties so far only for graphs
of constant order density (i.e., 𝑝 is a constant). Let us think about what happens if we allow
𝑝 = 𝑝𝑛 to depend on 𝑛 and decay to zero as 𝑛 → ∞. Such graphs are sometimes called
sparse (although some other authors reserve the word “sparse” for bounded degree graphs).
Theorems 3.1.1 and 3.1.25 as stated do hold for a constant 𝑝 = 0, but the results are not as
informative as we would like. For example, the error tolerance on the DISC is 𝑜(𝑛2), which
does not tell us much since the graph already has much fewer edges due to its sparseness
anyway.

To remedy the situation, the natural thing to do is to adjust the error tolerance relative to
the edge density 𝑝 = 𝑝𝑛 → 0. Here are some representative examples (all of these properties
should also depend on 𝑝):

SparseDISC |𝑒(𝑋,𝑌 ) − 𝑝 |𝑋 | |𝑌 | | = 𝑜(𝑝𝑛2) for all 𝑋,𝑌 ⊆ 𝑉 (𝐺).
SparseCOUNT𝐻 The number of labeled copies of 𝐻 is (1 + 𝑜(1))𝑝𝑒 (𝐻 )𝑛𝑣 (𝐻 ) .
SparseC4 The number of labeled 4-cycles is at most (1 + 𝑜(1))𝑝4𝑛4.
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SparseEIG _1 = (1 + 𝑜(1))𝑝𝑛 and max𝑖≠1 |_𝑖 | = 𝑜(𝑝𝑛).
Warning: these sparse pseudorandomness conditions are not all equivalent to each other.

Some of the implications still hold (the reader is encouraged to think about which ones).
However, some crucial implications such as the counting lemma fail quite miserably. For
example:

SparseDISC does not imply SparseCOUNT.

Indeed, suppose 𝑝 = 𝑛−𝑐 for some constant 1/2 < 𝑐 < 1. In a typical random graph
G(𝑛, 𝑝), the number of triangles is close to

(𝑛
3
)
𝑝3, while the number of edges is close to

(𝑛
2
)
𝑝.

We have 𝑝3𝑛3 = 𝑜(𝑝𝑛2) as long as 𝑝 = 𝑜(𝑛−1/2), so there are significantly fewer triangles
than there are edges. Now remove an edge from every triangle in this random graph. We will
have removed 𝑜(𝑝𝑛2) edges, a negligible fraction of the (𝑝 + 𝑜(1)) (𝑛2) edges, and this edge
removal should not significantly affect SparseDISC. However, we have changed the triangle
count significantly as a result.

Fortunately, this is not the end of the story. With additional hypotheses on the sparse graph,
we can sometimes salvage a counting lemma. Sparse counting lemmas play an important
role in the proof of the Green–Tao theorem on arithmetic progressions in the primes, as we
will explain in Chapter 9.

Exercise 3.1.30 (Nearly optimal 𝐶4-free graphs are sparse quasirandom). Let 𝐺𝑛 be a
sequence of 𝑛-vertex 𝐶4-free graphs with (1/2 − 𝑜(1))𝑛3/2 edges. Prove that 𝑒𝐺𝑛 (𝐴, 𝐵) =
𝑛−1/2 |𝐴| |𝐵| + 𝑜(𝑛3/2) for every 𝐴, 𝐵 ⊆ 𝑉 (𝐺𝑛).

Hint:RevisittheCODEG=⇒DISCproofandtheproofoftheKSTtheorem(Theorem1.4.2).

Exercise 3.1.31∗ (Quasirandomness through fixed sized subsets). Fix 𝑝 ∈ [0, 1]. Let
(𝐺𝑛) be a sequence of graphs with 𝑣(𝐺𝑛) = 𝑛 (here 𝑛 → ∞ along a subsequence of
integers).

(a) Fix a single 𝛼 ∈ (0, 1). Suppose

𝑒(𝑆) = 𝑝𝛼2𝑛2

2
+ 𝑜(𝑛2) for all 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | = ⌊𝛼𝑛⌋ .

Prove that 𝐺 is quasirandom.
(b) Fix a single 𝛼 ∈ (0, 1/2). Suppose

𝑒(𝑆,𝑉 (𝐺) \ 𝑆) = 𝑝𝛼(1 − 𝛼)𝑛2 + 𝑜(𝑛2) for all 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | = ⌊𝛼𝑛⌋ .
Prove that 𝐺 is quasirandom. Furthermore, show that the conclusion is false for
𝛼 = 1/2.

Exercise 3.1.32 (Quasirandomness and regularity partitions). Fix 𝑝 ∈ [0, 1]. Let (𝐺𝑛)
be a sequence of graphs with 𝑣(𝐺𝑛) → ∞. Suppose that for every Y > 0, there exists
𝑀 = 𝑀 (Y) so that each 𝐺𝑛 has an Y-regular partition where all but Y-fraction of vertex
pairs lie between pairs of parts with edge density 𝑝 + 𝑜(1) (as 𝑛 → ∞). Prove that 𝐺𝑛 is
quasirandom.

Graph Theory and Additive Combinatorics — Yufei Zhao



3.2 Expander Mixing Lemma 103

Exercise 3.1.33∗ (Triangle counts on induced subgraphs). Fix 𝑝 ∈ (0, 1]. Let (𝐺𝑛) be
a sequence of graphs with 𝑣(𝐺𝑛) = 𝑛. Let 𝐺 = 𝐺𝑛. Suppose that for every 𝑆 ⊆ 𝑉 (𝐺),
the number of triangles in the induced subgraph 𝐺 [𝑆] is 𝑝3 ( |𝑆 |

3
) + 𝑜(𝑛3). Prove that 𝐺 is

quasirandom.

Exercise 3.1.34∗ (Perfect matchings). Prove that there are constants 𝛽, Y > 0 such that
for every positive even integer 𝑛 and real 𝑝 ≥ 𝑛−𝛽, if 𝐺 is an 𝑛-vertex graph where every
vertex has degree (1 ± Y)𝑝𝑛 (meaning within Y𝑝𝑛 of 𝑝𝑛) and every pair of vertices has
codegree (1 ± Y)𝑝2𝑛, then 𝐺 has a perfect matching.

3.2 Expander Mixing Lemma
We dive further into the relationship between graph eigenvalues and its pseudorandomness
properties. We focus on 𝑑-regular graphs since they occur often in practice (e.g., from Cayley
graphs), and they are also cleaner to work with. Unlike the previous section, the results here
are effective for any value of 𝑑 (not just when 𝑑 is on the same order as 𝑛).

As we saw earlier, the magnitudes of eigenvalues are related to the pseudorandomness of
a graph. In a 𝑑-regular graph, the top eigenvalue is always exactly 𝑑. The following condition
says that all other eigenvalues are bounded by _ in absolute value.

Definition 3.2.1 ((𝑛, 𝑑, _)-graph)
An (𝒏, 𝒅, 𝝀)-graph is an 𝑛-vertex, 𝑑-regular graph whose adjacency matrix eigenvalues
𝑑 = _1 ≥ · · · ≥ _𝑛 satisfy

max
𝑖≠1
|_𝑖 | ≤ _.

Remark 3.2.2 (Notation). Rather than saying “an (𝑛, 7, 6)-graph” we prefer to say “an
(𝑛, 𝑑, _)-graph with 𝑑 = 7 and _ = 6” for clarity as the name “(𝑛, 𝑑, _)” is quite standard
and recognizable.

Remark 3.2.3 (Linear algebra review). The operator norm of a matrix 𝐴 ∈ R𝑚×𝑛 is defined
by

∥𝐴∥ = sup
𝑥∈R𝑛\{0}

|𝐴𝑥 |
|𝑥 | = sup

𝑥∈R𝑛\{0}
𝑦∈R𝑚\{0}

⟨𝑦, 𝐴𝑥⟩
|𝑥 | |𝑦 | .

Here |𝑥 | =
√︁
⟨𝑥, 𝑥⟩ denotes the length of vector 𝑥. The operator norm of 𝐴 is the maximum

ratio that 𝐴 can amplify the length of a vector by. If 𝐴 is a real symmetric matrix, then

∥𝐴∥ = max
𝑖
|_𝑖 (𝐴) | .

For general matrices, the operator norm of 𝐴 equals the largest singular value of 𝐴.

Here is the main result of this section.
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Theorem 3.2.4 (Expander mixing lemma)
If 𝐺 is an (𝑛, 𝑑, _)-graph, then����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |

���� ≤ _√︁|𝑋 | |𝑌 | for all 𝑋,𝑌 ⊆ 𝑉 (𝐺).

On the left-hand side, (𝑑/𝑛) |𝑋 | |𝑌 | is the number of edges that one should expect between
𝑋 and 𝑌 purely based on the edge density 𝑑/𝑛 of the graph and the sizes of 𝑋 and 𝑌 . Note
that unlike the discrepancy condition (DISC) from quasirandom graphs (Theorem 3.1.1),
the error bound on the right-side hand depends on the sizes of 𝑋 and 𝑌 . We can apply the
expander mixing lemma to small subsets 𝑋 and𝑌 and still obtain useful estimates on 𝑒(𝑋,𝑌 ),
unlike the dense quasirandom graph conditions.

Proof. Let 𝐽 be the 𝑛 × 𝑛 all-1 matrix. Since the all-1 vector 1 ∈ R𝑛 is an eigenvector of
𝐴𝐺 with eigenvalue 𝑑, we see that 1 is an eigenvector of 𝐴𝐺 − 𝑑

𝑛
𝐽 with eigenvalue 0. Any

other eigenvector 𝑣 of 𝐴𝐺 , with 𝑣 ⊥ 1, satisfies 𝐽𝑣 = 0, and thus 𝑣 is also an eigenvector
of 𝐴𝐺 − 𝑑

𝑛
𝐽 with the same eigenvalue as in 𝐴𝐺 . Therefore, the eigenvalues of 𝐴𝐺 − 𝑑

𝑛
𝐽 are

obtained by taking the eigenvalues of 𝐴𝐺 then replacing one top eigenvalue 𝑑 by zero. All the
other eigenvalues of 𝐴𝐺 − 𝑑

𝑛
𝐽 are therefore at most _ in absolute value, so

𝐴𝐺 − 𝑑
𝑛
𝐽
 ≤ _.

Therefore, ����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |
���� =

����
〈
1𝑋,

(
𝐴𝐺 − 𝑑

𝑛
𝐽

)
1𝑌

〉����
≤

𝐴𝐺 − 𝑑𝑛 𝐽
 |1𝑋 | |1𝑌 |

≤ _
√︁
|𝑋 | |𝑌 |. □

Exercise 3.2.5. Prove the following strengthening the expander mixing lemma.

Theorem 3.2.6 (Expander mixing lemma – slightly strengthened)
If 𝐺 is an (𝑛, 𝑑, _)-graph, then����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |

���� ≤ _𝑛
√︁
|𝑋 | (𝑛 − |𝑋 |) |𝑌 | (𝑛 − |𝑌 |) for all 𝑋,𝑌 ⊆ 𝑉 (𝐺).

We also have a bipartite analogue (the nomenclature used here is less standard). Recall
from Remark 3.1.23 that the eigenvalues of a bipartite graph are symmetric around zero.

Definition 3.2.7 (Bipartite-(𝑛, 𝑑, _)-graph)
An bipartite-(𝒏, 𝒅, 𝝀)-graph is a 𝑑-regular bipartite graph with 𝑛 vertices in each part,
such that its second largest eigenvalue is at most _.

Exercise 3.2.8. Show that 𝐺 is an (𝑛, 𝑑, _)-graph if and only if 𝐺 × 𝐾2 is a bipartite-
(𝑛, 𝑑, _)-graph.
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Theorem 3.2.9 (Bipartite expander mixing lemma)
Let 𝐺 be a bipartite-(𝑛, 𝑑, _)-graph with vertex bipartition 𝑉 ∪𝑊 . Then����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |

���� ≤ _√︁|𝑋 | |𝑌 | for all 𝑋 ⊆ 𝑉 and 𝑌 ⊆ 𝑊.

Exercise 3.2.10. Prove Theorem 3.2.9.
Remark 3.2.11. The following partial converse to the expander mixing lemma was shown
by Bilu and Linial (2006). The extra log factor turns out to be necessary.

Theorem 3.2.12 (Converse to expander mixing lemma)
There exists an absolute constant 𝐶 such that if 𝐺 is a 𝑑-regular graph, and 𝛽 satisfies����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |

���� ≤ 𝛽√︁|𝑋 | |𝑌 | for all 𝑋,𝑌 ⊆ 𝑉 (𝐺),

then 𝐺 is an (𝑛, 𝑑, _)-graph with _ ≤ 𝐶𝛽 log(2𝑑/𝛽).

Cheeger’s Inequality: Edge Expansion vs. Spectral Gap
Given a graph and its adjacency matrix, the spectral gap is defined to be the difference
between the two most significant eigenvalues; that is, _1 − _2. This quantity turns out to
be closely related to expansion in graphs. We define the edge-expansion ratio of a graph
𝐺 = (𝑉, 𝐸) to be the quantity

𝒉(𝑮) B min
𝑆⊆𝑉

0< |𝑆 | ≤ |𝑉 |/2

𝑒𝐺 (𝑆,𝑉 \ 𝑆)
|𝑆 | .

In other words, a graph with edge-expansion ratio at least ℎ has the property that for every
nonempty subset of vertices 𝑆 with |𝑆 | ≤ |𝑉 | /2, there are at least ℎ |𝑆 | edges leaving 𝑆.

Cheeger’s inequality, stated below, tells us that among 𝑑-regular graphs for a fixed 𝑑,
having spectral gap bounded away from zero is equivalent to having edge-expansion ratio
bounded away from zero. Cheeger (1970) originally developed this inequality for Riemannian
manifolds. The graph theoretic analogue was proved by Dodziuk (1984), and independently
by Alon and Milman (1985) and Alon (1986).

Theorem 3.2.13 (Cheeger’s inequality)
Let 𝐺 be an 𝑛-vertex 𝑑-regular graph with adjacency matrix spectral gap ^ = 𝑑 − _2.
Then its edge-expansion ratio ℎ = ℎ(𝐺) satisfies

^/2 ≤ ℎ ≤
√

2𝑑^.

The two bounds of Cheeger’s inequality are tight up to constant factors. For the lower
bound, taking 𝐺 to be the skeleton of the 𝑑-dimensional cube with vertex set {0, 1}𝑑 gives
ℎ = 1 (achieved by the 𝑑−1 dimensional subcube) and ^ = 2. For the upper bound, taking𝐺 to
be an 𝑛-cycle gives ℎ = 2/(𝑛/2) = Θ(1/𝑛) while 𝑑 = 2 and ^ = 2−2 cos(2𝜋/𝑛)) = Θ(1/𝑛2).

We call a family of 𝑑-regular graphs expanders if there is some constant ^0 > 0 so that
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each graph in the family has spectral gap ≥ ^0; by Cheeger’s inequality, this is equivalent to
the existence of some ℎ0 > 0 so that each graph in the family has edge expansion ratio ≥ ℎ0.
Expander graphs are important objects in mathematics and computer science. For example,
expander graphs have rapid mixing properties, which are useful for designing efficient Monte
Carlo algorithms for sampling and estimation.

The following direction of Cheeger’s inequality is easier to prove. It is similar to the
expander mixing lemma.

Exercise 3.2.14 (Spectral gap implies expansion). Prove the ^/2 ≤ ℎ part of Cheeger’s
inequality.

The other direction, ℎ ≤
√

2𝑑^, is more difficult and interesting. The proof is outlined in
the following exercise.

Exercise 3.2.15 (Expansion implies spectral gap). Let 𝐺 = (𝑉, 𝐸) be a connected 𝑑-
regular graph with spectral gap ^. Let 𝑥 = (𝑥𝑣)𝑣∈𝑉 ∈ R𝑉 be an eigenvector associated to
the second largest eigenvalue _2 = 𝑑 − ^ of the adjacency matrix of 𝐺. Assume that 𝑥𝑣 > 0
on at most half of the vertex set (or else we replace 𝑥 by −𝑥). Let 𝑦 = (𝑦𝑣)𝑣∈𝑉 ∈ R𝑉 be
obtained from 𝑥 by replacing all its negative coordinates by zero.

(a) Prove that

𝑑 − ⟨𝑦, 𝐴𝑦⟩⟨𝑦, 𝑦⟩ ≤ ^.
Hint:Recallthat_2𝑥𝑣=∑𝑢∼𝑣𝑥𝑢.

(b) Let
Θ =

∑︁
𝑢𝑣∈𝐸

��𝑦2
𝑢 − 𝑦2

𝑣

�� .
Prove that

Θ2 ≤ 2𝑑 (𝑑 ⟨𝑦, 𝑦⟩ − ⟨𝑦, 𝐴𝑦⟩) ⟨𝑦, 𝑦⟩ .

Hint:𝑦2
𝑢−𝑦2

𝑣=(𝑦𝑢−𝑦𝑣)(𝑦𝑢+𝑦𝑣).ApplyCauchy–Schwarz.

(c) Relabel the vertex set 𝑉 by [𝑛] so that 𝑦1 ≥ 𝑦2 · · · ≥ 𝑦𝑡 > 0 = 𝑦𝑡+1 = · · · = 𝑦𝑛.
Prove

Θ =
𝑡∑︁
𝑘=1

(𝑦2
𝑘 − 𝑦2

𝑘+1) 𝑒( [𝑘], [𝑛] \ [𝑘]).

(d) Prove that for some 1 ≤ 𝑘 ≤ 𝑡,
𝑒( [𝑘], [𝑛] \ [𝑘])

𝑘
≤ Θ
⟨𝑦, 𝑦⟩ .

(e) Prove the ℎ ≤
√

2𝑑^ claim of Cheeger’s inequality.

Exercise 3.2.16 (Independence numbers). Prove that every independent set in a (𝑛, 𝑑, _)-
graph has size at most 𝑛_/(𝑑 + _).
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Exercise 3.2.17 (Diameter). Prove that the diameter of an (𝑛, 𝑑, _)-graph is at most
⌈log 𝑛/log(𝑑/_)⌉. (The diameter of a graph is the maximum distance between a pair of
vertices.)

Exercise 3.2.18 (Counting cliques). For each part below, prove that for every Y > 0, there
exists 𝛿 > 0 such that the conclusion holds for every (𝑛, 𝑑, _)-graph 𝐺 with 𝑑 = 𝑝𝑛.

(a) If _ ≤ 𝛿𝑝2𝑛, then the number of triangles of 𝐺 is within a 1 ± Y factor of 𝑝3 (𝑛
3
)
.

(b*) If _ ≤ 𝛿𝑝3𝑛, then the number of 𝐾4s in 𝐺 is within a 1 ± Y factor of 𝑝6 (𝑛
4
)
.

3.3 Abelian Cayley Graphs and Eigenvalues
Many important constructions of pseudorandom graphs come from groups.

Definition 3.3.1 (Cayley graph)
Let Γ be a finite group, and let 𝑆 ⊆ Γ be a subset with 𝑆 = 𝑆−1 (i.e., 𝑠−1 ∈ 𝑆 for all 𝑠 ∈ 𝑆)
and not containing the identity element. We write Cay(𝚪, 𝑺) to denote the Cayley graph
on Γ generated by 𝑆, which has elements of Γ as vertices, and

𝑔 ∼ 𝑔𝑠 for all 𝑔 ∈ Γ and 𝑠 ∈ 𝑆.
as edges.

In this section, we only consider abelian groups, specificallyZ/𝑝Z for concreteness (though
everything here generalizes easily to all finite abelian groups). For abelian groups, we write
the group operation additively as 𝑔 + 𝑠. So edges join elements whose difference lies in 𝑆.

Remark 3.3.2. In later sections when we consider a nonabelian group Γ, one needs to make
a choice whether to define edges by left- or right-multiplication (i.e., 𝑔𝑠 or 𝑠𝑔; we chose
𝑔𝑠 here). It does not matter which choice one makes (as long as one is consistent) since
the resulting Cayley graphs are isomorphic (why?). However, some careful bookkeeping is
sometimes required to make sure that later computations are consistent with the initial choice.

Example 3.3.3. Cay(Z/𝑛Z, {−1, 1}) is a cycle of length 𝑛. The graph for 𝑛 = 8 is shown.

Example 3.3.4. Cay(F𝑛2 , {𝑒1, . . . , 𝑒𝑛}) is the skeleton of an 𝑛-dimensional cube. Here 𝑒𝑖 is
the 𝑖th standard basis vector. The graphs for 𝑛 = 1, 2, 3, 4 are shown.

Here is an explicitly constructed family of quasirandom graphs with edge density 1/2 +
𝑜(1).
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Definition 3.3.5 (Paley graph)
Let 𝑝 ≡ 1 (mod 4) be a prime. The Paley graph of order 𝑝 is Cay(Z/𝑝Z, 𝑆), where 𝑆
is the set of nonzero quadratic residues in Z/𝑝Z (here Z/𝑝Z is viewed as an additive
group).

Example 3.3.6. The Paley graphs for 𝑝 = 5 and 𝑝 = 13 are shown.

0

1

23

4

0 1
2

3

4
5

67
8

9

10

11
12

Cay(Z/5Z, {±1}) Cay(Z/13Z, {±1,±3,±4})
Remark 3.3.7 (Quadratic residues). Here we recall some facts from elementary number
theory. For every odd prime 𝑝, the set 𝑆 =

{
𝑎2 : 𝑎 ∈ F×𝑝

}
of quadratic residues is a multi-

plicative subgroup of F×𝑝 with index two. In particular, |𝑆 | = (𝑝 − 1)/2. We have −1 ∈ 𝑆 if
and only if 𝑝 ≡ 1 (mod 4) (which is required to define a Cayley graph, as the generating set
needs to be symmetric in the sense that 𝑆 = −𝑆).

We will show that Paley graphs are quasirandom by verifying the EIG condition, which
says that all eigenvalues, except the top one, are small. Here is a general formula for computing
the eigenvalues of any Cayley graph on Z/𝑝Z.

Theorem 3.3.8 (Eigenvalues of abelian Cayley graphs on Z/𝑛Z)
Let 𝑛 be a positive integer. Let 𝑆 ⊆ Z/𝑛Z with 0 ∉ 𝑆 and 𝑆 = −𝑆. Let

𝜔 = exp(2𝜋𝑖/𝑛).
Then we have an orthonormal basis 𝑣0, . . . , 𝑣𝑛−1 ∈ C𝑛 of eigenvectors of Cay(Z/𝑛Z, 𝑆)
where

𝑣 𝑗 ∈ C𝑛 has 𝑥-coordinate 𝜔 𝑗 𝑥/√𝑛, for each 𝑥 ∈ Z/𝑛Z.
The eigenvalue (not sorted by size) associated to the eigenvector 𝑣 𝑗 equals

_ 𝑗 =
∑︁
𝑠∈𝑆

𝜔 𝑗𝑠 .

In particular, _0 = |𝑆 | and 𝑣0 has all coordinates 1/√𝑛.

Remark 3.3.9 (Eigenvalues and the Fourier transform). The coordinates of the eigenvec-
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tors are shown below.
Z/𝑛Z

0 1 2 · · · 𝑛 − 1
√
𝑛 𝑣0 1 1 1 · · · 1√
𝑛 𝑣1 1 𝜔 𝜔2 · · · 𝜔𝑛−1
√
𝑛 𝑣2 1 𝜔2 𝜔4 · · · 𝜔2(𝑛−1)

...
...

...
...

. . .
...√

𝑛 𝑣𝑛−1 1 𝜔𝑛−1 𝜔2(𝑛−1) · · · 𝜔 (𝑛−1)2

Viewed as a matrix, this is sometimes known as the discrete Fourier transform matrix.
We will study the Fourier transform in Chapter 6. These two topics are closely tied. The
eigenvalues of an abelian Cayley graph Cay(Γ, 𝑆) are precisely the Fourier transform in Γ of
the generating set 𝑆, up to normalizing factors:

eigenvalues of Cay(Γ, 𝑆) ←→ Fourier transform 1̂𝑆 in Γ.

We will say more about this in Remark 3.3.11 below.

Proof. Let 𝐴 be the adjacency matrix of Cay(Z/𝑛Z, 𝑆). First we check that each 𝑣 𝑗 is an
eigenvector of 𝐴 with eigenvalue _ 𝑗 . The coordinate of

√
𝑛𝐴𝑣 𝑗 at 𝑥 ∈ Z/𝑛Z equals

∑︁
𝑠∈𝑆

𝜔 𝑗 (𝑥+𝑠) =

(∑︁
𝑠∈𝑆

𝜔 𝑗𝑠

)
𝜔 𝑗 𝑥 = _ 𝑗𝜔

𝑗 𝑥 .

So 𝐴𝑣 𝑗 = _ 𝑗𝑣 𝑗 .
Next we check that {𝑣0, . . . , 𝑣𝑛−1} is an orthonormal basis. We have the inner product

⟨𝑣 𝑗 , 𝑣𝑘⟩ = 1
𝑛

(
1 · 1 + 𝜔 𝑗𝜔𝑘 + 𝜔2 𝑗𝜔2𝑘 + · · · + 𝜔 (𝑛−1) 𝑗𝜔 (𝑛−1)𝑘

)

=
1
𝑛

(
1 + 𝜔𝑘− 𝑗 + 𝜔2(𝑘− 𝑗 ) + · · · + 𝜔 (𝑛−1) (𝑘− 𝑗 )

)
=

{
1 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘.

For the 𝑖 ≠ 𝑗 case, we use that for any𝑚th root of unity Z ≠ 1,
∑𝑚−1
𝑗=0 Z

𝑗 = 0. So {𝑣0, . . . , 𝑣𝑛−1}
is an orthonormal basis. □

Remark 3.3.10 (Real vs complex eigenbases). The adjacency matrix of a graph is a real
symmetric matrix, so all its eigenvalues are real, and it always has a real orthogonal eigenbasis.
The eigenbasis given in Theorem 3.3.8 is complex, but it can always be made real. Looking
at the formulas in Theorem 3.3.8, we have _ 𝑗 = _𝑛− 𝑗 , and 𝑣 𝑗 is the complex conjugate of
𝑣𝑛− 𝑗 . So we can form a real orthogonal eigenbasis by replacing, for each 𝑗 ∉ {0, 𝑛/2}, the
pair (𝑣 𝑗 , 𝑣𝑛− 𝑗) by ((𝑣 𝑗 + 𝑣𝑛− 𝑗)/

√
2, 𝑖(𝑣 𝑗 − 𝑣𝑛− 𝑗)/

√
2). Equivalently, we can separate the real

and imaginary parts of each 𝑣 𝑗 , which are both eigenvectors with eigenvalue _ 𝑗 . All the real
eigenvalues and eigenvectors can be expressed in terms of sines and cosines.

Remark 3.3.11 (Every abelian Cayley graph has an eigenbasis independent of the gen-
erators). The above theorem and its proof generalizes to all finite abelian groups, not just
Z/𝑛Z. For every finite abelian group Γ, we have a set Γ̂ of characters, where each character
is a homomorphism 𝜒 : Γ → C×. Then Γ̂ turns out to be a group isomorphic to Γ (one can
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check this by first writing Γ as a direct product of cyclic groups). For each 𝜒 ∈ Γ̂, define
the vector 𝑣𝜒 ∈ CΓ by setting the coordinate at 𝑔 ∈ Γ to be 𝜒(𝑔)/

√︁
|Γ|. Then {𝑣𝜒 : 𝜒 ∈ Γ̂}

is an orthonormal basis for the adjacency matrix of every Cayley graph on Γ. The eigen-
value corresponding to 𝑣𝜒 is _𝜒 (𝑆) =

∑
𝑠∈𝑆 𝜒(𝑠). Up to normalization, _𝜒 (𝑆) is the Fourier

transform of the indicator function of 𝑆 on the abelian group Γ (Theorem 3.3.8 is a special
case of this construction). In particular, this eigenbasis {𝑣𝜒 : 𝜒 ∈ Γ̂} depends only on the
finite abelian group and not on the generating set 𝑆. In other words, we have a simultaneous
diagonalization for all adjacency matrices of Cayley graphs on a fixed finite abelian group.

If Γ is a nonabelian group, then there does not exist a simultaneous eigenbasis for all
Cayley graphs on Γ. There is a corresponding theory of nonabelian Fourier analysis, which
uses group representation theory. We will discuss more about nonabelian Cayley graphs in
Section 3.4.

Now we apply the above formula to compute eigenvalues of Paley graphs. In particular,
the following tells us that Paley graphs satisfy the quasirandomness condition EIG from
Theorem 3.1.1.

Theorem 3.3.12 (Eigenvalues of Paley graphs)
Let 𝑝 ≡ 1 (mod 4) be a prime. The adjacency of matrix of the Paley graph of order 𝑝 has
top eigenvalue (𝑝−1)/2, and all other eigenvalues are either (√𝑝−1)/2 or (−√𝑝−1)/2.

Proof. Applying Theorem 3.3.8, we see that the eigenvalues are given by, for 𝑗 = 0, 1, . . . , 𝑝−
1,

_ 𝑗 =
∑︁
𝑠∈𝑆

𝜔 𝑗𝑠 =
1
2

(
−1 +

∑︁
𝑥∈F𝑝

𝜔 𝑗 𝑥2
)
,

since each quadratic residue 𝑠 appears as 𝑥2 for exactly two nonzero 𝑥. Clearly _0 = (𝑝−1)/2.
For 𝑗 ≠ 0, the next result shows that the inner sum on the right-hand side is ±√𝑝 (note that
the above sum is real when 𝑝 ≡ 1 (mod 4) since 𝑆 = 𝑆−1 and so the sum equals its own
complex conjugate; alternatively, the sum must be real since all eigenvalues of a symmetric
matrix are real). □

Remark 3.3.13. Since the trace of the adjacency matrix is zero, and equals the sum of
eigenvalues, we see that the nontop eigenvalues are equally split between (√𝑝 − 1)/2 and
(−√𝑝 − 1)/2.

Theorem 3.3.14 (Gauss sum)
Let 𝑝 be an odd prime, 𝜔 = exp(2𝜋𝑖/𝑝), and 𝑗 ∈ F𝑝 \ {0}. Then����∑︁

𝑥∈F𝑝
𝜔 𝑗 𝑥2

���� = √𝑝.
Proof. We have ����∑︁

𝑥∈F𝑝
𝜔 𝑗 𝑥2

����
2

=
∑︁

𝑥,𝑦∈Z/𝑝Z
𝜔 𝑗 ( (𝑥+𝑦)2−𝑥2 ) =

∑︁
𝑥,𝑦∈Z/𝑝Z

𝜔 𝑗 (2𝑥𝑦+𝑦2 ) .
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For each fixed 𝑦, we have
∑︁

𝑥∈Z/𝑝Z
𝜔 𝑗 (2𝑥𝑦+𝑦2 ) =

{
𝑝 if 𝑦 = 0,
0 if 𝑦 ≠ 0.

Summing over 𝑦 yields the claim. □

Remark 3.3.15 (Sign of the Gauss sum). The determination of this sign is a more difficult
problem. Gauss conjectured the sign in 1801 and it took him four years to prove it. When 𝑗
is a nonzero quadratic residue mod 𝑝, the inner sum above turns out to equal √𝑝 if 𝑝 ≡ 1
(mod 4) and 𝑖√𝑝 if 𝑝 ≡ 3 (mod 4). When 𝑗 is a quadratic nonresidue, it is −√𝑝 and −𝑖√𝑝
in the two cases respectively. See Ireland and Rosen (1990, Section 6.4) for a proof.

Exercise 3.3.16. Let 𝑝 be an odd prime and 𝐴, 𝐵 ⊆ Z/𝑝Z. Show that�����
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

(
𝑎 + 𝑏
𝑝

)����� ≤
√︁
𝑝 |𝐴| |𝐵 |

where (𝑎/𝑝) is the Legendre symbol defined by

(
𝑎

𝑝

)
=




0 if 𝑎 ≡ 0 (mod 𝑝),
1 if 𝑎 is a nonzero quadratic residue mod 𝑝,
−1 if 𝑎 is a quadratic nonresidue mod 𝑝.

Exercise 3.3.17. Prove that in a Paley graph of order 𝑝, every clique has size at most √𝑝.

Exercise 3.3.18 (No spectral gap if too few generators). Prove that for every Y > 0 there
is some 𝑐 > 0 such that for every 𝑆 ⊆ Z/𝑛Z with 0 ∉ 𝑆 = −𝑆 and |𝑆 | ≤ 𝑐 log 𝑛, the second
largest eigenvalue of the adjacency matrix of Cay(Z/𝑛Z, 𝑆) is at least (1 − Y) |𝑆 |.
Exercise 3.3.19∗. Let 𝑝 be a prime and let 𝑆 be a multiplicative subgroup of F×𝑝. Suppose
−1 ∈ 𝑆. Prove that all eigenvalues of the adjacency matrix of Cay(Z/𝑝Z, 𝑆), other than the
top one, are at most √𝑝 in absolute value.

3.4 Quasirandom Groups
In the previous section, we saw that certain Cayley graphs on cyclic groups are quasirandom.
Note that not all Cayley graphs on cyclic groups are quasirandom. For example, the Cayley
graph with Γ = Z/𝑛Z and 𝑆 = {𝑥 : |𝑥 | ≤ 𝑛/4} ⊆ Z/𝑛Z is not quasirandom.

In this section, we will see that for certain families of nonabelian groups, every Cayley
graph on the group is quasirandom, regardless of the Cayley graph generators. Gowers (2008)
called such groups quasirandom groups, and showed that they are precisely groups with no
small nontrivial representations. He came up with this notion while solving the following
problem about product-free sets in groups.

Question 3.4.1 (Product-free subset of groups)
Given a group of order 𝑛, what is the size of its largest product-free subset? Is it always
≥ 𝑐𝑛 for some constant 𝑐 > 0?
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Remark 3.4.2 (Representations of finite groups). We need some basic concepts from group
representation theory in this section – mostly just some definitions. Feel free to skip this
remark if you have already seen group representations before.

Given a finite group Γ, it is often useful to study its actions as linear transformations on
some vector space. For example, if Γ is a cyclic or dihedral group, it is natural to think of
elements of Γ as rotations and reflection of a plane, which are linear transformations on R2.
The theory turns out to be much nicer over C than R since C is algebraically closed. We are
interested in ways that Γ can be represented as a group of linear transformations acting on
some C𝑑 .

A representation of a finite group Γ is a group homomorphism 𝜌 : Γ → GL(𝑉), where
𝑉 is a complex vector space (everything will take place over C) and GL(𝑉) is the group of
invertible linear transformations of 𝑉 . We sometimes omit 𝜌 from the notation and just say
that 𝑉 is a representation of Γ, and also that Γ acts on 𝑉 (via 𝜌). For each 𝑔 ∈ Γ and 𝑣 ∈ 𝑉 ,
we write 𝑔𝑣 = 𝜌(𝑔)𝑣 for the image of the 𝑔-action on 𝑣. We write dim 𝜌 = dim𝑉 for the
dimension of the representation.

The fact that 𝜌 : Γ→ GL(𝑉) is a group homomorphism means that the action of Γ on𝑉 is
compatible with group operations in Γ in the following sense: if 𝑔, ℎ ∈ Γ, then the expression
𝑔ℎ𝑥 does not depend on whether we first apply ℎ to 𝑥 and then 𝑔 to ℎ𝑥, or if we first multiply
𝑔 and ℎ in Γ and then apply their product 𝑔ℎ to 𝑥.

For example, suppose Γ is a subgroup of permutations of [𝑛], with each element 𝑔 ∈ Γ
viewed as a permutation 𝑔 : [𝑛] → [𝑛]. We can define a representation of Γ on C𝑛 by letting
Γ permute the coordinates: for any 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ C𝑛, set 𝑔𝑥 = (𝑥𝑔 (1) , . . . , 𝑥𝑔 (𝑛) ). As
an element of GL(𝑛,C), 𝜌(𝑔) is the 𝑛 × 𝑛 permutation matrix of the permutation 𝑔, and
𝑔𝑥 = 𝜌(𝑔)𝑥 for each 𝑥 ∈ C𝑛.

We say that the representation 𝑉 of Γ is trivial if 𝑔𝑣 = 𝑣 for all 𝑔 ∈ Γ and 𝑣 ∈ 𝑉 , and
nontrivial otherwise.

We say that a subspace 𝑊 of 𝑉 is 𝚪-invariant if 𝑔𝑤 ∈ 𝑊 for all 𝑤 ∈ 𝑊 . In other words,
the image of𝑊 under Γ is contained in𝑊 (and actually must equal𝑊 due to the invertibility
of group elements). Then𝑊 is a representation of Γ, and we call it a subrepresentation of𝑉 .

For an introduction to group representation theory, see any standard textbook such as the
classic Linear Representations of Finite Groups by Serre (1977). Also, the lectures notes
titled Representation Theory of Finite Groups, and Applications by Wigderson (2012) is a
friendly introduction with applications to combinatorics and theoretical computer science.

Recall from Definition 3.2.1 that an (𝒏, 𝒅, 𝝀)-graph is an 𝑛-vertex 𝑑-regular graph all of
whose eigenvalues, except the top one, are at most _ in absolute value.

The main theorem of this section, below, says that a group with no small nontrivial
representations always produces quasirandom Cayley graphs (Gowers 2008).

Theorem 3.4.3 (Cayley graphs on quasirandom groups)
Let Γ be a group of order 𝑛 with no nontrivial representations of dimension less than 𝐾 .
Then every 𝑑-regular Cayley graph on Γ is an (𝑛, 𝑑, _)-graph for some _ <

√︁
𝑑𝑛/𝐾 .

Remark 3.4.4 (Abelian groups and one-dimensional representations). If Γ is abelian, then
it has many one-dimensional nontrivial representations, namely its multiplicative characters.
For example, if Γ = Z/𝑛Z, then the map 𝜌 : Γ → C× sending 𝑔 ∈ Z/𝑛Z to 𝜔𝑔, where 𝜔 is
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some nontrivial root of unity, is a nontrivial one-dimensional representation. In fact, one can
vary 𝜔 over all roots of unity to obtain all nonisomorphic one-dimensional representations
of Γ.

So the hypothesis of having no low dimensional nontrivial representations can be viewed
as a statement that the group is highly nonabelian in some sense.

A representation is irreducible if it contains no subrepresentations other than itself and
the zero-dimensional subrepresentation. Irreducible representations are the basic building
blocks of group representations, and so understanding all irreducible representations of a
group is a fundamental objective. Among finite groups, a group is abelian if and only if all
its irreducible representations are one-dimensional.

More generally we will prove the result for vertex-transitive groups, of which Cayley
graphs is a special case.

Definition 3.4.5 (Vertex-transitive graphs)
Let 𝐺 be a graph. An automorphism of 𝐺 is a permutation of 𝑉 (𝐺) that induces
an isomorphism of 𝐺 to itself (i.e., sending edges to edges). Let Γ be a group of
automorphisms of 𝐺 (not necessarily the whole automorphism group). We say that 𝚪
acts vertex-transitively on 𝑮 if for every pair 𝑣, 𝑤 ∈ 𝑉 (𝐺) there is some 𝑔 ∈ Γ such that
𝑔𝑣 = 𝑤. We say that 𝐺 is a vertex-transitive graph if the automorphism group of 𝐺 acts
vertex-transitively on 𝐺.

In particular, every group Γ acts vertex-transitively on its Cayley graph Cay(Γ, 𝑆) by
left-multiplication: the action of 𝑔 ∈ Γ sends each vertex 𝑥 ∈ Γ to 𝑔𝑥 ∈ Γ, which sends each
edge (𝑥, 𝑥𝑠) to (𝑔𝑥, 𝑔𝑥𝑠), for all 𝑥 ∈ Γ and 𝑠 ∈ 𝑆.

Theorem 3.4.6 (Vertex-transitive graphs and quasirandom groups)
Let Γ be a finite group with no nontrivial representations of dimension less than 𝐾 . Then
every 𝑛-vertex 𝑑-regular graph that admits a vertex-transitive Γ action is an (𝑛, 𝑑, _)-
graph with _ <

√︁
𝑑𝑛/𝐾 .

Note that
√︁
𝑑𝑛/𝐾 ≤ 𝑛/√𝐾 , so that a sequence of such Cayley graphs is quasirandom

(Definition 3.1.2) as long as 𝐾 →∞ as 𝑛→∞.

Proof. Let 𝐴 denote the adjacency matrix of the graph, whose vertices are indexed by
{1, . . . , 𝑛}. Each 𝑔 ∈ Γ gives a permutation (𝑔(1), . . . , 𝑔(𝑛)) of the vertex set, which induces
a representation of Γ on C𝑛 given by permuting coordinates, sending 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ C𝑛
to 𝑔𝑣 = (𝑣𝑔 (1) , . . . , 𝑣𝑔 (𝑛) ).

We know that the all-1 vector 1 is an eigenvector of 𝐴 with eigenvalue 𝑑. Let 𝑣 ∈ R𝑛 be
an eigenvector of 𝐴 with eigenvalue ` such that 𝑣 ⊥ 1. Since each 𝑔 ∈ Γ induces a graph
automorphism, 𝐴𝑣 = `𝑣 implies 𝐴(𝑔𝑣) = `𝑔𝑣 (check this claim! Basically it is because 𝑔
relabels vertices in an isomorphically indistinguishable way).

Since Γ𝑣 = {𝑔𝑣 : 𝑔 ∈ Γ} is Γ-invariant, its C-span 𝑊 is a Γ-invariant subspace (i.e.,
𝑔𝑊 ⊆ 𝑊 for all 𝑔 ∈ Γ), and hence a subrepresentation of Γ. Since 𝑣 is not a constant vector,
the Γ-action on 𝑣 is nontrivial. So 𝑊 is a nontrivial representation of Γ. Hence dim𝑊 ≥ 𝐾
by hypothesis. Every nonzero vector in𝑊 is an eigenvector of 𝐴with eigenvalue `. It follows
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that ` appears as an eigenvalue of 𝐴 with multiplicity at least 𝐾 . Recall that we also have an
eigenvalue 𝑑 from the eigenvector 1. Thus

𝑑2 + 𝐾`2 ≤
𝑛∑︁
𝑗=1

_ 𝑗 (𝐴)2 = tr 𝐴2 = 𝑛𝑑.

Therefore

|` | ≤
√︂
𝑑 (𝑛 − 𝑑)

𝐾
<

√︂
𝑑𝑛

𝐾
. □

The above proof can be modified to prove a bipartite version, which will be useful for
certain applications.

Given a finite group Γ and a subset 𝑆 ⊆ Γ (not necessarily symmetric), we define the
bipartite Cayley graph BiCay(𝚪, 𝑺) as the bipartite graph with vertex set Γ on both parts,
with an edge joining 𝑔 on the left with 𝑔𝑠 on the right for every 𝑔 ∈ Γ and 𝑠 ∈ 𝑆.

Theorem 3.4.7 (Bipartite Cayley graphs on quasirandom groups)
Let Γ be a group of order 𝑛 with no nontrivial representations of dimension less than
𝐾 . Let 𝑆 ⊆ Γ with |𝑆 | = 𝑑. Then the bipartite Cayley graph BiCay(Γ, 𝑆) is a bipartite-
(𝑛, 𝑑, _)-graph for some _ <

√︁
𝑛𝑑/𝐾 .

In other words, the second largest eigenvalue of the adjacency matrix of this bipartite
Cayley graph is less than

√︁
𝑛𝑑/𝐾 .

Exercise 3.4.8. Prove Theorem 3.4.7.
As an application of the expander mixing lemma, we show that in a quasirandom group,

the number of solutions to 𝑥𝑦 = 𝑧 with 𝑥, 𝑦, 𝑧 lying in three given sets 𝑋,𝑌, 𝑍 ⊆ Γ is close to
what one should predict from density alone. Note that the right-hand side expression below
is relatively small if 𝐾 is large compared to |𝑋 | |𝑌 | |𝑍 | /|Γ|3 (e.g., if 𝑋,𝑌, 𝑍 each occupy at
least a constant proportion of the group, and 𝐾 tends to infinity).

Theorem 3.4.9 (Mixing in quasirandom groups)
Let Γ be a finite group with no nontrivial representations of dimension less than 𝐾 . Let
𝑋,𝑌, 𝑍 ⊆ Γ. Then����|{(𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 : 𝑥𝑦 = 𝑧}| − |𝑋 | |𝑌 | |𝑍 ||Γ|

���� <
√︂
|𝑋 | |𝑌 | |𝑍 | |Γ|

𝐾
.

Proof. Every solution to 𝑥𝑦 = 𝑧, with (𝑥, 𝑦, 𝑧) ∈ 𝑋 ×𝑌 × 𝑍 corresponds to an edge (𝑥, 𝑧) in
BiCay(Γ, 𝑌 ) between vertex subset 𝑋 on the left and vertex subset 𝑍 on the right.

Γ Γ

𝑋

𝑍𝑥

𝑧
𝑦 = 𝑥−1𝑧 ∈ 𝑌

BiCay(Γ, 𝑌 )
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By Theorem 3.4.7, BiCay(Γ, 𝑌 ) is a bipartite-(𝑛, 𝑑, _)-graph with 𝑛 = |Γ|, 𝑑 = |𝑌 |, and some
_ <

√︁
|Γ| |𝑌 | /𝐾 . The claimed inequality then follows from applying the bipartite expander

mixing lemma, Theorem 3.2.9, to BiCay(Γ, 𝑌 ). □

Corollary 3.4.10 (Product-free sets)
Let Γ be a finite group with no nontrivial representations of dimension less than 𝐾 . Let
𝑋,𝑌, 𝑍 ⊆ Γ. If there is no solution to 𝑥𝑦 = 𝑧 with (𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 , then

|𝑋 | |𝑌 | |𝑍 | < |Γ|
3

𝐾
.

In particular, every product-free 𝑋 ⊆ Γ has size less than |Γ| /𝐾1/3. (Here product-free
means that there is no solution to 𝑥𝑦 = 𝑧 with 𝑥, 𝑦, 𝑧 ∈ 𝑋 .)

Proof. If there is no solution to 𝑥𝑦 = 𝑧, then the left-hand side of the inequality in Theo-
rem 3.4.9 is |𝑋 | |𝑌 | |𝑍 | /|Γ|. Rearranging gives the result. □

The above result already shows that all product-free subsets of a quasirandom group must
be small. This sharply contrasts the abelian setting. For example, inZ/𝑛Z (written additively),
there is a sum-free subset of size around 𝑛/3 consisting of all group elements strictly between
𝑛/3 and 2𝑛/3.

Exercise 3.4.11 (Growth and expansion in quasirandom groups). Let Γ be a finite group
with no nontrivial representations of dimension less than 𝐾 . Let 𝑋,𝑌, 𝑍 ⊆ Γ. Suppose
|𝑋 | |𝑌 | |𝑍 | ≥ |Γ|3 /𝐾 . Then 𝑋𝑌𝑍 = Γ (i.e., every element of Γ can be expressed as 𝑥𝑦𝑧 for
some (𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍).

Examples of Quasirandom Groups
Example 3.4.12 (Quasirandom groups). Here are some examples of groups with no small
nontrivial representations.

(a) A classic result of Frobenius from around 1900 shows that every nontrivial repre-
sentation of PSL(2, 𝑝) has dimension at least (𝑝 − 1)/2 for all prime 𝑝. We will
see a proof shortly. Jordan (1907) and Schur (1907) computed the character tables
for PSL(2, 𝑞) for all prime power 𝑞. In particular, we know that every nontrivial
representation of PSL(2, 𝑞) has dimension ≥ (𝑞 − 1)/2 for all prime power 𝑞.

(b) The alternating group 𝐴𝑚 for 𝑚 ≥ 2 has order 𝑚!/2, and its smallest nontrivial
representation has dimension 𝑚 − 1 = Θ(log 𝑛/log log 𝑛). The representations of
symmetric and alternating groups have a nice combinatorial description using Young
diagrams. See Sagan (2001) and Fulton and Harris (1991) for expository accounts of
this theory.

(c) Gowers (2008, Theorem 4.7) gives an elementary proof that in every noncyclic
simple group of order 𝑛, the smallest nontrivial representation has dimension at least√︁

log 𝑛/2.
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Recall that the special linear group SL(2, 𝑝) is the group of 2 × 2 matrices (under multi-
plication) with determinant 1:

SL(2, 𝑝) =
{(
𝑎 𝑏
𝑐 𝑑

)
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ F𝑝, 𝑎𝑑 − 𝑏𝑐 = 1

}
.

The projective special linear group PSL(2, 𝑝) is a quotient of SL(2, 𝑝) by all scalars; that is,

PSL(2, 𝑝) = SL(2, 𝑝)/{±𝐼} .
The following result is due to Frobenius.

Theorem 3.4.13 (PSL(2, 𝑝) is quasirandom)
Let 𝑝 be a prime. Then all nontrivial representations of SL(2, 𝑝) and PSL(2, 𝑝) have
dimension at least (𝑝 − 1)/2.

Proof. The claim is trivial for 𝑝 = 2, so we can assume that 𝑝 is odd. It suffices to prove the
claim for SL(2, 𝑝). Indeed, any nontrivial representation of PSL(2, 𝑝) can be made into a
representation of SL(2, 𝑝) by first passing through the quotient SL(2, 𝑝) → SL(2, 𝑝)/{±𝐼} =
PSL(2, 𝑝).

Now suppose 𝜌 is a nontrivial representation of SL(2, 𝑝). The group SL(2, 𝑝) is generated
by the elements

𝑔 =

(
1 1
0 1

)
and ℎ =

(
1 0
−1 1

)
.

(Exercise: check!) These two elements are conjugate in SL(2, 𝑝) via 𝑧 =
( 1 −1

1 0
)

as 𝑔𝑧 = 𝑧ℎ.
If 𝜌(𝑔) = 𝐼, then 𝜌(ℎ) = 𝐼 by conjugation, and 𝜌 would be trivial since 𝑔 and ℎ generate the
group. So, 𝜌(𝑔) ≠ 𝐼. Since 𝑔𝑝 = 𝐼, we have 𝜌(𝑔) 𝑝 = 𝐼. So 𝜌(𝑔) is diagonalizable (here we
use that a matrix is diagonalizable if and only if its minimal polynomial has distinct roots,
and that the minimal polynomial of 𝜌(𝑔) divides 𝑋 𝑝 − 1). Since 𝜌(𝑔) ≠ 𝐼, 𝜌(𝑔) has an
eigenvalue _ ≠ 1. Since 𝜌(𝑔) 𝑝 = 𝐼, _ is a primitive 𝑝th root of unity.

For every 𝑎 ∈ F×𝑝, 𝑔 is conjugate to(
𝑎 0
0 𝑎−1

) (
1 1
0 1

) (
𝑎−1 0
0 𝑎

)
=

(
1 𝑎2

0 1

)
= 𝑔𝑎

2
.

Thus 𝜌(𝑔) is conjugate to 𝜌(𝑔)𝑎2 . Hence these two matrices have same set of eigenvalues.
So _𝑎2 is an eigenvalue of 𝜌(𝑔) for every 𝑎 ∈ F×𝑝, and by ranging over all 𝑎 ∈ F×𝑝, this gives
(𝑝−1)/2 distinct eigenvalues of 𝜌(𝑔) (recall that _ is a primitive 𝑝th root of unity). It follows
that dim 𝜌 ≥ (𝑝 − 1)/2. □

Applying Corollary 3.4.10 with Theorem 3.4.13 yields the following corollary (Gowers
2008). Note that the order of PSL(2, 𝑝) is (𝑝3 − 𝑝)/2.

Corollary 3.4.14 (Product-free subset of PSL(2, 𝑝))
The largest product-free subset of PSL(2, 𝑝) has size 𝑂 (𝑝3−1/3).

In particular, there exist infinitely many groups of order 𝑛 whose largest product-free
subset has size 𝑂 (𝑛8/9).
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Before Gowers’ work, it was not known whether every order 𝑛 group has a product-free
subset of size ≥ 𝑐𝑛 for some absolute constant 𝑐 > 0 (this was Question 3.4.1, asked by
Babai and Sós). Gowers’ result shows that the answer is no.

In the other direction, Kedlaya (1997; 1998) showed that every finite group of order 𝑛
has a product-free subset of size ≳ 𝑛11/14. In fact, he showed that if the group has a proper
subgroup 𝐻 of index 𝑚, then there is a product-free subset that is a union of ≳ 𝑚1/2 cosets
of 𝐻.

Equivalence of Quasirandomness Conditions
We saw that having no small nontrivial representations is a useful property of groups. Gowers
further showed that this group representation theoretic property is equivalent to several other
characterizations of the group.

Theorem 3.4.15 (Quasirandom groups)
Let Γ𝑛 be a sequence of finite groups of increasing order. The following are equivalent:

REP The dimension of the smallest nontrivial representation of Γ𝑛 tends to infinity.
GRAPH Every sequence of bipartite Cayley graphs on Γ𝑛, as 𝑛→∞, is quasirandom
in the sense of Theorem 3.1.25.
PRODFREE The largest product-free subset of Γ𝑛 has size 𝑜( |Γ𝑛 |).
QUOTIENT For every proper normal subgroup 𝐻 of Γ𝑛, the quotient Γ𝑛/𝐻 is non-
abelian and has order tending to infinity as 𝑛→∞.

Let us comment on the various implications.
By Theorem 3.4.7, REP implies GRAPH. For the converse, we need to construct a

nonquasirandom Cayley graph on each group with a nontrivial representation of bounded
dimension. One can first construct a weighted analogue of a bipartite Cayley graph with large
eigenvalues by appealing to formulas from nonabelian Fourier transform (see Remark 3.4.17
below). And then one can sample a genuine bipartite Cayley graph from the weighted version.

By Corollary 3.4.10, REP implies PRODFREE. The converse is proved in Gowers
(2008) using elementary methods. It was later proved with better polynomial quantitative
dependence in Nikolov and Pyber (2011), who proved the following result.

Theorem 3.4.16 (PRODFREE implies REP)
Let Γ be a group with a nontrivial representation of dimension 𝐾 . Then Γ has a product-
free subset of size at least 𝑐 |Γ| /𝐾 , where 𝑐 > 0 is some absolute constant.

To see that REP implies QUOTIENT, note that any nontrivial representation of Γ/𝐻 is
automatically a representation of Γ after passing through the quotient. Furthermore, every
nontrivial abelian group has a nontrivial 1-dimensional representation, and every group
of order 𝑚 > 1 has a nontrivial representation of dimension <

√
𝑚. For the proof of the

converse, see Gowers (2008, Theorem 4.8). (This implication has an exponential dependence
of parameters.)

Remark 3.4.17 (nonabelian Fourier analysis). (This is an advanced remark and can be
skipped over.) Section 3.3 discussed the Fourier transform on finite abelian groups. The
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topic of this section can be alternatively viewed through the lenses of the nonabelian Fourier
transform. We refer to Wigderson (2012) for a tutorial on the nonabelian Fourier transform
from a combinatorial perspective.

Let us give here the recipe for computing the eigenvalues and an orthonormal basis of
eigenvectors of Cay(Γ, 𝑆).

For each irreducible representation 𝜌 of Γ (always working over C), let

𝑀𝜌 B
∑︁
𝑠∈𝑆

𝜌(𝑠),

viewed as a dim 𝜌 × dim 𝜌 matrix over C. Then 𝑀𝜌 has dim 𝜌 eigenvalues _𝜌,1, . . . , _𝜌,dim 𝜌.
Here is how to list all the eigenvalues of the adjacency matrix of Cay(Γ, 𝑆): repeating

each _𝜌,𝑖 with multiplicity dim 𝜌, ranging over all irreducible representations 𝜌 and all
1 ≤ 𝑖 ≤ dim 𝜌.

To emphasize, the eigenvalues always come in bundles with multiplicities determined by
the dimensions of the irreducible representations of Γ (although it is possible for there to be
additional coalescence of eigenvalues).

One can additionally recover a system of eigenvectors of Cay(Γ, 𝑆). For each eigenvector
𝑣 with eigenvalue _ of 𝑀𝜌, and every 𝑤 ∈ Cdim 𝜌, set 𝑥𝜌,𝑣,𝑤 ∈ CΓ with coordinates

𝑥𝜌,𝑣,𝑤𝑔 = ⟨𝜌(𝑔)𝑣, 𝑤⟩
for all 𝑔 ∈ Γ. Then 𝑥 is an eigenvector of Cay(Γ, 𝑆) with eigenvalue _. Now let 𝜌 range over
all irreducible representations of Γ, and let 𝑣 range over an orthonormal basis of eigenvectors
of 𝑀𝜌 (let _ be the corresponding eigenvalue), and let 𝑤 range over an orthonormal basis
of eigenvectors of Cdim 𝜌, then 𝑥𝜌,𝑣,𝑤 ranges over an orthogonal system of eigenvectors of
Cay(Γ, 𝑆). The eigenvalue associated to 𝑥𝜌,𝑣,𝑤 is _.

A basic theorem in representation theory tells us that the regular representation decom-
poses into a direct sum of dim 𝜌 copies of 𝜌 ranging over every irreducible representation
𝜌 of Γ. This decomposition then corresponds to a block diagonalization (simultaneously for
all 𝑆) of the adjacency matrix of Cay(Γ, 𝑆) into blocks 𝑀𝜌, repeated dim 𝜌 times, for each
𝜌. The above statement comes from interpreting this block diagonalization.

The matrix 𝑀𝜌, appropriately normalized, is the nonabelian Fourier transform of the
indicator vector of 𝑆 at 𝜌. Many basic and important formulas for Fourier analysis over
abelian groups, e.g, inversion and Parseval (which we will see in Chapter 6) have nonabelian
analogs.

3.5 Quasirandom Cayley Graphs and Grothendieck’s Inequality
Let us examine the following two sparse quasirandom graph conditions (c.f. Remark 3.1.29).

Definition 3.5.1 (Sparse quasirandom graphs)
Let 𝐺 be an 𝑛-vertex 𝑑-regular graph. We say that 𝐺 satisfies property

SparseDISC(Y) If
��𝑒(𝑋,𝑌 ) − 𝑑

𝑛
|𝑋 | |𝑌 |

�� ≤ Y𝑑𝑛 for all 𝑋,𝑌 ⊆ 𝑉 (𝐺);
SparseEIG(Y) If 𝐺 is an (𝑛, 𝑑, _)-graph for some _ ≤ Y𝑑.

In Section 3.1, we saw that when 𝑑 grows linearly in 𝑛, then these two conditions are
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equivalent up to a polynomial change in the constant Y. As discussed in Remark 3.1.29, many
quasirandomness equivalences break down for sparse graphs, meaning 𝑑 = 𝑜(𝑛) here. Some
still holds, for example:

Proposition 3.5.2 (SparseEIG implies SPARSEDISC)
Among regular graphs,

SparseEIG(Y) implies SparseDISC(Y).

Proof. In an (𝑛, 𝑑, _) graph with _ ≤ Y𝑑, by the expander mixing lemma (Theorem 3.2.4),
for every vertex subsets 𝑋 and 𝑌 ,����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |

���� ≤ _√︁|𝑋 | |𝑌 | ≤ Y𝑑√︁|𝑋 | |𝑌 | ≤ Y𝑑𝑛.
So the graph satisfies SparseDISC(Y). □

The converse fails badly. Consider the disjoint union of a large random 𝑑-regular graph
and a 𝐾𝑑+1 (here 𝑑 = 𝑜(𝑛)).

large random
𝑑-regular graph ∪

𝐾𝑑+1

This graph satisfies SparseDISC(𝑜(1)) since it is satisfied by the large component, and the
small component 𝐾𝑑+1 contributes negligibly to discrepancy due to its size. On the other
hand, each connected component contributes a eigenvalue of 𝑑 (by taking the all-1 vector
supported on each component), and so SparseEIG(Y) fails for any Y < 1.

The main result of this section is that despite the above example, if we restrict ourselves
to Cayley graphs (abelian or nonabelian), SparseDISC(Y) and SparseEIG(Y) are always
equivalent up to a linear change in Y. This result is due to Conlon and Zhao (2017).

Theorem 3.5.3 (SparseDISC implies SparseEIG for Cayley graphs)
Among Cayley graphs,

SparseDISC(Y) implies SparseEIG(8Y).

As in Section 3.4, we prove the above result more generally for vertex-transitive graphs
(see Definition 3.4.5).

Theorem 3.5.4 (SparseDISC implies SparseEIG for vertex-transitive graphs)
Among vertex-transitive graphs,

SparseDISC(Y) implies SparseEIG(8Y).
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Grothendieck’s Inequality
The proof of the above theorem uses the following important inequality from functional
analysis due to Grothendieck (1953).

Given a matrix 𝐴 = (𝑎𝑖, 𝑗) ∈ R𝑚×𝑛, we can consider its ℓ∞ → ℓ1 norm

sup
∥𝑦 ∥∞≤1

∥𝐴𝑦∥ℓ1 ,

which can also be written as (exercise: check! Also see Lemma 4.5.3 for a related fact about
the cut norm of graphons)

sup
𝑥∈{−1,1}𝑚
𝑦∈{−1,1}𝑛

⟨𝑥, 𝐴𝑦⟩ = sup
𝑥1 , · · · ,𝑥𝑚∈{−1,1}
𝑦1 ,...,𝑦𝑛∈{−1,1}

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖, 𝑗𝑥𝑖𝑦 𝑗 . (3.3)

This quantity is closely related to discrepancy.
One can consider a semidefinite relaxation of the above quantity:

sup
∥𝑥1 ∥ ,..., ∥𝑥𝑚 ∥≤1
∥𝑦1 ∥ ,..., ∥𝑦𝑛 ∥≤1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖, 𝑗
〈
𝑥𝑖, 𝑦 𝑗

〉
, (3.4)

where the surpremum is taken over vectors 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑛 in the unit ball of some
real Hilbert space, whose norm is denoted by ∥ ∥. Without loss of generality, we can take
assume that these vectors lie in R𝑚+𝑛 with the usual Euclidean norm (here 𝑚 + 𝑛 dimensions
are enough since 𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑛 span a real subspace of dimension at most 𝑚 + 𝑛).

We always have
(3.3) ≤ (3.4)

by restricting the vectors in (3.4) to R. There are efficient algorithms (both in theory and in
practice) using semidefinite programming to solve (3.4), whereas no efficient algorithm is
believed to exist for computing (3.3) (Alon and Naor 2006).

Grothendieck’s inequality says that this semidefinite relaxation never loses more than a
constant factor.

Theorem 3.5.5 (Grothendieck’s inequality)
There exists a constant 𝐾 > 0 (𝐾 = 1.8 works) such that for all matrices 𝐴 = (𝑎𝑖, 𝑗) ∈
R𝑚×𝑛,

sup
∥𝑥𝑖 ∥ , ∥𝑦 𝑗 ∥≤1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖, 𝑗
〈
𝑥𝑖, 𝑦 𝑗

〉 ≤ 𝐾 sup
𝑥𝑖 ,𝑦 𝑗 ∈{±1}

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖, 𝑗𝑥𝑖𝑦 𝑗 ,

where the left-hand side supremum is taken over vectors 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚 in the
unit ball of some real Hilbert space.

Remark 3.5.6. The optimal constant 𝐾 is known as the real Grothendieck’s constant. Its
exact value is unknown. It is known to lie within [1.676, 1.783]. There is also a complex ver-
sion of Grothendieck’s inequality, where the left-hand side uses a complex Hilbert space (and
place an absolute value around the final sum). The corresponding complex Grothendieck’s
constant is known to lie within [1.338, 1.405].
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We will not prove Grothendieck’s inequality here. See Alon and Naor (2006) for three
proofs of the inequality, along with algorithmic discussions.

Proof that SparseDISC Implies SparseEIG for Vertex-Transitive Graphs
Proof of Theorem 3.5.4. Let𝐺 be an 𝑛-vertex 𝑑-regular graph with a vertex-transitive group
Γ of automorphisms. Suppose 𝐺 satisfies SparseDISC(Y). Let 𝐴 be the adjacency matrix
of 𝐺. Write

𝐵 = 𝐴 − 𝑑
𝑛
𝐽

where 𝐽 is the 𝑛×𝑛 all-1 matrix. To show that𝐺 is an (𝑛, 𝑑, _)-graph with _ ≤ Y𝑑, it suffices
to show that 𝐵 has operator norm ∥𝐵∥ ≤ Y𝑑 (here we are using that 𝐺 is 𝑑-regular, so the
all-1 eigenvector of 𝐴 with eigenvalue 𝑑 becomes an eigenvector of 𝐵 with eigenvalue zero).

For any 𝑋,𝑌 ⊆ 𝑉 (𝐺), the corresponding indicator vectors 𝑥 = 1𝑋 ∈ R𝑛 and 𝑦 = 1𝑌 ∈ R𝑛
satisfy, by SparseDISC(Y),

|⟨𝑥, 𝐵𝑦⟩| =
����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |

���� ≤ Y𝑑𝑛.
Then, for any 𝑥, 𝑦 ∈ {−1, 1}𝑛, we can write 𝑥 = 𝑥+ − 𝑥− and 𝑦 = 𝑦+ − 𝑦− with 𝑥+, 𝑥−, 𝑦+, 𝑦− ∈
{0, 1}𝑛. Since,

⟨𝑥, 𝐵𝑦⟩ = ⟨𝑥+, 𝐵𝑦+⟩ − ⟨𝑥+, 𝐵𝑦−⟩ − ⟨𝑥−, 𝐵𝑦+⟩ + ⟨𝑥−, 𝐵𝑦−⟩,
and each term on the right-hand side is at most Y𝑑𝑛 in absolute value, we have

|⟨𝑥, 𝐵𝑦⟩| ≤ 4Y𝑑𝑛 for all 𝑥, 𝑦 ∈ {−1, 1}𝑛 . (3.5)

For any graph automorphism 𝑔 ∈ Γ and any 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 and 𝑗 ∈ [𝑛], write

𝑥 𝑗 =

(√︂
𝑛

|Γ| 𝑥𝑔 ( 𝑗 ) : 𝑔 ∈ Γ
)
∈ RΓ .

For every unit vector 𝑥 ∈ R𝑛, the vector 𝑥 𝑗 ∈ RΓ is a unit vector since 𝑥2
1 + · · · + 𝑥2

𝑛 = 1
and the map 𝑔 ↦→ 𝑔( 𝑗) is 𝑛/|Γ|-to-1 for each 𝑗 . Similarly define 𝑦 𝑗 for any 𝑦 ∈ R𝑛 and
𝑗 ∈ [𝑛]. Furthermore, 𝐵𝑖, 𝑗 = 𝐵𝑔 (𝑖) ,𝑔 ( 𝑗 ) for any 𝑔 ∈ Γ and 𝑗 ∈ [𝑛] due to 𝑔 being a graph
automorphism.

To prove the operator norm bound ∥𝐵∥ ≤ 8Y𝑑, it suffices to show that ⟨𝑥, 𝐵𝑦⟩ ≤ 8Y𝑑 for
every pair of unit vectors 𝑥, 𝑦 ∈ R𝑛. We have

⟨𝑥, 𝐵𝑦⟩ =
𝑛∑︁

𝑖, 𝑗=1

𝐵𝑖, 𝑗𝑥𝑖𝑦 𝑗 =
1
|Γ|

∑︁
𝑔∈Γ

𝑛∑︁
𝑖, 𝑗=1

𝐵𝑔 (𝑖) ,𝑔 ( 𝑗 )𝑥𝑔 (𝑖) 𝑦𝑔 ( 𝑗 )

=
1
|Γ|

∑︁
𝑔∈Γ

𝑛∑︁
𝑖, 𝑗=1

𝐵𝑖, 𝑗𝑥𝑔 (𝑖) 𝑦𝑔 ( 𝑗 ) =
1
𝑛

𝑛∑︁
𝑖, 𝑗=1

𝐵𝑖, 𝑗 ⟨𝑥𝑖, 𝑦 𝑗⟩ ≤ 8Y𝑑.

The final step follows from Grothendieck’s inequality (applied with 𝐾 ≤ 2) along with (3.5).
This completes the proof of SparseEIG(8Y). □
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3.6 Second Eigenvalue: Alon–Boppana Bound
The expander mixing lemma tells us that in an (𝑛, 𝑑, _)-graph, a smaller value of _ guarantees
stronger pseudorandomness properties. In this chapter, we explore the following natural
extremal question.

Question 3.6.1 (Minimum second eigenvalue)
Fix a positive integer 𝑑. What is the smallest possible _ (as a function of 𝑑 alone) such
that there exist infinitely many (𝑛, 𝑑, _ + 𝑜(1))-graphs, where the 𝑜(1) is some quantity
that goes to zero as 𝑛→∞?

The answer turns out to be
_ = 2

√
𝑑 − 1.

A significance of this quantity is that it is the spectral radius of the infinite 𝑑-regular tree.
The following result gives the lower bound on _ (Alon 1986).

Theorem 3.6.2 (Alon–Boppana second eigenvalue bound)
Fix a positive integer 𝑑. Let 𝐺 be an 𝑛-vertex 𝑑-regular graph. If _1 ≥ · · · ≥ _𝑛 are the
eigenvalues of its adjacency matrix, then

_2 ≥ 2
√
𝑑 − 1 − 𝑜(1),

where 𝑜(1) → 0 as 𝑛→∞.

In particular, the Alon–Boppana bound implies that max {|_2 | , |_𝑛 |} ≥ 2
√
𝑑 − 1 − 𝑜(1),

which can be restated as below.

Corollary 3.6.3 (Alon–Boppana second eigenvalue bound)
For every fixed 𝑑 and _ < 2

√
𝑑 − 1, there are only finitely many (𝑛, 𝑑, _)-graphs.

We will see two different proofs. The first proof (Nilli 1991) constructs an eigenvector
explicitly. The second proof (only for Corollary 3.6.3) uses the trace method to bound
moments of the eigenvalues via counting closed walks.

Lemma 3.6.4 (Test vector)
Let 𝐺 = (𝑉, 𝐸) be a 𝑑-regular graph. Let 𝐴 be the adjacency matrix of 𝐺. Let 𝑟 be a
positive integer. Let 𝑠𝑡 be an edge of𝐺. For each 𝑖 ≥ 0, let𝑉𝑖 denote the set of all vertices
at distance exactly 𝑖 from {𝑠, 𝑡} (so that in particular 𝑉0 = {𝑠, 𝑡}). Let 𝑥 = (𝑥𝑣)𝑣∈𝑉 ∈ R𝑉
be a vector with coordinates

𝑥𝑣 =

{
(𝑑 − 1)−𝑖/2 if 𝑣 ∈ 𝑉𝑖 and 𝑖 ≤ 𝑟,
0 otherwise, i.e., dist(𝑣, {𝑠, 𝑡}) > 𝑟.

Then
⟨𝑥, 𝐴𝑥⟩
⟨𝑥, 𝑥⟩ ≥ 2

√
𝑑 − 1

(
1 − 1

𝑟 + 1

)
.
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𝑠 𝑡
𝑉0

𝑉1

𝑉2

𝑉3

𝑥𝑣
1

(𝑑 − 1)−1/2

(𝑑 − 1)−1

(𝑑 − 1)−3/2

Proof. Let 𝐿 = 𝑑𝐼−𝐴 (this is called the Laplacian matrix of𝐺). The claim can be rephrased
as an upper bound on ⟨𝑥, 𝐿𝑥⟩ /⟨𝑥, 𝑥⟩. Here is an important and convenient formula (it can be
easily proved by expanding):

⟨𝑥, 𝐿𝑥⟩ =
∑︁
𝑢𝑣∈𝐸
(𝑥𝑢 − 𝑥𝑣)2.

Since 𝑥𝑣 is constant for all 𝑣 in the same 𝑉𝑖, we only need to consider edges spanning
consecutive 𝑉𝑖s. Using the formula for 𝑥, we obtain

⟨𝑥, 𝐿𝑥⟩ =
𝑟−1∑︁
𝑖=0

𝑒(𝑉𝑖, 𝑉𝑖+1)
(

1
(𝑑 − 1)𝑖/2 −

1
(𝑑 − 1) (𝑖+1)/2

)2

+ 𝑒(𝑉𝑟 , 𝑉𝑟+1)(𝑑 − 1)𝑟

For each 𝑖 ≥ 0, each vertex in𝑉𝑖 has at most 𝑑−1 neighbors in𝑉𝑖+1, so 𝑒(𝑉𝑖, 𝑉𝑖+1) ≤ (𝑑−1) |𝑉𝑖 |.
Thus continuing from above,

≤
𝑟−1∑︁
𝑖=0

|𝑉𝑖 | (𝑑 − 1)
(

1
(𝑑 − 1)𝑖/2 −

1
(𝑑 − 1) (𝑖+1)/2

)2

+ |𝑉𝑟 | (𝑑 − 1)
(𝑑 − 1)𝑟

=
(√
𝑑 − 1 − 1

)2 𝑟−1∑︁
𝑖=0

|𝑉𝑖 |
(𝑑 − 1)𝑖 +

|𝑉𝑟 | (𝑑 − 1)
(𝑑 − 1)𝑟

=
(
𝑑 − 2

√
𝑑 − 1

) 𝑟∑︁
𝑖=0

|𝑉𝑖 |
(𝑑 − 1)𝑖 +

(
2
√
𝑑 − 1 − 1

) |𝑉𝑟 |
(𝑑 − 1)𝑟 .

We have |𝑉𝑖+1 | ≤ (𝑑 − 1) |𝑉𝑖 | for every 𝑖 ≥ 0, so that |𝑉𝑟 | (𝑑 − 1)−𝑟 ≤ |𝑉𝑖 | (𝑑 − 1)−𝑖 for each
𝑖 ≤ 𝑟. So continuing,

≤
(
𝑑 − 2

√
𝑑 − 1 + 2

√
𝑑 − 1 − 1
𝑟 + 1

)
𝑟∑︁
𝑖=0

|𝑉𝑖 |
(𝑑 − 1)𝑖

=

(
𝑑 − 2

√
𝑑 − 1 + 2

√
𝑑 − 1 − 1
𝑟 + 1

)
⟨𝑥, 𝑥⟩ .

It follows that

⟨𝑥, 𝐴𝑥⟩
⟨𝑥, 𝑥⟩ = 𝑑 − ⟨𝑥, 𝐿𝑥⟩⟨𝑥, 𝑥⟩ ≥

(
2
√
𝑑 − 1 − 2

√
𝑑 − 1 − 1
𝑟 + 1

)

≥
(
1 − 1

𝑟 + 1

)
2
√
𝑑 − 1. □
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Proof of the Alon–Boppana bound (Theorem 3.6.2). Let 𝑉 = 𝑉 (𝐺). Let 1 be the all-1s
vector, which is an eigenvector with eigenvalue 𝑑. To prove the theorem, it suffices to exhibit
a nonzero vector 𝑧 ⊥ 1 such that

⟨𝑧, 𝐴𝑧⟩
⟨𝑧, 𝑧⟩ ≥ 2

√
𝑑 − 1 − 𝑜(1).

Let 𝑟 be an arbitrary positive integer. When 𝑛 is sufficiently large, there exist two edges 𝑠𝑡
and 𝑠′𝑡′ in the graph with distance at least 2𝑟 + 2 apart (indeed, since the number of vertices
within distance 𝑘 of an edge is ≤ 2(1 + (𝑑 − 1) + (𝑑 − 1)2 + · · · + (𝑑 − 1)𝑘)). Let 𝑥 ∈ R𝑉
be the vector constructed as in Lemma 3.6.4 for 𝑠𝑡, and let 𝑦 ∈ R𝑉 be the corresponding
vector constructed for 𝑠′𝑡′. Recall that 𝑥 is supported on vertices within distance 𝑟 from 𝑠𝑡,
and likewise with 𝑦 and 𝑠′𝑡′. Since 𝑠𝑡 and 𝑠′𝑡′ are at distance at least 2𝑟 + 2 apart, the support
of 𝑥 is at distance at least 2 from the support of 𝑦. Thus

⟨𝑥, 𝑦⟩ = 0 and ⟨𝑥, 𝐴𝑦⟩ = 0.

Choose a constant 𝑐 ∈ R such that 𝑧 = 𝑥 − 𝑐𝑦 has sum of its entries equal to zero (this is
possible since ⟨𝑦, 1⟩ > 0). Then

⟨𝑧, 𝑧⟩ = ⟨𝑥, 𝑥⟩ + 𝑐2 ⟨𝑦, 𝑦⟩
and so by Lemma 3.6.4

⟨𝑧, 𝐴𝑧⟩ = ⟨𝑥, 𝐴𝑥⟩ + 𝑐2 ⟨𝑦, 𝐴𝑦⟩

≥
(
1 − 1

𝑟 + 1

)
2
√
𝑑 − 1

(⟨𝑥, 𝑥⟩ + 𝑐2 ⟨𝑦, 𝑦⟩)
=

(
1 − 1

𝑟 + 1

)
2
√
𝑑 − 1 ⟨𝑧, 𝑧⟩ .

Taking 𝑟 →∞ as 𝑛→∞ gives the theorem. □

Remark 3.6.5. The above proof cleverly considers distance from an edge rather than from
a single vertex. Why does the proof fail if we had instead considered distance from a vertex?

Now let us give another proof – actually we will only prove the slightly weaker statement
of Corollary 3.6.3, which is equivalent to

max {|_2 | , |_𝑛 |} ≥ 2
√
𝑑 − 1 − 𝑜(1). (3.6)

As a warmup, let us first prove (3.6) with
√
𝑑 − 𝑜(1) on the right-hand side. We have

𝑑𝑛 = 2𝑒(𝐺) = tr 𝐴2 =
𝑛∑︁
𝑖=1

_2
𝑖 ≤ 𝑑2 + (𝑛 − 1)max {|_2 | , |_𝑛 |}2 .

So

max {|_2 | , |_𝑛 |} ≥
√︂
𝑑 (𝑛 − 𝑑)
𝑛 − 1

=
√
𝑑 − 𝑜(1)

as 𝑛→∞ for fixed 𝑑.
To prove (3.6), we consider higher moments tr 𝐴𝑘 . This is a useful technique, sometimes

called the trace method or the moment method.

Graph Theory and Additive Combinatorics — Yufei Zhao



3.6 Second Eigenvalue: Alon–Boppana Bound 125

Alternative proof of (3.6). The quantity

tr 𝐴2𝑘 =
𝑛∑︁
𝑖=1

_2𝑘
𝑖

counts the number of closed walks of length 2𝑘 on 𝐺. Let T𝑑 denote the infinite 𝑑-regular
tree. Observe that

# closed length-2𝑘 walks in 𝐺 starting from a fixed vertex
≥ # closed length-2𝑘 walks in T𝑑 starting from a fixed vertex.

Indeed, at each vertex, for both 𝐺 and T𝑑 , we can label its 𝑑 incident edges arbitrarily from
1 to 𝑑 (the labels assigned from the two endpoints of the same edge do not have to match).
Then every closed length-2𝑘 walk in T𝑑 corresponds to a distinct closed length-2𝑘 walk in
𝐺 by tracing the same outgoing edges at each step (why?). Note that not all closed walks in
𝐺 arise this way (e.g., walks that go around cycles in 𝐺).

The number of closed walks of length 2𝑘 on an infinite 𝑑-regular graph starting at a fixed
root is at least (𝑑 − 1)𝑘𝐶𝑘 , where 𝐶𝑘 = 1

𝑘+1
(2𝑘
𝑘

)
is the 𝑘th Catalan number. To see this, note

that each step in the walk is either “away from the root” or “towards the root.” We record a
sequence by denoting steps of the former type by + and of the latter type by −.

+
++

−+ −− + ++
−−−

−

+ + + − + − − + + + − − − −

Then the number of valid sequences permuting 𝑘 +s and 𝑘 −s is exactly counted by the
Catalan number 𝐶𝑘 , as the only constraint is that there can never be more −s than +s up to
any point in the sequence. Finally, there are at least 𝑑 − 1 choices for where to step in the
walk at any + (there are 𝑑 choices at the root), and exactly one choice for each −.

Thus, the number of closed walks of length 2𝑘 in 𝐺 is at least

tr 𝐴2𝑘 ≥ 𝑛(𝑑 − 1)𝑘𝐶𝑘 ≥ 𝑛

𝑘 + 1

(
2𝑘
𝑘

)
(𝑑 − 1)𝑘 .

On the other hand, we have

tr 𝐴2𝑘 =
𝑛∑︁
𝑖=1

_2𝑘
𝑖 ≤ 𝑑2𝑘 + (𝑛 − 1)max {|_2 | , |_𝑛 |}2𝑘 .

Thus,

max {|_2 | , |_𝑛 |}2𝑘 ≥ 1
𝑘 + 1

(
2𝑘
𝑘

)
(𝑑 − 1)𝑘 − 𝑑2𝑘

𝑛 − 1
.
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The term 1
𝑘+1

(2𝑘
𝑘

)
is (2 − 𝑜(1))2𝑘 as 𝑘 → ∞. Letting 𝑘 → ∞ slowly (e.g., 𝑘 = 𝑜(log 𝑛)) as

𝑛→∞ gives us max {|_2 | , |_𝑛 |} ≥ 2
√
𝑑 − 1 − 𝑜(1). □

Remark 3.6.6. The infinite 𝑑-regular graph T𝑑 is the universal cover of all 𝑑-regular graphs
(this fact is used in the first step of the argument). The spectral radius of T𝑑 is 2

√
𝑑 − 1,

which is the fundamental reason why this number arises in the Alon–Boppana bound.

Graphs With _2 ≈ 2
√
𝑑 − 1

Let us return to Question 3.6.1: what is the smallest possible _2 for 𝑛-vertex 𝑑-regular graphs,
with 𝑑 fixed and 𝑛 large? Is the Alon–Boppana bound tight? (The answer is yes.)

Alon’s second eigenvalue conjecture says that random 𝑑-regular graphs match the Alon–
Boppana bound. This was proved by Friedman (2008). We will not present the proof, as it is
quite a difficult result.

Theorem 3.6.7 (Friedman’s second eigenvalue theorem)
Fix positive integer 𝑑 and _ > 2

√
𝑑 − 1. With probability 1−𝑜(1) as 𝑛→∞ (with 𝑛 even

if 𝑑 is odd), a uniformly chosen random 𝑛-vertex 𝑑-regular graph is an (𝑛, 𝑑, _)-graph.

In other words, the above theorem says that random 𝑑-random graphs on 𝑛 vertices satisfy,
with probability 1 − 𝑜(1) (for fixed 𝑑 ≥ 3 and 𝑛→∞),

max {|_2 | , |_𝑛 |} ≤ 2
√
𝑑 − 1 + 𝑜(1).

Can we get ≤ 2
√
𝑑 − 1 exactly without an error term? This leads us to one of the biggest

open problems of the field.

Definition 3.6.8 (Ramanujan graph)
A Ramanujan graph is an (𝑛, 𝑑, _)-graph with _ = 2

√
𝑑 − 1. In other words, it is a

𝑑-regular graph whose adjacency matrix has all eigenvalues, except the top one, at most
2
√
𝑑 − 1 in absolute value.

A major open problem is to show the existence of infinite families of 𝑑-regular Ramanujan
graphs.

Conjecture 3.6.9 (Existence of Ramanujan graphs)
For every positive integer 𝑑 ≥ 3, there exist infinitely many 𝑑-regular Ramanujan graphs.

While it is not too hard to construct small Ramanujan graphs (e.g., 𝐾𝑑+1 has eigenvalues
_1 = 𝑑 and _2 = · · · = _𝑛 = −1), it is a major open problem to construct infinitely many
𝑑-regular Ramanujan graphs for each 𝑑.

The term “Ramanujan graph” was coined by Lubotzky, Phillips, and Sarnak (1988), who
constructed infinite families of 𝑑-regular Ramanujan graphs when 𝑑 − 1 is an odd prime.
The same result was independently proved by Margulis (1988). The proof of the eigenvalue
bounds uses deep results from number theory, namely solutions to the Ramanujan conjecture
(hence the name). These constructions were later extended by Morgenstern (1994) whenever
𝑑 − 1 is a prime power. The current state of Conjecture 3.6.9 is given below, and it remains
open for all other 𝑑, with the smallest open case being 𝑑 = 7.
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Theorem 3.6.10 (Existence of Ramanujan graphs)
If 𝑑 − 1 is a prime power, then there exist infinitely many 𝑑-regular Ramanujan graphs.

All known results are based on explicit constructions using Cayley graphs on PSL(2, 𝑞)
or related groups. We refer the reader to Davidoff, Sarnak, and Valette (2003) for a gentle
exposition of the construction.

Theorem 3.6.7 says that random 𝑑-regular graphs are “nearly-Ramanujan.” Empirical
evidence suggests that for each fixed 𝑑, a uniform random 𝑛-vertex 𝑑-regular graph is
Ramanujan with probability bounded away from 0 and 1, for large 𝑛.

Conjecture 3.6.11 (A random 𝑑-regular graph is likely Ramanujan)
For every 𝑑 ≥ 3, there is some 𝑐𝑑 > 0 so that for all sufficiently large 𝑛 (with 𝑛 even
if 𝑑 is odd), a a uniformly chosen random 𝑛-vertex 𝑑-regular graph is Ramanujan with
probability at least 𝑐𝑑 .

If this were true, it would prove Conjecture 3.6.9 on the existence of Ramanujan graphs.
However, no rigorous results are known in this vein.

One can formulate a bipartite analog.

Definition 3.6.12 (Bipartite Ramanujan graph)
A bipartite Ramanujan graph is some bipartite-(𝑛, 𝑑, _)-graph with _ = 2

√
𝑑 − 1.

Given a Ramanujan graph 𝐺, we can turn it into a bipartite Ramanujan graph 𝐺 × 𝐾2.
So the existence of bipartite Ramanujan graphs is weaker than that of Ramanujan graphs.
Nevertheless, for a long time, it was not known how to construct infinite families of bipartite
Ramanujan graphs other than using Ramanujan graphs. A breakthrough by Marcus, Spiel-
man, and Srivastava (2015) completely settled the bipartite version of the problem. Unlike
earlier construction of Ramanujan graphs, their proof is existential (i.e., nonconstructive)
and introduces an important technique of interlacing families of polynomials.

Theorem 3.6.13 (Bipartite Ramanujan graphs of every degree)
For every 𝑑 ≥ 3, there exist infinitely many 𝑑-regular bipartite Ramanujan graphs.

Exercise 3.6.14 (Alon–Boppana bound with multiplicity). Prove that for every positive
integer 𝑑 and real Y > 0, there is some constant 𝑐 > 0 so that every 𝑛-vertex 𝑑-regular
graph has at least 𝑐𝑛 eigenvalues greater than 2

√
𝑑 − 1 − Y.

Exercise 3.6.15∗ (Net removal decreases top eigenvalue). Show that for every 𝑑 and 𝑟,
there is some Y > 0 such that if 𝐺 is a 𝑑-regular graph, and 𝑆 ⊆ 𝑉 (𝐺) is such that every
vertex of 𝐺 is within distance 𝑟 of 𝑆, then the top eigenvalue of the adjacency matrix of
𝐺 − 𝑆 (i.e., remove 𝑆 and its incident edges from 𝐺) is at most 𝑑 − Y.

Further Reading
The survey Pseudo-random Graphs by Krivelevich and Sudakov (2006) discusses many
combinatorial aspects of this topic.
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Expander graphs are a large and intensely studied topic, partly due to many important
applications in computer science. Here are two important surveys articles:
• Expander Graphs and Their Applications by Hoory, Linial, and Wigderson (2006);
• Expander Graphs in Pure and Applied Mathematics by Lubotzky (2012).
For spectral graph theory, see the book Spectral Graph Theory by Chung (1997), or the

book draft Spectral and Algebraic Graph Theory by Spielman.
The book Elementary Number Theory, Group Theory and Ramanujan Graphs by Davidoff,

Sarnak, and Valette (2003) gives a gentle introduction to the construction of Ramanujan
graphs.

The breakthrough by Marcus, Spielman, and Srivastava (2015) in constructing bipartite
Ramanujan graphs via interlacing polynomials is an instant classic.
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Chapter Summary

• We are interested in quantifying how a given graph can be similar to a random graph.
• The Chung–Graham–Wilson quasirandom graphs theorem says that several notions

are equivalent, notably:
– DISC: edge discrepancy,
– C4: 4-cycle count close to random, and
– EIG: all eigenvalues (except the largest) small.
These equivalences only apply to graphs at constant order edge density. Some of the
implications break down for sparser graphs.

• An (𝒏, 𝒅, 𝝀)-graph is an 𝑛-vertex 𝑑-regular graph all of whose adjacency matrix eigenval-
ues are ≤ _ in absolute value except the top one (which must be 𝑑). The second eigenvalue
plays an important role in pseudorandomness.

• Expander mixing lemma. An (𝑛, 𝑑, _)-graph satisfies����𝑒(𝑋,𝑌 ) − 𝑑𝑛 |𝑋 | |𝑌 |
���� ≤ _√︁|𝑋 | |𝑌 | for all 𝑋,𝑌 ⊆ 𝑉 (𝐺).

• The eigenvalues of an abelian Cayley graph Cay(Γ, 𝑆) can be computed via the Fourier
transform of 1𝑆𝑆. For example, using a Gauss sum, one can deduce that the Paley graph
(generated by quadratic residues in Z/𝑝Z) is quasirandom.

• A nonabelian group with no small nontrivial representations is called a quasirandom
group.
– Every Cayley graph on a quasirandom group is a quasirandom graph.
– There are no large product-free sets in a quasirandom group.
– Example of quasirandom group: PSL(2, 𝑝), which has order (𝑝3 − 𝑝)/2, and all non-

trivial representations have dimension ≥ (𝑝 − 1)/2.
• Among vertex-transitive graphs (which includes all Cayley graphs), the sparse ana-

logues of the discrepancy property (SparseDISC) and small second eigenvalue property
(SparseEIG) are equivalent up to a linear change of the error tolerance parameter. This
equivalence is false for general graphs.
– The proof applies Grothendieck’s inequality, which says that the semidefinite re-

laxation of the ℓ∞ → ℓ1 norm (equivalent to the cut norm) gives a constant factor
approximation.

• Alon–Boppana second eigenvalue bound. Every 𝑑-regular graph has second largest
eigenvalue ≥ 2

√
𝑑 − 1 − 𝑜(1) for the adjacency matrix, with 𝑑 fixed as the number of

vertices goes to infinity.
– Two spectral proof methods: (1) constructing a test vector and (2) trace/moment method.
– The constant 2

√
𝑑 − 1 is best possible, as a random 𝑑-regular graph is typically an

(𝑛, 𝑑, _)-graph with _ = 2
√
𝑑 − 1 + 𝑜(1) (Friedman’s theorem).

– A Ramanujan graph is an (𝑛, 𝑑, _)-graph with _ = 2
√
𝑑 − 1. It is conjectured that for

every 𝑑 ≥ 3, there exist infinitely many 𝑑-regular Ramanujan graphs (this is known to
hold when 𝑑 − 1 is a prime power). A bipartite version of this conjecture is true.
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