
PROBLEMS ON POLYNOMIALS

Note. The terms “root” and “zero” of a polynomial are synonyms.

1. Find the cubic equation whose roots are the cubes of the roots of

x3 + ax2 + bx+ c = 0.

2. (a) Determine all rational values for which a, b, c are the roots of

x3 + ax2 + bx+ c = 0.

(b) Show that the only real polynomials
∏n−1

i=0 (x−ai) = xn+an−1x
n−1+ · · ·+a0 in addition

to those given by (a) are xn, x2 +x−2, and exactly two others, which are approximately
equal to

x3 + .56519772x2 − 1.76929234x+ .63889690

and
x4 + x3 − 1.7548782x2 − .5698401x+ .3247183.

3. Assuming that all the roots of the cubic equation x3 + ax2 + bx + c are real, show that the
difference between the greatest and the least roots is not less than

√
a2 − 3b nor greater than

2
√

(a2 − 3b)/3.

4. The nonconstant polynomials P (z) and Q(z) with complex coefficients have the same set
of numbers for their zeros but possibly different multiplicities. The same is true of the
polynomials P (z) + 1 and Q(z) + 1. Prove that P (z) = Q(z). (On the original Exam, the
assumption that P (z) and Q(z) are nonconstant was inadvertently omitted.)

5. If a0, a1, . . . , an are real numbers satisfying

a0
1

+
a1
2

+ · · ·+ an
n+ 1

= 0,

show that the equation a0 + a1x+ a2x
2 + · · ·+ anx

n = 0 has at least one real root.

6. Determine all polynomials of the form

n∑
0

aix
n−i with ai = ±1

(0 ≤ i ≤ n, 1 ≤ n <∞) such that each has only real zeros.

7. Let P (x) be a polynomial with real coefficients and form the polynomial

Q(x) = (x2 + 1)P (x)P ′(x) + x(P (x)2 + P ′(x)2).

Given that the equation P (x) = 0 has n distinct real roots exceeding 1, prove or disprove
that the equation Q(x) = 0 has at least 2n− 1 distinct real roots.

8. Prove that if
11z10 + 10iz9 + 10iz − 11 = 0,

then |z| = 1. (Here z is a complex number and i2 = −1.)
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9. Is there an infinite sequence a0, a1, a2, . . . of nonzero real numbers such that for each n =
1, 2, 3, . . . the polynomial

pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

has exactly n distinct real roots?

10. Find all real polynomials p(x) of degree n ≥ 2 for which there exist real numbers r1 < r2 <
· · · < rn such that

(i) p(ri) = 0, i = 1, 2, . . . , n,

and

(ii) p′
(
ri+ri+1

2

)
= 0, i = 1, 2, . . . , n− 1,

where p′(x) denotes the derivative of p(x).

11. (a) Let k be the smallest positive integer with the following property:

There are distinct integers m1,m2,m3,m4,m5 such that the polynomial p(x) =
(x−m1)(x−m2)(x−m3)(x−m4)(x−m5) has exactly k nonzero coefficients.

Find, with proof, a set of integers m1,m2,m3,m4,m5 for which this minimum k is
achieved.

(b) Let P (x) = x11 + a10x
10 + · · · + a0 be a monic polynomial of degree eleven with real

coefficients ai, with a0 6= 0. Suppose that all the zeros of P (x) are real, i.e., if α is a
complex number such that P (α) = 0, then α is real. Find (with proof) the least possible
number of nonzero coefficients of P (x) (including the coefficient 1 of x11).

12. Let P (x) be a polynomial of degree n such that P (x) = Q(x)P ′′(x), where Q(x) is a quadratic
polynomial and P ′′(x) is the second derivative of P (x). Show that if P (x) has at least two
distinct roots then it must have n distinct roots.

13. (a) Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Put g(z) = p(z)/zn/2. Show that all zeros of g′(z) = 0 have absolute
value 1.

(b) Let f(t) =
∑N

j=1 aj sin(2πjt), where each aj is real and aN is not equal to 0. Let Nk

denote the number of zeros (including multiplicities) of dkf
dtk

in the half-open interval
[0, 1). Prove that

N0 ≤ N1 ≤ N2 ≤ · · · and lim
k→∞

Nk = 2N.

14. For every non-constant polynomial p, let Hp = {z ∈ C : |p(z)| = 1}. Prove that if Hp = Hq

for some polynomials p, q, then there exists a polynomial r such that p = rm and q = ξrn for
some positive integers m,n and constant |ξ| = 1.

15. For each integer m, consider the polynomial

Pm(x) = x4 − (2m+ 4)x2 + (m− 2)2.

For what values of m is Pm(x) the product of two nonconstant polynomials with integer
coefficients?
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16. Let k be a fixed positive integer. The n-th derivative of 1/(xk − 1) has the form Pn(x)/(xk −
1)n+1 where Pn(x) is a polynomial. Find Pn(1).

17. Let p be a prime number. Prove that the determinant of the matrix x y z
xp yp zp

xp
2

yp
2

zp
2


is congruent modulo p to a product of polynomials of the form ax+ by+ cz, where a, b, c are
integers. (We say two integer polynomials are congruent modulo p if corresponding coefficients
are congruent modulo p.)

18. Let f(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4) where a, b, c, d, e are
integers, a 6= 0. Show that if r1 + r2 is a rational number and r1 + r2 6= r3 + r4, then r1r2 is
a rational number.

19. Let P (x) = cnx
n + cn−1x

n−1 + · · · + c0 be a polynomial with integer coefficients. Suppose
that r is a rational number such that P (r) = 0. Show that the n numbers

cnr, cnr
2 + cn−1r, cnr

3 + cn−1r
2 + cn−2r, . . . , cnr

n + cn−1r
n−1 + · · ·+ c1r

are integers.

20. Let n be a positive integer. Find the number of pairs P,Q of polynomials with real coefficients
such that

(P (X))2 + (Q(X))2 = X2n + 1

and degP > degQ.

21. Let k be a positive integer. Prove that there exist polynomials P0(n), P1(n), . . . , Pk−1(n)
(which may depend on k) such that for any integer n,⌊n

k

⌋k
= P0(n) + P1(n)

⌊n
k

⌋
+ · · ·+ Pk−1(n)

⌊n
k

⌋k−1
.

(bac means the largest integer ≤ a.)

22. Find the smallest positive integer j such that for every polynomial p(x) with integer coeffi-
cients and for every integer k, the integer

p(j)(k) =
dj

dxj
p(x)

∣∣∣∣
x=k

(the j-th derivative of p(x) at k) is divisible by 2016.

23. Let n be a positive integer. Show that there are positive real numbers a0, a1, . . . , an such that
for each choice of signs the polynomial

±anxn ± an−1xn−1 ± · · · ± a1x± a0

has n distinct real roots.

24. Determine all pairs P (x), Q(x) of complex polynomials with leading coefficient 1 such that
P (x) divides Q(x)2 + 1 and Q(x) divides P (x)2 + 1.
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25. Let ax3 + bx2 + cx+ d be a polynomial with three distinct real roots. How many real roots
are there of the equation

4(ax3 + bx2 + cx+ d)(3ax+ b) = (3ax2 + 2bx+ c)2?

26. Does there exist a finite set M of nonzero real numbers, such that for any positive integer n,
there exists a polynomial of degree at least n with all coefficients in M , all of whose roots are
real and belong to M?

27. Suppose that the polynomial ax2 + (c− b)x+ (e− d) has two real roots, both greater than 1.
Prove that ax4 + bx3 + cx2 + dx+ e has at least one real root.

28. Suppose that a, b, c ∈ C are such that the roots of the polynomial z3 + az2 + bz+ c all satisfy
|z| = 1. Prove that the roots of x3 + |a|x2 + |b|x+ |c| all satisfy |x| = 1.

29. Let P (x) = xn + an−1x
n−1 + · · · + a0 be a monic polynomial of degree n with complex

coefficients ai. Suppose that the roots of P (x) are x1, x2, · · · , xn, i.e., we have P (x) =
(x− x1)(x− x2) · · · (x− xn). The discriminant ∆(P (x)) is defined by

∆(P (x)) =
∏

1≤i<j≤n
(xi − xj)2.

Show that
∆(xn + ax+ b) = (−1)(

n
2)
(
nnbn−1 + (−1)n−1(n− 1)n−1an

)
.

Hint. First note that

P
′
(x) = P (x)

(
1

x− x1
+ · · ·+ 1

x− xn

)
.

Use this formula to establish a connection between ∆(P (x)) and the values P
′
(xi), 1 ≤ i ≤ n.

30. Let Pn(x) = (x+ n)(x+ n− 1) · · · (x+ 1)− (x− 1)(x− 2) · · · (x− n). Show that all the zeros
of Pn(x) are purely imaginary, i.e., have real part 0.

31. Let P (x) be a polynomial with complex coefficients such that every root has real part a. Let
z ∈ C with |z| = 1. Show that every root of the polynomial R(x) = P (x − 1) − zP (x) has
real part a+ 1

2 .

32. Let p be a prime number and let Fp be the finite field with p elements. Consider an automor-
phism τ of the polynomial ring Fp[x] given by

τ(f)(x) = f(x+ 1).

Let R denote the subring of Fp[x] consisting of those polynomials f with τ(f) = f . Find a
polynomial g ∈ Fp[x] such that Fp[x] is a free module over R with basis g, τ(g), . . . , τp−1(g).

33. For every non constant polynomial p, let Hp = {z ∈ C : |p(z)| = 1}. Prove that if Hp = Hq

for some polynomials p, q, then there exists a polynomial r such that p = rm and q = ξ × rn
for some positive integers m,n and constant |ξ| = 1.

34. Let f(x) = xn + xn−1 + · · ·+ x+ 1 for an integer n ≥ 1. For which n are there polynomials
g, h with real coefficients and degrees smaller than n such that f(x) = g(h(x)).
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35. Prove that the polynomial

f(x) =
xn + xm − 2

xgcd(m,n) − 1

is irreducible over Q for all integers n > m > 0.

36. Let d ≥ 1. It is not hard to see that there exists a polynomial Ad(x) of degree d such that

Fd(x) :=
∑
n≥0

ndxn =
Ad(x)

(1− x)d+1
. (1)

For instance, A1(x) = x, A2(x) = x + x2, A3(x) = x + 4x2 + x3. Show that every root of
Ad(x) is real. Hint. First differentiate equation (1).

37. Let P (z) = zn+an−1z
n−1+ · · ·+a0 be a monic polynomial with complex coefficients. Choose

j ∈ {0, . . . , n} so that the roots of P can be labeled α1, . . . , αn with

|α1|, . . . , |αj | > 1, |αj+1|, . . . , |αn| ≤ 1.

Prove that
j∏

i=1

|αi| ≤
√
|a0|2 + · · ·+ |an−1|2 + 1.

Hint. One approach is to deduce this from an identity involving the polynomials (z −
α1) · · · (z − αj) and (αj+1z − 1) · · · (αnz − 1).

38. Let Q(x) be any monic polynomial of degree n with real coefficients. Prove that

sup
x∈[−2,2]

|Q(x)| ≥ 2.

Hint. Let Pn(x) be the monic polynomial satisfying

Pn(2 cos θ) = 2 cos(nθ) (θ ∈ R),

and examine the values of Pn(x)−Q(x) at points where |Pn(x)| = 2.

Optional. Prove that equality only holds for Q = Pn.

39. Let P (x), Q(x) be two polynomials with all real roots r1 ≤ r2 ≤ · · · ≤ rn and s1 ≤ s2 ≤ · · · ≤
sn−1, respectively. We say that P (x) and Q(x) are interlaced if

r1 ≤ s1 ≤ r2 ≤ s2 ≤ · · · ≤ sn−1 ≤ rn.

Prove that P (x) and Q(x) are interlaced if and only if the polynomial P + tQ has all real
roots for all t ∈ R.

40. Let P (x) be a polynomial with real coefficients. For t ∈ R, let V (P, t) denote the number of
sign changes in the sequence

P (t), P ′(t), P ′′(t), . . . .

(A sign change in a sequence is a pair of terms, one positive and one negative, with only
zeros in between.) Prove that for any a, b ∈ R, the number of roots of P in the half-open
interval (a, b], counted with multiplicities, is equal to V (P, a)− V (P, b) minus a nonnegative
even integer. Then deduce Descartes’s rule of signs as a corollary.
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41. Let P (x) be a squarefree polynomial with real coefficients. Define the sequence of polynomials
P0, P1, . . . by setting P0 = P , P1 = P ′, and

Pi+2 = −rem(Pi, Pi+1),

where rem(A,B) means the remainder upon Euclidean division of A by B; upon arriving at
a nonzero constant polynomial Pr, stop. Prove that for any a, b ∈ R, the number of zeros of
P in (a, b] is σ(a)− σ(b), where σ(t) is the number of sign changes in the sequence

P0(t), P1(t), . . . , Pr(t).

42. Let p(x) be a nonconstant polynomial with real coefficients. For every positive integer n, let

qn(x) = (x+ 1)np(x) + xnp(x+ 1).

Prove that there are only finitely many numbers n such that all roots of qn(x) are real.
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