## PROBLEMS ON SUMS AND INTEGRALS

## Concept Problems

1. $(\mathrm{P}+\mathrm{B} 468)$ Compute

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{4 n^{2}-1^{2}}}+\frac{1}{\sqrt{4 n^{2}-2^{2}}}+\cdots+\frac{1}{\sqrt{4 n^{2}-n^{2}}}\right]
$$

2. Find

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{a=1}^{n} \sum_{b=1}^{n} \frac{a}{a^{2}+b^{2}}
$$

3. Show that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.
$\bigcirc \quad$ 4. Exhibit a sequence $a_{i j}$ indexed by $\mathbb{Z}^{2}$ such that

$$
\sum_{i}\left(\sum_{j} a_{i j}\right) \neq \sum_{j}\left(\sum_{i} a_{i j}\right)
$$

with all sums converging.
5. Exhibit a smooth (i.e., infinitely differentiable) function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=1$ when $x<0$ yet $f(x)=0$ when $x>1$. (This function is one of the most important gadgets in Analysis).

## Putnam-Style Problems

6. Evaluate the improper integral

$$
\int_{0}^{1} \frac{\log (1-x)}{x} d x
$$

7. Determine the value of the improper integral

$$
\int_{0}^{\infty} \frac{x}{e^{x}-1} d x
$$

8. (2022 A4) Suppose that $X_{1}, X_{2}, \ldots$ are real numbers between 0 and 1 that are chosen independently and uniformly at random. Let $S=\sum_{i=1}^{k} X_{i} / 2^{i}$, where $k$ is the least positive integer such that $X_{k}<X_{k+1}$, or $k=\infty$ if there is no such integer. Find the expected value of $S$.
9. (1997 A3) Evaluate the following:

$$
\int_{0}^{\infty}\left(x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\cdots\right)\left(1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots\right) d x
$$

10. Show that

$$
\int_{0}^{1} x^{-x} d x=\sum_{n \geq 1} n^{-n}
$$

11. (2014 B2) Suppose that $f$ is a function on the interval $[1,3]$ such that $-1 \leq f(x) \leq 1$ for all $x$ and $\int_{1}^{3} f(x) d x=0$. Determine the largest possible value of

$$
\int_{1}^{3} \frac{f(x)}{x} d x .
$$

12. (2020 A3) Let $a_{0}=\pi / 2$, and let $a_{n}=\sin \left(a_{n-1}\right)$ for $n \geq 1$. Determine whether $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\cdots$ converges or not.
13. ( $\mathrm{P}+\mathrm{B} 472$ ) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy $f(x) \geq 1$ for all $x$. Suppose that

$$
f(x) f(2 x) \ldots f(n x) \leq 2018 n^{2019}
$$

for every positive integer $n$ and $x \in \mathbb{R}$. Must $f$ be constant?
14. A rectangle in $\mathbb{R}^{2}$ is called great if either its width or height is an integer. Prove that if a rectangle $X$ can be dissected into great rectangles, then the rectangle $X$ is itself great.
15. (PUMaC 2017) Compute

$$
\sum_{k \geq 0} \frac{2^{k}}{5^{2^{k}}+1} .
$$

16. (P+B §3.2] Prove that

$$
\lim _{n \rightarrow \infty}\left(\prod_{k=0}^{n}\binom{n}{k}\right)^{\frac{1}{n(n+1)}}=\sqrt{e}
$$

17. (2010 A6) Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be a strictly decreasing continuous function such that $\lim _{x \rightarrow \infty} f(x)=$ 0 . Prove that

$$
\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x
$$

diverges.
18. (Russian box problem) A rectangular prism $X$ is contained within a rectangular prism $Y$.
(a) Is it possible the surface area of $X$ exceeds that of $Y$ ?
(b) Is it possible the sum of the 12 side lengths of $X$ exceeds that of $Y$ ?
19. (2019 B2) For all $n \geq 1$, let

$$
a_{n}=\sum_{k=1}^{n-1} \frac{\sin \frac{2 k-1}{2 n} \pi}{\cos ^{2} \frac{k-1}{2 n} \pi \cos ^{2} \frac{k}{2 n} \pi} .
$$

Find

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3}} .
$$

20. For $a, b, c>0$ prove that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a} \geq \frac{12}{3 a+b}+\frac{12}{3 b+c}+\frac{12}{3 c+a} .
$$

21. (2004 B5)Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n \geq 0}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

22. (2004 A6) Suppose that $f:[0,1]^{2} \rightarrow \mathbb{R}$ is continuous. Show that

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}[f(x, y)]^{2} d x d y
\end{aligned}
$$

23. (2015 B6) For each positive integer $k$, let $A(k)$ be the number of odd divisors of $k$ in the interval $[1, \sqrt{2 k})$. Evaluate:

$$
\sum_{k=1}^{\infty}(-1)^{k-1} \frac{A(k)}{k}
$$

24. (2019 A4) (a) Let $f(x, y, z)$ be a continuous real-valued function on $\mathbb{R}^{3}$. Suppose that for every sphere $S$ of radius 1 , the integral of $f(x, y, z)$ over the surface of $S$ equals 0 . Must $f(x, y, z)$ be identically 0 ?
(b) What if $f$ is required to be smooth and of compact support?
25. (2020 A6) For a positive integer $N$, let

$$
f_{N}(x)=\sum_{n=0}^{N} \frac{N+1 / 2-n}{(N+1)(2 n+1)} \sin ((2 n+1) x) .
$$

Determine the smallest constant $M$ such that $f_{N}(x) \leq M$ for all $N$ and all real $x$.
26. (2021 A4) Let

$$
I(R)=\iint_{x^{2}+y^{2} \leq R^{2}}\left(\frac{1+2 x^{2}}{1+x^{4}+6 x^{2} y^{2}+y^{4}}-\frac{1+y^{2}}{2+x^{4}+y^{4}}\right) d x d y
$$

Find

$$
\lim _{R \rightarrow \infty} I(R)
$$

or show that this limit does not exist.

## Problems related to more advanced topics

27. For positive integer $n$, let $p(n)$ be the number of ways to partition $n$ into the sum of some positive integers, quotient permutation of the integers. The sequence $p(n)$ starts $1,2,3,5,7,11, \ldots$.
(a) Prove that

$$
\lim _{n \rightarrow \infty} \frac{\log p(n)}{\sqrt{n}}
$$

exists, and find its value.
(b)(Hard) Let the answer of (a) be $C$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n p(n)}{e^{C \sqrt{n}}}
$$

exists.
(c)(Hard)Determine the value of the limit in (b).
28. Prove that if $f$ is a continuous function on the unit circle $S^{1}$ parametrized by $\theta \in[0,2 \pi), \theta_{0}$ is an angle such that $\frac{\theta_{0}}{2 \pi}$ is irrational, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} f\left(m \theta_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
$$

Hint: Fourier expansion does not hold here, but can you do something similar?
29. Let $f(x)$ be a smooth function with compact support on $\mathbb{R}$, and $\hat{f}$ be its Fourier transform

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi x \xi i} d x
$$

Prove the Poisson Summation Formula

$$
\sum_{n \in \mathbb{Z}} \hat{f}(n)=\sum_{n \in \mathbb{Z}} f(n) .
$$

Using this result, prove that for all $t>0$

$$
\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} t}=\frac{1}{\sqrt{t}} \sum_{n \in \mathbb{Z}} e^{-\frac{\pi n^{2}}{t}}
$$

This formula is useful in the analytic extension of the Riemann Zeta function.
30. Prove the Jacobi Triple Product Formula for $|q|<1$

$$
\prod_{m=1}^{\infty}\left(1-q^{2 m}\right)\left(1+\omega^{2} q^{2 m-1}\right)\left(1+\omega^{-2} q^{2 m-1}\right)=\sum_{n=-\infty}^{\infty} \omega^{2 n} q^{n^{2}}
$$

Using this, either find the number of integer solutions for $12345654321=a^{2}+b^{2}$, or exhibit the difference between the number of even and odd partitions of $n$ (a partition $n=a_{1}+\cdots+a_{k}$ is even iff $k$ is even).
31. A smooth function $f: \mathbb{C} \rightarrow \mathbb{C}$ is harmonic if

$$
\Delta f:=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f=0
$$

(1) Prove the Mean Value Property of Harmonic functions: for any $z \in \mathbb{C}$ and $r>0$, we have

$$
\int_{0}^{2 \pi} f\left(z+e^{i \theta} r\right) d \theta=2 \pi f(z)
$$

(2) Find all harmonic functions on $\mathbb{C}$ that is real and positive everywhere.
(3)(Hard) Harmonic functions can be similarly defined on any open subset of the plane. Find all harmonic functions on $\mathbb{C} \backslash\{0\}$ that is real and positive on its domain.
32. (Hard) Let

$$
f(z)=\sum_{i=0}^{d} c_{i} z^{i}
$$

be a polynomial with strictly positive coefficients $\left(c_{i}>0\right.$ for all $\left.0 \leq i \leq d\right)$. Let $A_{n, k}$ be the coefficient of $z^{n}$ in $f^{k}(z)$. Prove that there exists some $K>0$ (possibly depending on $f$ ) such that for all $k>K$ and $1 \leq n \leq d k-1$, we have

$$
A_{n, k}^{2} \geq A_{n-1, k} A_{n+1, k}
$$

