
Ashwin Sah Analysis 18.A34

Problem 1. Prove that there is a constant C such that, if p(x) is a polynomial of
degree 1999, then

|p(0)| ≤ C

∫ 1

−1

|p(x)| dx.

Solution 1:
Consider p(x) = a1999x

1999 + a1998x
1998 + · · · + a0, where not all the coefficients are

zero. We wish to prove a bound of the form

f(a0, . . . , a1999) =
|a0|∫ 1

−1
|a1999x1999 + · · ·+ a0| dx

≤ C.

Note that as a function f : R2000\{⃗0} → R, this is continuous. To check this, we
note that a⃗ 7→ |a1999x1999 + · · · + a0| is continuous for each x ∈ [−1, 1], and in fact

a⃗ and b⃗ map to values differing by at most
∑1999

i=0 |ai − bi|. Thus the integral in

question differs by at most twice this, which goes to zero as b⃗ → a⃗. Additionally,
this map is nonzero when a⃗ is nonzero, since the integral of a nonzero continuous
function is nonzero. Thus inverting it remains well-defined and hence continuous.

We want a uniform upper bound. Notice that f is scale-invariant, and thus the
set of values attained by f is the same as the set of value obtained by f on
S1999 ⊆ R2000. Now, the sphere is compact, and the image of a compact set is
compact, so f(R2000\{⃗0}) = f(S1999) ⊆ R is compact. Compact subsets of R are
bounded, by the Heine-Borel theorem, and if we let C be an upper bound on the
magnitudes of elements in the compact set f(S1999), then the above inequality clearly
holds. We are done. □
Note: by attempting to prove the stronger inequality supx∈[−1,1] |p(x)| ≤ C

∫ 1

−1
|p(x)| dx

for some C, we can actually find that the problem is a direct consequence of the
equivalence of all norms on Rn.

Solution 2:
These compactness-style arguments tell us a number exists, but don’t tell us which
number. It is also worth seeing a more constructive argument with explicit bound-
ing. This approach has its merits. Basically, we want a lower bound on the value of
|p(x)| over some interval of some fixed size. How do we lower-bound the magnitude
of a polynomial? See how far the value is from the roots!

We are given some polynomial p(x), which factors as p(x) =
∏1999

i=1 (x− ri), where ri
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are in the complex plane. Now

|p(x)|
|p(0)|

=
1999∏
i=1

|x− ri|
|ri|

. (**)

Here’s the idea: Fix some ϵ > 0 (we will choose it later). Then we look at all x
which are distance at least than ϵ from each of r1, . . . , r1999. For technical reasons
we only look at x in the interval

[
−1

2
, 1
2

]
. Then

|x− ri|
|ri|

≥ ϵ

if |ri| ≤ 1 and
|x− ri|
|ri|

=

∣∣∣∣1− x

ri

∣∣∣∣ ≥ 1−
∣∣∣∣ xri
∣∣∣∣ ≥ 1

2

if |ri| ≥ 1, using that |x| ≤ 1
2
. Thus, returning to (**), we have

|p(x)|
|p(0)|

≥
1999∏
i=1

min

(
ϵ,
1

2

)
= min

(
ϵ,
1

2

)1999

for these x. Finally, we choose ϵ so that there are “a lot” of x which satisfy the
imposed conditions: |x − ri| ≥ ϵ for i ∈ [1999] and |x| ≤ 1

2
. Well, choose ϵ = 1

4000
.

Each “bad disk” of the form |z − ri| ≤ ϵ can cover at most a length 2ϵ interval of
the real numbers, for a total of 3998ϵ (in length). The interval

[
−1

2
, 1
2

]
has length 1.

Thus at least a length of 1−3998ϵ = 1
2000

is uncovered (there is technically something
nontrivial in this statement: alternatively, there are at most 2000 intervals in the
complement, and one of them has length at least 1

20002
), so the integral

∫ 1

−1
|p(x)|
|p(0)| dx

is at least
1

2000
·
(

1

4000

)1999

.

In general, for degree n polynomials, this gives C(n) = exp(O(n log n)) or something.
Can you do better? □
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Problem 2. Let k be an integer greater than 1. Suppose a0 > 0, and define

an+1 = an +
1

k
√
an

for n > 0. Evaluate

lim
n→∞

ak+1
n

nk
.

Solution 1:
We’ll first give a solution that uses some important bounding ideas, but there is a
second more natural solution that we will get to. First, what should the answer be?

The question implies that an = ckn
k

k+1 is a good model of the growth. Then

ck(n+ 1)
k

k+1 − ckn
k

k+1 ≈ 1

c
1
k
k n

1
k+1

.

The left difference looks like a derivative so is around ck·k
k+1

n− 1
k+1 , so we would expect

c
k+1
k

k = k+1
k
, for a final answer of

(
k+1
k

)k
. Of course, this all assumes that the limit

even exists. Okay, so maybe the natural thing to look at is a
k+1
k

n , which we expect
to be around k+1

k
n (this expression has no fractional exponents in sight). Well, if

we can show that a
k+1
k

n+1 − a
k+1
k

n is “near” k+1
k
, then we should be morally done.

Well,

∣∣∣∣a k+1
k

n+1 − a
k+1
k

n − k + 1

k

∣∣∣∣ = ∣∣∣a k+1
k

n

∣∣∣
∣∣∣∣∣∣
(
1 +

1

a
k+1
k

n

) k+1
k

− 1−
(
k + 1

k

)
a
− k+1

k
n

∣∣∣∣∣∣
looks very promising due to the Taylor approximation (1+x)p ≈ 1+px+ p(p−1)

2
x2+

O(x3). In fact, for each p there is ϵp so that x < ϵp implies (1+x)p ≥ 1+px (true at

x = 0 and take derivatives) and (1+ x)p ≤ 1+ px+
(

p(p−1)
2

+ 1
)
x2, true by looking

at Taylor series. Now applying this for the constant p = k+1
k

we find an estimate

∣∣∣a k+1
k

n

∣∣∣
∣∣∣∣∣∣
(
1 +

1

a
k+1
k

n

) k+1
k

− 1−
(
k + 1

k

)
a
− k+1

k
n

∣∣∣∣∣∣ ≤
∣∣∣a k+1

k
n

∣∣∣ ∣∣∣∣∣
(

k+1
k

· 1
k

2
+ 1

)
a
− k+1

k
·2

n

∣∣∣∣∣
≤ Cka

− k+1
k

n .
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This is really good. Now let’s justify that an → ∞ as n → ∞. Indeed, notice
that a0 ≤ a1 ≤ · · · so that 1

a
1

k+1
n

≤ 1

a
1

k+1
0

= D. Then an ≤ a0 + Dn, so an+1 ≥

an + 1

(a0+Dn)
1

k+1
. Since 1

k+1
< 1, hashing out this series we see that it diverges, so

an → ∞. We can also just note that an is increasing so if not unbounded it tends
toward a limit, implying that an+1 − an = 1

a
1

k+1
n

eventually approaches 0. But this

makes no sense, since this forces an to get arbitrarily large.

Okay, so formally, we have proved that

lim
n→∞

(
a

k+1
k

n+1 − a
k+1
k

n

)
=

k + 1

k
.

I claim that this means

lim
n→∞

a
k+1
k

n

n
=

k + 1

k
,

which is what we want.

In fact, more is true:
Lemma. (Cesàro’s Lemma) If limn→∞ an = c then limn→∞

1
n

∑n
i=1 ai = c.

Proof:
Fix ϵ > 0. Then for n > N we have |an − c| < ϵ, hence 1

n

∑n
i=1 ai ≥

1
n
(a1 + · · · +

aN + (c− ϵ)(n−N)) and similarly it is less than 1
n
(a1 + · · ·+ aN + (c+ ϵ)(n−N)).

Thus we see that the ratio eventually is in the range (c− 2ϵ, c+2ϵ) for n sufficiently
large. That is, the limit is c. □

We are done! □

Solution 2: Since we have time, let’s look at the second approach. First, fix k

and assume without loss of generality that a0 ≥ k
k

k+1 (we’ll see why we need this in
a bit). Why can we assume this? Well, we can always shift the starting index of the
sequence a little bit, and we know that an → ∞ through an elementary argument
(see above).

Now the idea is to look at an+1−an
(n+1)−n

= 1
k
√
an

as a discretization of some differential

equation (this is basically Euler’s method, applied to infinity). In particular, the
equation is dy

dx
= 1

k
√
y
with boundary condition f(0) = a0 > 0. It is well-known how

to solve these: we see y
1
k
dy
dx

= 1, and integrating dx gives k
k+1

y
k+1
k = x+ a

k+1
k

0 . Then

y(x) =
((

k+1
k

)
(x+ d)

) k
k+1 for d = a

k+1
k

0 .
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Two things to notice: y(0) = a0 and y′(0) is decreasing, i.e., y is concave. Thus it

is not hard to check that y(x+ 1)− y(x) =
∫ x+1

x
y′(t)dt ≤ y′(x), so that y(x+ 1) ≤

y(x) + 1
k
√

y(x)
.

Thus the sequence bn = y(n) satisfies bn+1 ≤ bn + 1
k√bn

for n ≥ 0 and b0 = a0. It’s

clear that b0 ≤ a0, and we can induct to show that bn ≤ an for all n ≥ 0: since
bn ≤ an we have bn+1 ≤ bn+

1
k√bn

≤ an+
1

k
√
an

= an+1. We know the middle inequality

since f(x) = x + 1

x
1
k
is increasing for x > k

k+1
k by taking derivatives (this is where

the strange constant comes in!).

Now bn = y(n) =
(
k+1
k

) k
k+1 (n + d)

k
k+1 , so an ≥ (n + d)

k
k+1 . This is a pretty explicit

bound, and you can also prove it directly by induction (again only if we start with

a0 ≥ k
k

k+1 ), but this tells you what the correct lower bound to induct on is, and
simplifies the inequalities involved in the induction step by allowing us to express
the difference bn+1 − bn as an integral that then has nice bounding properties.

Anyways, this expression gives the right constant that we want: we just need an
upper bound. How do we do this? Find a way to invert the inequality! We have

an+1 = an +
1

k
√
an

≤ an +
1

k
√
bn
,

so expanding gives

an ≤ a0 +
n−1∑
i=0

1
k
√
bn
.

If you think about this a little, it’s clear that this gives the “right expression” for
an upper bound. More precisely, this is

an ≤ a0 +
n−1∑
i=0

1(
k+1
k

) 1
k+1 (n+ d)

1
k+1

≤ a0 + s+
1(

k+1
k

) 1
k+1

n−1∑
i=1

1

i
1

k+1

where s is some inconsequential constant like 1

( k+1
k )

1
k+1 d

1
k+1

. Finally, remember some

tricks from Evan’s lecture: this series looks like a Riemann sum for the integral∫ n

1
1

x
1

k+1
dx, and it is not hard to upper bound the right by

an ≤ a0 + s+
1(

k+1
k

) 1
k+1

(
1 +

∫ n

1

x− 1
k+1 dx

)
.
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Finally,

an ≤ a0 + s+
1(

k+1
k

) 1
k+1

·
(
k + 1

k
n

k
k+1 − 1

k

)
= a0 + s′ +

(
k + 1

k

) k
k+1

n
k

k+1 .

The upper and lower bounds are of the same order and trivially give

lim
n→∞

ak+1
n

nk
=

(
k + 1

k

)k

,

as claimed. □
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