PROBLEMS ON POLYNOMIALS

Note. The terms "root" and "zero" of a polynomial are synonyms.

1. Find the cubic equation whose roots are the cubes of the roots of

$$
x^{3}+a x^{2}+b x+c=0 .
$$

2. (a) Determine all rational values for which a, b, c are the roots of

$$
x^{3}+a x^{2}+b x+c=0 .
$$

(b) Show that the only real polynomials $\prod_{i=0}^{n-1}\left(x-a_{i}\right)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ in addition to those given by (a) are $x^{n}, x^{2}+x-2$, and exactly two others, which are approximately equal to

$$
x^{3}+.56519772 x^{2}-1.76929234 x+.63889690
$$

and

$$
x^{4}+x^{3}-1.7548782 x^{2}-.5698401 x+.3247183 .
$$

3. Assuming that all the roots of the cubic equation $x^{3}+a x^{2}+b x+c$ are real, show that the difference between the greatest and the least roots is not less than $\sqrt{a^{2}-3 b}$ nor greater than $2 \sqrt{\left(a^{2}-3 b\right) / 3}$.
4. The nonconstant polynomials $P(z)$ and $Q(z)$ with complex coefficients have the same set of numbers for their zeros but possibly different multiplicities. The same is true of the polynomials $P(z)+1$ and $Q(z)+1$. Prove that $P(z)=Q(z)$. (On the original Exam, the assumption that $P(z)$ and $Q(z)$ are nonconstant was inadvertently omitted.)
5. If $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers satisfying

$$
\frac{a_{0}}{1}+\frac{a_{1}}{2}+\cdots+\frac{a_{n}}{n+1}=0
$$

show that the equation $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ has at least one real root.
6. Determine all polynomials of the form

$$
\sum_{0}^{n} a_{i} x^{n-i} \text { with } a_{i}= \pm 1
$$

$(0 \leq i \leq n, 1 \leq n<\infty)$ such that each has only real zeros.
7. Let $P(x)$ be a polynomial with real coefficients and form the polynomial

$$
Q(x)=\left(x^{2}+1\right) P(x) P^{\prime}(x)+x\left(P(x)^{2}+P^{\prime}(x)^{2}\right) .
$$

Given that the equation $P(x)=0$ has n distinct real roots exceeding 1, prove or disprove that the equation $Q(x)=0$ has at least $2 n-1$ distinct real roots.
8. Prove that if

$$
11 z^{10}+10 i z^{9}+10 i z-11=0
$$

then $|z|=1$. (Here z is a complex number and $i^{2}=-1$.)
9. Is there an infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of nonzero real numbers such that for each $n=$ $1,2,3, \ldots$ the polynomial

$$
p_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

has exactly n distinct real roots?
10. Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_{1}<r_{2}<$ $\cdots<r_{n}$ such that

$$
\text { (i) } p\left(r_{i}\right)=0, \quad i=1,2, \ldots, n \text {, }
$$

and
(ii) $p^{\prime}\left(\frac{r_{i}+r_{i+1}}{2}\right)=0, \quad i=1,2, \ldots, n-1$,
where $p^{\prime}(x)$ denotes the derivative of $p(x)$.
11. (a) Let k be the smallest positive integer with the following property:

There are distinct integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ such that the polynomial $p(x)=$ $\left(x-m_{1}\right)\left(x-m_{2}\right)\left(x-m_{3}\right)\left(x-m_{4}\right)\left(x-m_{5}\right)$ has exactly k nonzero coefficients.
Find, with proof, a set of integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ for which this minimum k is achieved.
(b) Let $P(x)=x^{11}+a_{10} x^{10}+\cdots+a_{0}$ be a monic polynomial of degree eleven with real coefficients a_{i}, with $a_{0} \neq 0$. Suppose that all the zeros of $P(x)$ are real, i.e., if α is a complex number such that $P(\alpha)=0$, then α is real. Find (with proof) the least possible number of nonzero coefficients of $P(x)$ (including the coefficient 1 of x^{11}).
12. Let $P(x)$ be a polynomial of degree n such that $P(x)=Q(x) P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have n distinct roots.
13. (a) Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1.
(b) Let $f(t)=\sum_{j=1}^{N} a_{j} \sin (2 \pi j t)$, where each a_{j} is real and a_{N} is not equal to 0 . Let N_{k} denote the number of zeros (including multiplicities) of $\frac{d^{k} f}{d t^{k}}$ in the half-open interval $[0,1)$. Prove that

$$
N_{0} \leq N_{1} \leq N_{2} \leq \cdots \quad \text { and } \quad \lim _{k \rightarrow \infty} N_{k}=2 N .
$$

14. For every non-constant polynomial p, let $H_{p}=\{z \in \mathbb{C}:|p(z)|=1\}$. Prove that if $H_{p}=H_{q}$ for some polynomials p, q, then there exists a polynomial r such that $p=r^{m}$ and $q=\xi r^{n}$ for some positive integers m, n and constant $|\xi|=1$.
15. For each integer m, consider the polynomial

$$
P_{m}(x)=x^{4}-(2 m+4) x^{2}+(m-2)^{2} .
$$

For what values of m is $P_{m}(x)$ the product of two nonconstant polynomials with integer coefficients?
16. Let k be a fixed positive integer. The n-th derivative of $1 /\left(x^{k}-1\right)$ has the form $P_{n}(x) /\left(x^{k}-\right.$ $1)^{n+1}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.
17. Let p be a prime number. Prove that the determinant of the matrix

$$
\left(\begin{array}{ccc}
x & y & z \\
x^{p} & y^{p} & z^{p} \\
x^{p^{2}} & y^{p^{2}} & z^{p^{2}}
\end{array}\right)
$$

is congruent modulo p to a product of polynomials of the form $a x+b y+c z$, where a, b, c are integers. (We say two integer polynomials are congruent modulo p if corresponding coefficients are congruent modulo p.)
18. Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.
19. Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r, \ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
$$

are integers.
20. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(X))^{2}+(Q(X))^{2}=X^{2 n}+1
$$

and $\operatorname{deg} P>\operatorname{deg} Q$.
21. Let k be a positive integer. Prove that there exist polynomials $P_{0}(n), P_{1}(n), \ldots, P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$
\left\lfloor\frac{n}{k}\right\rfloor^{k}=P_{0}(n)+P_{1}(n)\left\lfloor\frac{n}{k}\right\rfloor+\cdots+P_{k-1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k-1}
$$

$(\lfloor a\rfloor$ means the largest integer $\leq a$.)
22. Find the smallest positive integer j such that for every polynomial $p(x)$ with integer coefficients and for every integer k, the integer

$$
p^{(j)}(k)=\left.\frac{d^{j}}{d x^{j}} p(x)\right|_{x=k}
$$

(the j-th derivative of $p(x)$ at k) is divisible by 2016.
23. Let n be a positive integer. Show that there are positive real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that for each choice of signs the polynomial

$$
\pm a_{n} x^{n} \pm a_{n-1} x^{n-1} \pm \cdots \pm a_{1} x \pm a_{0}
$$

has n distinct real roots.
24. Determine all pairs $P(x), Q(x)$ of complex polynomials with leading coefficient 1 such that $P(x)$ divides $Q(x)^{2}+1$ and $Q(x)$ divides $P(x)^{2}+1$.
25. Let $a x^{3}+b x^{2}+c x+d$ be a polynomial with three distinct real roots. How many real roots are there of the equation

$$
4\left(a x^{3}+b x^{2}+c x+d\right)(3 a x+b)=\left(3 a x^{2}+2 b x+c\right)^{2} ?
$$

26. Does there exist a finite set M of nonzero real numbers, such that for any positive integer n, there exists a polynomial of degree at least n with all coefficients in M, all of whose roots are real and belong to M ?
27. Suppose that the polynomial $a x^{2}+(c-b) x+(e-d)$ has two real roots, both greater than 1 . Prove that $a x^{4}+b x^{3}+c x^{2}+d x+e$ has at least one real root.
28. Suppose that $a, b, c \in \mathbb{C}$ are such that the roots of the polynomial $z^{3}+a z^{2}+b z+c$ all satisfy $|z|=1$. Prove that the roots of $x^{3}+|a| x^{2}+|b| x+|c|$ all satisfy $|x|=1$.
29. Let $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a monic polynomial of degree n with complex coefficients a_{i}. Suppose that the roots of $P(x)$ are $x_{1}, x_{2}, \cdots, x_{n}$, i.e., we have $P(x)=$ $\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$. The discriminant $\Delta(P(x))$ is defined by

$$
\Delta(P(x))=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2} .
$$

Show that

$$
\Delta\left(x^{n}+a x+b\right)=(-1)^{\binom{n}{2}}\left(n^{n} b^{n-1}+(-1)^{n-1}(n-1)^{n-1} a^{n}\right) .
$$

Hint. First note that

$$
P^{\prime}(x)=P(x)\left(\frac{1}{x-x_{1}}+\cdots+\frac{1}{x-x_{n}}\right) .
$$

Use this formula to establish a connection between $\Delta(P(x))$ and the values $P^{\prime}\left(x_{i}\right), 1 \leq i \leq n$.
30. Let $P_{n}(x)=(x+n)(x+n-1) \cdots(x+1)-(x-1)(x-2) \cdots(x-n)$. Show that all the zeros of $P_{n}(x)$ are purely imaginary, i.e., have real part 0 .
31. Let $P(x)$ be a polynomial with complex coefficients such that every root has real part a. Let $z \in \mathbb{C}$ with $|z|=1$. Show that every root of the polynomial $R(x)=P(x-1)-z P(x)$ has real part $a+\frac{1}{2}$.
32. Let p be a prime number and let \mathbb{F}_{p} be the finite field with p elements. Consider an automorphism τ of the polynomial ring $\mathbb{F}_{p}[x]$ given by

$$
\tau(f)(x)=f(x+1) .
$$

Let R denote the subring of $\mathbb{F}_{p}[x]$ consisting of those polynomials f with $\tau(f)=f$. Find a polynomial $g \in \mathbb{F}_{p}[x]$ such that $\mathbb{F}_{p}[x]$ is a free module over R with basis $g, \tau(g), \ldots, \tau^{p-1}(g)$.
33. For every non constant polynomial p, let $H_{p}=\{z \in \mathbb{C}:|p(z)|=1\}$. Prove that if $H_{p}=H_{q}$ for some polynomials p, q, then there exists a polynomial r such that $p=r^{m}$ and $q=\xi \times r^{n}$ for some positive integers m, n and constant $|\xi|=1$.
34. Let $f(x)=x^{n}+x^{n-1}+\cdots+x+1$ for an integer $n \geq 1$. For which n are there polynomials g, h with real coefficients and degrees smaller than n such that $f(x)=g(h(x))$.
35. Prove that the polynomial

$$
f(x)=\frac{x^{n}+x^{m}-2}{x^{\operatorname{gcd}(m, n)}-1}
$$

is irreducible over \mathbb{Q} for all integers $n>m>0$.
36. Let $d \geq 1$. It is not hard to see that there exists a polynomial $A_{d}(x)$ of degree d such that

$$
\begin{equation*}
F_{d}(x):=\sum_{n \geq 0} n^{d} x^{n}=\frac{A_{d}(x)}{(1-x)^{d+1}} . \tag{1}
\end{equation*}
$$

For instance, $A_{1}(x)=x, A_{2}(x)=x+x^{2}, A_{3}(x)=x+4 x^{2}+x^{3}$. Show that every root of $A_{d}(x)$ is real. Hint. First differentiate equation (1).
37. Let $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a monic polynomial with complex coefficients. Choose $j \in\{0, \ldots, n\}$ so that the roots of P can be labeled $\alpha_{1}, \ldots, \alpha_{n}$ with

$$
\left|\alpha_{1}\right|, \ldots,\left|\alpha_{j}\right|>1, \quad\left|\alpha_{j+1}\right|, \ldots,\left|\alpha_{n}\right| \leq 1
$$

Prove that

$$
\prod_{i=1}^{j}\left|\alpha_{i}\right| \leq \sqrt{\left|a_{0}\right|^{2}+\cdots+\left|a_{n-1}\right|^{2}+1}
$$

Hint. One approach is to deduce this from an identity involving the polynomials ($z-$ $\left.\alpha_{1}\right) \cdots\left(z-\alpha_{j}\right)$ and $\left(\alpha_{j+1} z-1\right) \cdots\left(\alpha_{n} z-1\right)$.
38. Let $Q(x)$ be any monic polynomial of degree n with real coefficients. Prove that

$$
\sup _{x \in[-2,2]}|Q(x)| \geq 2
$$

Hint. Let $P_{n}(x)$ be the monic polynomial satisfying

$$
P_{n}(2 \cos \theta)=2 \cos (n \theta) \quad(\theta \in \mathbb{R}),
$$

and examine the values of $P_{n}(x)-Q(x)$ at points where $\left|P_{n}(x)\right|=2$.
Optional. Prove that equality only holds for $Q=P_{n}$.
39. Let $P(x), Q(x)$ be two polynomials with all real roots $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ and $s_{1} \leq s_{2} \leq \cdots \leq$ s_{n-1}, respectively. We say that $P(x)$ and $Q(x)$ are interlaced if

$$
r_{1} \leq s_{1} \leq r_{2} \leq s_{2} \leq \cdots \leq s_{n-1} \leq r_{n} .
$$

Prove that $P(x)$ and $Q(x)$ are interlaced if and only if the polynomial $P+t Q$ has all real roots for all $t \in \mathbb{R}$.
40. Let $P(x)$ be a polynomial with real coefficients. For $t \in \mathbb{R}$, let $V(P, t)$ denote the number of sign changes in the sequence

$$
P(t), P^{\prime}(t), P^{\prime \prime}(t), \ldots
$$

(A sign change in a sequence is a pair of terms, one positive and one negative, with only zeros in between.) Prove that for any $a, b \in \mathbb{R}$, the number of roots of P in the half-open interval $(a, b]$, counted with multiplicities, is equal to $V(P, a)-V(P, b)$ minus a nonnegative even integer. Then deduce Descartes's rule of signs as a corollary.
41. Let $P(x)$ be a squarefree polynomial with real coefficients. Define the sequence of polynomials P_{0}, P_{1}, \ldots by setting $P_{0}=P, P_{1}=P^{\prime}$, and

$$
P_{i+2}=-\operatorname{rem}\left(P_{i}, P_{i+1}\right),
$$

where $\operatorname{rem}(A, B)$ means the remainder upon Euclidean division of A by B; upon arriving at a nonzero constant polynomial P_{r}, stop. Prove that for any $a, b \in \mathbb{R}$, the number of zeros of P in $(a, b]$ is $\sigma(a)-\sigma(b)$, where $\sigma(t)$ is the number of sign changes in the sequence

$$
P_{0}(t), P_{1}(t), \ldots, P_{r}(t)
$$

42. Let $p(x)$ be a nonconstant polynomial with real coefficients. For every positive integer n, let

$$
q_{n}(x)=(x+1)^{n} p(x)+x^{n} p(x+1) .
$$

Prove that there are only finitely many numbers n such that all roots of $q_{n}(x)$ are real.

