INEQUALITIES

1. For $p>1$ and $a_{1}, a_{2}, \ldots, a_{n}$ positive, show that

$$
\sum_{k=1}^{n}\left(\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}\right)^{p}<\left(\frac{p}{p-1}\right)^{p} \sum_{k=1}^{n} a_{k}^{p}
$$

2. If $a_{n}>0$ for $n=1,2, \ldots$, show that

$$
\sum_{n=1}^{\infty} \sqrt[n]{a_{1} a_{2} \cdots a_{n}} \leq e \sum_{n=1}^{\infty} a_{n}
$$

provided that $\sum_{n=1}^{\infty} a_{n}$ converges.
3. For $n=1,2,3, \ldots$ let

$$
x_{n}=\frac{1000^{n}}{n!} .
$$

Find the largest term of the sequence.
4. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ with $n \geq 2$ are real numbers greater than -1 , and all the numbers a_{j} have the same sign. Show that

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right)>1+a_{1}+a_{2}+\cdots+a_{n} .
$$

5. If a_{1}, \ldots, a_{n+1} are positive real numbers with $a_{1}=a_{n+1}$, show that

$$
\sum_{i=1}^{n}\left(\frac{a_{i}}{a_{i+1}}\right)^{n} \geq \sum_{i=1}^{n} \frac{a_{i+1}}{a_{i}}
$$

6. Show that for any real numbers $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\left(\sum_{i=1}^{n} \frac{a_{i}}{i}\right)^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_{i} a_{j}}{i+j-1} .
$$

7. Let $y=f(x)$ be a continuous, strictly increasing function of x for $x \geq 0$, with $f(0)=0$, and let f^{-1} denote the inverse function to f. If a and b are nonnegative constants, then show that

$$
a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(y) d y
$$

8. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers. Show that

$$
\min _{i<j}\left(a_{i}-a_{j}\right)^{2} \leq M^{2}\left(a_{1}^{2}+\cdots+a_{n}^{2}\right),
$$

where

$$
M^{2}=\frac{12}{n\left(n^{2}-1\right)}
$$

9. Let f be a continuous function on the interval $[0,1]$ such that $0<m \leq f(x) \leq M$ for all x in $[0,1]$. Show that

$$
\left(\int_{0}^{1} \frac{d x}{f(x)}\right)\left(\int_{0}^{1} f(x) d x\right) \leq \frac{(m+M)^{2}}{4 m M} .
$$

10. Consider any sequence a_{1}, a_{2}, \ldots of real numbers. Show that

$$
\sum_{n=1}^{\infty} a_{n} \leq \frac{2}{\sqrt{3}} \sum_{n=1}^{\infty}\left(\frac{r_{n}}{n}\right)^{1 / 2}
$$

where

$$
r_{n}=\sum_{k=n}^{\infty} a_{k}^{2} .
$$

(If the left-hand side of the inequality is ∞, then so is the right-hand side.)
11. Show that

$$
\frac{1}{(n-1)!} \int_{n}^{\infty} w(t) e^{-t} d t<\frac{1}{(e-1)^{n}},
$$

where t is real, n is a positive integer, and

$$
w(t)=(t-1)(t-2) \cdots(t-n+1)
$$

12. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of positive numbers. Show that the following statements are equivalent:

- There is a sequence $\left(c_{n}\right)_{n=1}^{\infty}$ of positive numbers such that $\sum_{n=1}^{\infty} \frac{a_{n}}{c_{n}}$ and $\sum_{n=1}^{\infty} \frac{c_{n}}{b_{n}}$ both converge.
- $\sum_{n=1}^{\infty} \sqrt{\frac{a_{n}}{b_{n}}}$

13. Suppose that a, b, c are real numbers in the interval $[-1,1]$ such that $1+2 a b c \geq a^{2}+b^{2}+c^{2}$. Prove that $1+2(a b c)^{n} \geq a^{2 n}+b^{2 n}+c^{2 n}$ for all positive integers n.
14. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$ and for all $x \in[0, \infty)$, it satisfies

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0
$$

Prove that, for all $x \in[0, \infty)$,

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}
$$

15. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function satisfying $x f(y)+y f(x) \leq 1$ for every $x, y \in[0,1]$.
(a) Show that $\int_{0}^{1} f(x) d x \leq \frac{\pi}{4}$.
(b) Find such a function for which equality occurs.
16. For what pairs of positive real numbers (a, b) does the improper integral shown converge?

$$
\int_{b}^{\infty}(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}) \mathrm{d} x
$$

17. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that x_{0}, x_{1}, \cdots are positive numbers for which $\sum_{j=0}^{\infty} x_{j}=A$?
18. Let $f(x)$ be a continuous real-valued function de?ned on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geq \int_{0}^{1}|f(x)| d x
$$

19. For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} x^{2} f(x) d x$ and $J(f)=\int_{0}^{1} x(f(x))^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f.
20. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|
$$

21. For $m \geq 3$, a list of $\binom{m}{3}$ real numbers $a_{i j k}(1 \leq i<j<k \leq m)$ is said to be area definite for \mathbb{R}^{n} if the inequality

$$
\sum_{1 \leq i<j<k \leq m} a_{i j k} \cdot \operatorname{Area}\left(\triangle A_{i} A_{j} A_{k}\right) \geq 0
$$

holds for every choice of m points A_{1}, \ldots, A_{m} in \mathbb{R}^{n}. For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for \mathbb{R}^{2}. Prove that if a list of $\binom{m}{3}$ numbers is area definite for \mathbb{R}^{2}, then it is area definite for \mathbb{R}^{3}.
22. Let $X_{1}, X_{2}, .$. be independent random variables with the same distribution, and let $S_{n}=$ $X_{1}+X_{2}+\ldots+X_{n}, n=1,2, \ldots$. For what real numbers c is the following statement true:

$$
\mathbb{P}\left(\left|\frac{S_{2 n}}{2 n}-c\right| \leq\left|\frac{S_{n}}{n}-c\right|\right) \geq \frac{1}{2} .
$$

23. Let $H_{k}=\sum_{i=1}^{k} \frac{1}{i}$. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{x^{n}}{\prod_{k=1}^{n} H_{k}}
$$

has no real zeros.
24. Let f be a continuous, nonnegative function on $[0,1]$. Show that

$$
\int_{0}^{1} f(x)^{3} d x \geq 4\left(\int_{0}^{1} x f(x)^{2} d x\right)\left(\int_{0}^{1} x^{2} f(x) d x\right)
$$

25. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function satisfying $f(0)=0, f(1)=1$, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. Show that there exist a positive integer n and a real number x such that $f^{(n)}(x)<0$.
26. Let $f=\left(f_{1}, f_{2}\right)$ be a function from \mathbb{R}^{2} to \mathbb{R}^{2} with continuous partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ that are positive everywhere. Suppose that

$$
\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{1}{4}\left(\frac{\partial f_{1}}{\partial x_{2}}+\frac{\partial f_{2}}{\partial x_{1}}\right)^{2}>0
$$

everywhere. Prove that f is one-to-one.
27. Determine the greatest possible value of $\sum_{i=1}^{10} \cos \left(3 x_{i}\right)$ for real numbers $x_{1}, x_{2}, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos \left(x_{i}\right)=0$.

