PROBLEMS ON GENERATING FUNCTIONS

1. Let $a_{n}=\left(n^{2}+1\right) 3^{n}$. Compute $y=\sum_{n \geq 0} a_{n} x^{n}$.
2. Compute

$$
y=x+\frac{2}{3} x^{3}+\frac{2}{3} \frac{4}{5} x^{5}+\frac{2}{3} \frac{4}{5} \frac{6}{7} x^{7}+\cdots .
$$

3. Given $a_{0}=2, a_{1}=3$, and

$$
(n+1)(n+2) a_{n+2}-3(n+1) a_{n+1}+2 a_{n}=0,
$$

for $n \geq 0$, compute $y=\sum_{n \geq 0} a_{n} x^{n}$.
4. Given $a_{0}=1$ and $a_{n+1}=(n+1) a_{n}-\binom{n}{2} a_{n-2}$ for $n \geq 0$, compute $y=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$.

5 . Let k be a positive integer and let $m=6 k-1$. Let

$$
S(m)=\sum_{j=1}^{2 k-1}(-1)^{j+1}\binom{m}{3 j-1} .
$$

For example with $k=3$,

$$
S(17)=\binom{17}{2}-\binom{17}{5}+\binom{17}{8}-\binom{17}{11}+\binom{17}{14} .
$$

Prove that $S(m)$ is never zero.
6. For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{n}\binom{n}{j}\binom{n}{k-2 j} .
$$

7. Let $a_{m, n}$ denote the coefficient of x^{n} in the expansion of $\left(1+x+x^{2}\right)^{m}$. Prove that for all $k \geq 0$,

$$
0 \leq \sum_{i=0}^{\lfloor 2 k / 3\rfloor}(-1)^{i} a_{k-i, i} \leq 1 .
$$

8. Consider the power series expansion

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Prove that, for each integer $n \geq 0$, there is an integer m such that $a_{n}^{2}+a_{n+1}^{2}=a_{m}$.
9. Let $A=\{(x, y): 0 \leq x, y \leq 1\}$. For $(x, y) \in A$, let

$$
S(x, y)=\sum_{\frac{1}{2} \leq \frac{m}{n} \leq 2} x^{m} y^{n},
$$

where the sum ranges over all pairs (m, n) of positive integers satisfying the indicated inequalities. Evaluate

$$
\lim _{(x, y) \rightarrow(1,1),(x, y) \in A}\left(1-x y^{2}\right)\left(1-x^{2} y\right) S(x, y) .
$$

10. For a set S of nonnegative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1} \in S, s_{2} \in S, s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?
11. For positive integers m and n, let $f(m, n)$ denote the number of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m$. Show that $f(m, n)=f(n, m)$.
12. Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π. Find

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{\nu(\pi)+1}
$$

13. Let S be the set of sequences of length 2018 whose terms are in the set $\{1,2,3,4,5,6,10\}$ and sum to 3860 . Prove that the cardinality of S is at most

$$
2^{3860}\left(\frac{2018}{2048}\right)^{2018}
$$

14. Suppose that \mathbb{Z} is written as a disjoint union of $n<\infty$ arithmetic progressions, with differences $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 1$. Show that $d_{1}=d_{2}$.
15. Solve the following equation for the power series $F(x, y)=\sum_{m, n \geq 0} a_{m n} x^{m} y^{n}$, where $a_{m n} \in \mathbb{R}$:

$$
\left(x y^{2}+x-y\right) F(x, y)=x F(x, 0)-y .
$$

The point is to make sure that your solution has a power series expansion at $(0,0)$.
16. Find a simple description of the coefficients $a_{n} \in \mathbb{Z}$ of the power series $F(x)=x+a_{2} x^{2}+$ $a_{3} x^{3}+\cdots$ satisfying the functional equation

$$
F(x)=(1+x) F\left(x^{2}\right)+\frac{x}{1-x^{2}} .
$$

17. Consider the power series $y=\sum_{n=0}^{\infty}\binom{3 n}{n} x^{n}=1+3 x+15 x^{2}+\cdots$. Show that

$$
(27 x-4) y^{3}+3 y+1=0 .
$$

18. Find the unique power series $y=1+\frac{1}{2} x+\frac{1}{12} x^{2}-\frac{1}{720} x^{4}+\frac{1}{30240} x^{6}+\cdots$ such that for all $n \geq 0$, the coefficient of x^{n} in y^{n+1} is equal to 1 .
19. Find the unique power series $y=1+x-\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\cdots$ such that the constant term is 1 , the coefficient of x is 1 , and for all $n \geq 2$ the coefficient of x^{n} in y^{n} is 0 .
20. Let $f(m, 0)=f(0, n)=1$ and $f(m, n)=f(m-1, n)+f(m, n-1)+f(m-1, n-1)$ for $m, n>0$. Show that

$$
\sum_{n=0}^{\infty} f(n, n) x^{n}=\frac{1}{\sqrt{1-6 x+x^{2}}}
$$

