Problem 1. Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999, then

$$
|p(0)| \leq C \int_{-1}^{1}|p(x)| d x
$$

Solution 1:
Consider $p(x)=a_{1999} x^{1999}+a_{1998} x^{1998}+\cdots+a_{0}$, where not all the coefficients are zero. We wish to prove a bound of the form

$$
f\left(a_{0}, \ldots, a_{1999}\right)=\frac{\left|a_{0}\right|}{\int_{-1}^{1}\left|a_{1999} x^{1999}+\cdots+a_{0}\right| d x} \leq C
$$

Note that as a function $f: \mathbb{R}^{2000} \backslash\{\overrightarrow{0}\} \rightarrow \mathbb{R}$, this is continuous. To check this, we note that $\vec{a} \mapsto\left|a_{1999} x^{1999}+\cdots+a_{0}\right|$ is continuous for each $x \in[-1,1]$, and in fact \vec{a} and \vec{b} map to values differing by at most $\sum_{i=0}^{1999}\left|a_{i}-b_{i}\right|$. Thus the integral in question differs by at most twice this, which goes to zero as $\vec{b} \rightarrow \vec{a}$. Additionally, this map is nonzero when \vec{a} is nonzero, since the integral of a nonzero continuous function is nonzero. Thus inverting it remains well-defined and hence continuous.
We want a uniform upper bound. Notice that f is scale-invariant, and thus the set of values attained by f is the same as the set of value obtained by f on $S^{1999} \subseteq \mathbb{R}^{2000}$. Now, the sphere is compact, and the image of a compact set is compact, so $f\left(\mathbb{R}^{2000} \backslash\{\overrightarrow{0}\}\right)=f\left(S^{1999}\right) \subseteq \mathbb{R}$ is compact. Compact subsets of \mathbb{R} are bounded, by the Heine-Borel theorem, and if we let C be an upper bound on the magnitudes of elements in the compact set $f\left(S^{1999}\right)$, then the above inequality clearly holds. We are done.
Note: by attempting to prove the stronger inequality $\sup _{x \in[-1,1]}|p(x)| \leq C \int_{-1}^{1}|p(x)| d x$ for some C, we can actually find that the problem is a direct consequence of the equivalence of all norms on \mathbb{R}^{n}.

Solution 2:

These compactness-style arguments tell us a number exists, but don't tell us which number. It is also worth seeing a more constructive argument with explicit bounding. This approach has its merits. Basically, we want a lower bound on the value of $|p(x)|$ over some interval of some fixed size. How do we lower-bound the magnitude of a polynomial? See how far the value is from the roots!
We are given some polynomial $p(x)$, which factors as $p(x)=\prod_{i=1}^{1999}\left(x-r_{i}\right)$, where r_{i}
are in the complex plane. Now

$$
\begin{equation*}
\frac{|p(x)|}{|p(0)|}=\prod_{i=1}^{1999} \frac{\left|x-r_{i}\right|}{\left|r_{i}\right|} \tag{**}
\end{equation*}
$$

Here's the idea: Fix some $\epsilon>0$ (we will choose it later). Then we look at all x which are distance at least than ϵ from each of r_{1}, \ldots, r_{1999}. For technical reasons we only look at x in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Then

$$
\frac{\left|x-r_{i}\right|}{\left|r_{i}\right|} \geq \epsilon
$$

if $\left|r_{i}\right| \leq 1$ and

$$
\frac{\left|x-r_{i}\right|}{\left|r_{i}\right|}=\left|1-\frac{x}{r_{i}}\right| \geq 1-\left|\frac{x}{r_{i}}\right| \geq \frac{1}{2}
$$

if $\left|r_{i}\right| \geq 1$, using that $|x| \leq \frac{1}{2}$. Thus, returning to ${ }^{* *}$, we have

$$
\frac{|p(x)|}{|p(0)|} \geq \prod_{i=1}^{1999} \min \left(\epsilon, \frac{1}{2}\right)=\min \left(\epsilon, \frac{1}{2}\right)^{1999}
$$

for these x. Finally, we choose ϵ so that there are "a lot" of x which satisfy the imposed conditions: $\left|x-r_{i}\right| \geq \epsilon$ for $i \in[1999]$ and $|x| \leq \frac{1}{2}$. Well, choose $\epsilon=\frac{1}{4000}$. Each "bad disk" of the form $\left|z-r_{i}\right| \leq \epsilon$ can cover at most a length 2ϵ interval of the real numbers, for a total of 3998ϵ (in length). The interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ has length 1. Thus at least a length of $1-3998 \epsilon=\frac{1}{2000}$ is uncovered (there is technically something nontrivial in this statement: alternatively, there are at most 2000 intervals in the complement, and one of them has length at least $\frac{1}{2000^{2}}$, so the integral $\int_{-1}^{1} \frac{|p(x)|}{|p(0)|} d x$ is at least

$$
\frac{1}{2000} \cdot\left(\frac{1}{4000}\right)^{1999}
$$

In general, for degree n polynomials, this gives $C(n)=\exp (O(n \log n))$ or something. Can you do better?

Problem 2. Let k be an integer greater than 1 . Suppose $a_{0}>0$, and define

$$
a_{n+1}=a_{n}+\frac{1}{\sqrt[k]{a_{n}}}
$$

for $n>0$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{k+1}}{n^{k}}
$$

Solution 1:
We'll first give a solution that uses some important bounding ideas, but there is a second more natural solution that we will get to. First, what should the answer be? The question implies that $a_{n}=c_{k} n^{\frac{k}{k+1}}$ is a good model of the growth. Then

$$
c_{k}(n+1)^{\frac{k}{k+1}}-c_{k} n^{\frac{k}{k+1}} \approx \frac{1}{c_{k}^{\frac{1}{k}} n^{\frac{1}{k+1}}}
$$

The left difference looks like a derivative so is around $\frac{c_{k} \cdot k}{k+1} n^{-\frac{1}{k+1}}$, so we would expect $c_{k}^{\frac{k+1}{k}}=\frac{k+1}{k}$, for a final answer of $\left(\frac{k+1}{k}\right)^{k}$. Of course, this all assumes that the limit even exists. Okay, so maybe the natural thing to look at is $a_{n}^{\frac{k+1}{k}}$, which we expect to be around $\frac{k+1}{k} n$ (this expression has no fractional exponents in sight). Well, if we can show that $a_{n+1}^{\frac{k+1}{k}}-a_{n}^{\frac{k+1}{k}}$ is "near" $\frac{k+1}{k}$, then we should be morally done. Well,

$$
\left|a_{n+1}^{\frac{k+1}{k}}-a_{n}^{\frac{k+1}{k}}-\frac{k+1}{k}\right|=\left|a_{n}^{\frac{k+1}{k}}\right|\left|\left(1+\frac{1}{a_{n}^{\frac{k+1}{k}}}\right)^{\frac{k+1}{k}}-1-\left(\frac{k+1}{k}\right) a_{n}^{-\frac{k+1}{k}}\right|
$$

looks very promising due to the Taylor approximation $(1+x)^{p} \approx 1+p x+\frac{p(p-1)}{2} x^{2}+$ $O\left(x^{3}\right)$. In fact, for each p there is ϵ_{p} so that $x<\epsilon_{p}$ implies $(1+x)^{p} \geq 1+p x$ (true at $x=0$ and take derivatives) and $(1+x)^{p} \leq 1+p x+\left(\frac{p(p-1)}{2}+1\right) x^{2}$, true by looking at Taylor series. Now applying this for the constant $p=\frac{k+1}{k}$ we find an estimate

$$
\begin{aligned}
\left|a_{n}^{\frac{k+1}{k}}\right|\left|\left(1+\frac{1}{a_{n}^{\frac{k+1}{k}}}\right)^{\frac{k+1}{k}}-1-\left(\frac{k+1}{k}\right) a_{n}^{-\frac{k+1}{k}}\right| & \leq\left|a_{n}^{\frac{k+1}{k}}\right|\left|\left(\frac{\frac{k+1}{k} \cdot \frac{1}{k}}{2}+1\right) a_{n}^{-\frac{k+1}{k} \cdot 2}\right| \\
& \leq C_{k} a_{n}^{-\frac{k+1}{k}}
\end{aligned}
$$

This is really good. Now let's justify that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Indeed, notice that $a_{0} \leq a_{1} \leq \cdots$ so that $\frac{1}{a_{n}^{\frac{1}{k+1}}} \leq \frac{1}{a_{0}^{\frac{1}{k+1}}}=D$. Then $a_{n} \leq a_{0}+D n$, so $a_{n+1} \geq$ $a_{n}+\frac{1}{\left(a_{0}+D n\right)^{\frac{1}{k+1}}}$. Since $\frac{1}{k+1}<1$, hashing out this series we see that it diverges, so $a_{n} \rightarrow \infty$. We can also just note that a_{n} is increasing so if not unbounded it tends toward a limit, implying that $a_{n+1}-a_{n}=\frac{1}{a_{n}^{k+1}}$ eventually approaches 0 . But this makes no sense, since this forces a_{n} to get arbitrarily large.
Okay, so formally, we have proved that

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}^{\frac{k+1}{k}}-a_{n}^{\frac{k+1}{k}}\right)=\frac{k+1}{k} .
$$

I claim that this means

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{\frac{k+1}{k}}}{n}=\frac{k+1}{k}
$$

which is what we want.
In fact, more is true:
Lemma. (Cesàro's Lemma) If $\lim _{n \rightarrow \infty} a_{n}=c$ then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}=c$.
Proof:
Fix $\epsilon>0$. Then for $n>N$ we have $\left|a_{n}-c\right|<\epsilon$, hence $\frac{1}{n} \sum_{i=1}^{n} a_{i} \geq \frac{1}{n}\left(a_{1}+\cdots+\right.$ $\left.a_{N}+(c-\epsilon)(n-N)\right)$ and similarly it is less than $\frac{1}{n}\left(a_{1}+\cdots+a_{N}+(c+\epsilon)(n-N)\right)$. Thus we see that the ratio eventually is in the range $(c-2 \epsilon, c+2 \epsilon)$ for n sufficiently large. That is, the limit is c.
We are done!

Solution 2: Since we have time, let's look at the second approach. First, fix k and assume without loss of generality that $a_{0} \geq k^{\frac{k}{k+1}}$ (we'll see why we need this in a bit). Why can we assume this? Well, we can always shift the starting index of the sequence a little bit, and we know that $a_{n} \rightarrow \infty$ through an elementary argument (see above).
Now the idea is to look at $\frac{a_{n+1}-a_{n}}{(n+1)-n}=\frac{1}{\sqrt[6]{a_{n}}}$ as a discretization of some differential equation (this is basically Euler's method, applied to infinity). In particular, the equation is $\frac{d y}{d x}=\frac{1}{\sqrt[k]{y}}$ with boundary condition $f(0)=a_{0}>0$. It is well-known how to solve these: we see $y^{\frac{1}{k}} \frac{d y}{d x}=1$, and integrating $d x$ gives $\frac{k}{k+1} y^{\frac{k+1}{k}}=x+a_{0}^{\frac{k+1}{k}}$. Then $y(x)=\left(\left(\frac{k+1}{k}\right)(x+d)\right)^{\frac{k}{k+1}}$ for $d=a_{0}^{\frac{k+1}{k}}$.

Two things to notice: $y(0)=a_{0}$ and $y^{\prime}(0)$ is decreasing, i.e., y is concave. Thus it is not hard to check that $y(x+1)-y(x)=\int_{x}^{x+1} y^{\prime}(t) d t \leq y^{\prime}(x)$, so that $y(x+1) \leq$ $y(x)+\frac{1}{\sqrt[k]{y(x)}}$.
Thus the sequence $b_{n}=y(n)$ satisfies $b_{n+1} \leq b_{n}+\frac{1}{\sqrt[k]{b_{n}}}$ for $n \geq 0$ and $b_{0}=a_{0}$. It's clear that $b_{0} \leq a_{0}$, and we can induct to show that $b_{n} \leq a_{n}$ for all $n \geq 0$: since $b_{n} \leq a_{n}$ we have $b_{n+1} \leq b_{n}+\frac{1}{\sqrt[k]{b_{n}}} \leq a_{n}+\frac{1}{\sqrt[k]{a_{n}}}=a_{n+1}$. We know the middle inequality since $f(x)=x+\frac{1}{x^{\frac{1}{k}}}$ is increasing for $x>k^{\frac{k+1}{k}}$ by taking derivatives (this is where the strange constant comes in!).
Now $b_{n}=y(n)=\left(\frac{k+1}{k}\right)^{\frac{k}{k+1}}(n+d)^{\frac{k}{k+1}}$, so $a_{n} \geq(n+d)^{\frac{k}{k+1}}$. This is a pretty explicit bound, and you can also prove it directly by induction (again only if we start with $a_{0} \geq k^{\frac{k}{k+1}}$, but this tells you what the correct lower bound to induct on is, and simplifies the inequalities involved in the induction step by allowing us to express the difference $b_{n+1}-b_{n}$ as an integral that then has nice bounding properties.
Anyways, this expression gives the right constant that we want: we just need an upper bound. How do we do this? Find a way to invert the inequality! We have

$$
a_{n+1}=a_{n}+\frac{1}{\sqrt[k]{a_{n}}} \leq a_{n}+\frac{1}{\sqrt[k]{b_{n}}}
$$

so expanding gives

$$
a_{n} \leq a_{0}+\sum_{i=0}^{n-1} \frac{1}{\sqrt[k]{b_{n}}}
$$

If you think about this a little, it's clear that this gives the "right expression" for an upper bound. More precisely, this is

$$
a_{n} \leq a_{0}+\sum_{i=0}^{n-1} \frac{1}{\left(\frac{k+1}{k}\right)^{\frac{1}{k+1}}(n+d)^{\frac{1}{k+1}}} \leq a_{0}+s+\frac{1}{\left(\frac{k+1}{k}\right)^{\frac{1}{k+1}}} \sum_{i=1}^{n-1} \frac{1}{i^{\frac{1}{k+1}}}
$$

where s is some inconsequential constant like $\frac{1}{\left(\frac{k+1}{k}\right)^{\frac{1}{k+1}} d^{\frac{1}{k+1}}}$. Finally, remember some tricks from Evan's lecture: this series looks like a Riemann sum for the integral $\int_{1}^{n} \frac{1}{x^{\frac{1}{k+1}}} d x$, and it is not hard to upper bound the right by

$$
a_{n} \leq a_{0}+s+\frac{1}{\left(\frac{k+1}{k}\right)^{\frac{1}{k+1}}}\left(1+\int_{1}^{n} x^{-\frac{1}{k+1}} d x\right)
$$

Finally,

$$
a_{n} \leq a_{0}+s+\frac{1}{\left(\frac{k+1}{k}\right)^{\frac{1}{k+1}}} \cdot\left(\frac{k+1}{k} n^{\frac{k}{k+1}}-\frac{1}{k}\right)=a_{0}+s^{\prime}+\left(\frac{k+1}{k}\right)^{\frac{k}{k+1}} n^{\frac{k}{k+1}} .
$$

The upper and lower bounds are of the same order and trivially give

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{k+1}}{n^{k}}=\left(\frac{k+1}{k}\right)^{k}
$$

as claimed.

