PROBLEMS ON ABSTRACT ALGEBRA

1. (68P) A is a subset of a finite group G (with group operation called multiplication), and A contains more than one half of the elements of G. Prove that each element of G is the product of two elements of A.
2. (69P) Show that a finite group can not be the union of two of its proper subgroups. Does the statement remain true if "two" is replaced by "three"?
3. (71P) Let S be a set and let o be a binary operation on S satisfying the two laws

$$
\begin{aligned}
x \circ x & =x \text { for all } x \text { in } S, \text { and } \\
(x \circ y) \circ z & =(y \circ z) \circ x \text { for all } x, y, z \text { in } S .
\end{aligned}
$$

Show that \circ is associative and commutative.
4. (72P) Let S be a set and let $*$ be a binary operation on S satisfying the laws

$$
\begin{array}{ll}
x *(x * y)=y & \text { for all } x, y \text { in } S, \\
(y * x) * x=y & \text { for all } x, y \text { in } S
\end{array}
$$

Show that $*$ is commutative but not necessarily associative.
5. (72P) Let A and B be two elements in a group such that $A B A=B A^{2} B, A^{3}=1$ and $B^{2 n-1}=1$ for some positive integer n. Prove $B=1$.
6. (76P) Suppose that G is a group generated by elements A and B, that is, every element of G can be written as a finite "word" $A^{n_{1}} B^{n_{2}} A^{n_{3}} \ldots B^{n_{k}}$, where n_{1}, \ldots, n_{k} are any integers, and $A^{0}=B^{0}=1$ as usual. Also, suppoes that $A^{4}=B^{7}=A B A^{-1} B=1, A^{2} \neq 1$, and $B \neq 1$.
(a) How many elements of G are of the form C^{2} with C in G ?
(b) Write each such square as a word in A and B.
7. (77P, B6) Let H be a subgroup with h elements in a group G. Suppose that G has an element a such that for all x in $H,(x a)^{3}=1$, the identity. In G, let P be the subset of all products $x_{1} a x_{2} a \cdots x_{n} a$, with n a positive integer and the x_{i} 's in H.
(a) Show that P is a finite set.
(b) Show that, in fact, P has no more than $3 h^{2}$ elements.
8. (78P) A "bypass" operation on a set S is a mapping from $S \times S$ to S with the property

$$
B(B(w, x), B(y, z))=B(w, z) \quad \text { for all } \quad w, x, y, z \quad \text { in } S
$$

(a) Prove that $B(a, b)=c$ implies $B(c, c)=c$ when B is a bypass.
(b) Prove that $B(a, b)=c$ implies $B(a, x)=B(c, x)$ for all x in S when B is a bypass.
(c) Construct a table for a bypass operation B on a finite set S with the following three properties:
(i) $B(x, x)=x$ for all x in S.
(ii) There exist d and e in S with $B(d, e)=d \neq e$.
(iii) There exist f and g in S with $B(f, g) \neq f$.
9. (79P) Let F be a finite field having an odd number m of elements. Let $p(x)$ be an irreducible (i.e., nonfactorable) polynomial over F of the form

$$
x^{2}+b x+c, \quad b, c \in F \text {. }
$$

For how many elements k in F is $p(x)+k$ irreducible over F ?
10. (84P) Prove or disprove the following statement: If F is a finite set with two or more elements, then there exists a binary operation $*$ on F such that for all x, y, z in F,
(i) $x * z=y * z$ implies $x=y$ (right cancellation holds), and
(ii) $x *(y * z) \neq(x * y) * z$ (no case of associativity holds).
11. (87 P) Let F be the field of p^{2} elements where p is an odd prime. Suppose S is a set of $\left(p^{2}-1\right) / 2$ distinct nonzero elements of F with the property that for each $a \neq 0$ in F, exactly one of a and $-a$ is in S. Let N be the number of elements in the intersection $S \cap\{2 a: a \in S\}$. Prove that N is even.
12. (89P) Let S be a nonempty set with an associative operation that is left and right cancellative ($x y=x z$ implies $y=z$, and $y x=z x$ implies $y=z$). Assume that for every a in S the set $\left\{a^{n}: n=1,2,3, \ldots\right\}$ is finite. Must S be a group?
13. (90P) Let G be a finite group of order n generated by a and b. Prove or disprove: there is a sequence

$$
g_{1}, g_{2}, g_{3}, \ldots, g_{2 n}
$$

such that
(1) every element of G occurs exactly twice, and
(2) g_{i+1} equals $g_{i} a$ or $g_{i} b$ for $i=1,2, \ldots, 2 n$. (Interpret $g_{2 n+1}$ as g_{1}.)
14. (91P) Let P be an odd prime and let \mathbb{Z}_{p} denote (the field of) integers modulo p. How many elements are in the set

$$
\left\{x^{2}: x \in \mathbb{Z}_{p}\right\} \cap\left\{y^{2}+1: y \in \mathbb{Z}_{p}\right\} ?
$$

15. (92P) Let \mathcal{M} be a set of real $n \times n$ matrices such that
(i) $I \in \mathcal{M}$, where I is the $n \times n$ identity matrix;
(ii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $A B \in \mathcal{M}$ or $-A B \in \mathcal{M}$, but not both;
(iii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $A B=B A$ or $A B=-B A$;
(iv) if $A \in \mathcal{M}$ and $A \notin I$, there is at least one $B \in \mathcal{M}$ such that $A B=-B A$.

Prove that \mathcal{M} contains at most n^{2} matrices.
16. (94P, B6) For any integer a, set

$$
n_{a}=101 a-100 \cdot 2^{a} .
$$

Show that for $0 \leq a, b, c, d \leq 99, n_{a}+n_{b} \equiv n_{c}+n_{d}(\bmod 10100)$ implies $\{a, b\}=\{c, d\}$.
17. (96P, A4) Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A. Suppose that
(1) $(a, b, c) \in S$ if and only if $(b, c, a) \in S$;
(2) $(a, b, c) \in S$ if and only if $(c, b, a) \notin S$ [for a, b, c distinct];
(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to \mathbb{R} such that $g(a)<g(b)<g(c)$ implies $(a, b, c) \in S$.
18. (97P, A4) Let G be a group with identity e and $\phi: G \rightarrow G$ a function such that

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right) \phi\left(g_{3}\right)=\phi\left(h_{1}\right) \phi\left(h_{2}\right) \phi\left(h_{3}\right)
$$

whenever $g_{1} g_{2} g_{3}=e=h_{1} h_{2} h_{3}$. Prove that there exists an element $a \in G$ such that $\psi(x)=$ $a \phi(x)$ is a homomorphism (that is, $\psi(x y)=\psi(x) \psi(y)$ for all $x, y \in G)$.
19. (01P, A1) Consider a set S and a binary operation $*$, i.e., for each $a, b \in S, a * b \in S$. Assume $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$.
20. ($07 \mathrm{P}, \mathrm{A} 5$) Suppose that a finite group has exactly n elements of order p, where p is a prime. Prove that either $n=0$ or p divides $n+1$.
21. ($08 \mathrm{P}, \mathrm{A} 6$) Prove that there exists a constant $c>0$ such that in every nontrivial finite group G there exists a sequence of length at most $c \ln |G|$ with the property that each element of G equals the product of some subsequence. (The elements of G in the sequence are not required to be distinct. A subsequence of a sequence is obtained by selecting some of the terms, not necessarily consecutive, without reordering them; for example, $4,4,2$ is a subsequence of $2,4,6,4,2$, but $2,2,4$ is not.)
22. (09P, A5) Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?
23. (10P, A5)

Let G be a group, with operation $*$. Suppose that
(a) G is a subset of \mathbb{R}^{3} (but $*$ need not be related to addition of vectors);
(b) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b}=\mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b}=\mathbf{0}$ (or both), where \times is the usual cross product in \mathbb{R}^{3}.

Prove that $\mathbf{a} \times \mathbf{b}=\mathbf{0}$ for all $\mathbf{a}, \mathbf{b} \in G$.
24. (11P, A6) Let G be an abelian group with n elements, and let $\left\{g_{1}=e, g_{2}, \ldots, g_{k}\right\} \subsetneq G$ be a (not necessarily minimal) set of distinct generators of G. A special die, which randomly selects one of the elements $g_{1}, g_{2}, \ldots, g_{k}$ with equal probability, is rolled m times and the selected elements are multiplied to produce an element $g \in G$.
Prove that there exists a real number $b \in(0,1)$ such that

$$
\lim _{m \rightarrow \infty} \frac{1}{b^{2 m}} \sum_{x \in G}\left(\operatorname{Prob}(g=x)-\frac{1}{n}\right)^{2}
$$

is positive and finite.
25. (12P, A2) Let $*$ be a commutative and associative binary operation on a set S. Assume that for every x and y in S , there exists z in S such that $x * z=y$. (This z may depend on x and y.) Show that if a, b, c are in S and $a * c=b * c$, then $a=b$.
26. (16P, A5) Suppose that G is a finite group generated by the two elements g and h, where the order of g is odd. Show that every element of G can be written in the form

$$
g^{m_{1}} h^{n_{1}} g^{m_{2}} h^{n_{2}} \cdots g^{m_{r}} h^{n_{r}}
$$

with $1 \leq r \leq|G|$ and $m_{1}, n_{1}, m_{2}, n_{2}, \ldots, m_{r}, n_{r} \in\{1,-1\}$.
27. (18P, A4) Let m and n be positive integers with $\operatorname{gcd}(m, n)=1$, and let

$$
a_{k}=\lfloor m k / n\rfloor-\lfloor m(k-1) / n\rfloor
$$

for $k=1,2, \ldots, n$. Suppose that g and h are elements in a group G and that

$$
g h^{a_{1}} g h^{a_{2}} \ldots g h^{a_{n}}=e,
$$

where e is the identity element. Show that $g h=h g$.
28. Let x, y be elements in a (not necessarily commutative) ring such that $1-x y$ is invertible. Prove that $1-y x$ is also invertible.
29. Let R be a noncommutative ring with identity. Suppose that x, y are elements of R such that $1-x y$ and $1-y x$ are invertible. (By the previous problem it suffice to assume that only $1-x y$ is invertible, but this is irrelevant.) Show that

$$
\begin{equation*}
(1+x)(1-y x)^{-1}(1+y)=(1+y)(1-x y)^{-1}(1+x) . \tag{1}
\end{equation*}
$$

This problem illustrates that "noncommutative high school algebra" is a lot harder than ordinary (commutative) high school algebra.
Note. Formally we have

$$
(1-y x)^{-1}=1+y x+y x y x+y x y x y x+\cdots
$$

and similarly for $(1-x y)^{-1}$. Thus both sides of (1) are formally equal to the sum of all "alternating words" (products of x 's and y 's with no two x 's or y 's appearing consecutively). This makes the identity (1) plausible, but our formal argument is not a proof.
30. Let G be a finite abelian group of order n. Suppose that for each prime divisor p of n, there is exactly one subgroup of G of order p. Prove that G is a cyclic group.
31. Prove that there is no nontrivial automorphism of the ring of real numbers. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(0)=0, f(1)=1, f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$, and $f(x y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$, then $f(x)=x$ for all $x \in \mathbb{R}$.
32. (a) Let G be a finitely generated group in which $g^{2}=1$ for each $g \in G$. Prove that G is finite and abelian.
(b) Let G be a finitely generated group in which $g^{3}=1$ for each $g \in G$. Prove that G is finite.
(Beware that (b) is hard, while its analogue with 3 replaced by an arbitrary positive integer is in fact false!)
33. Let G be a group of order $4 n+2, n \geq 1$. Prove that G is not a simple group, i.e., G has a proper normal subgroup.
34. Let R be a noncommutative ring with identity. Show that if an element $x \in R$ has more than one right inverse (i.e., there is more than one $y \in R$ such that $x y=1$), then x has infinitely many right inverses.
35. Let R be a ring for which $x^{2}=0$ for all $x \in R$. Show that $x y z+x y z=0$ for all $x, y, z \in R$.
36. Let R satisfy all the axioms of a ring except commutativity of addition. Show that $a x+b y=$ $b y+a x$ for all $a, b, x, y \in R$.
37. How many $n \times n$ matrices of rank r are there over the finite field \mathbb{F}_{q} ?
38. Let G denote the set of all infinite sequences $\left(a_{1}, a_{2}, \ldots\right)$ of integers a_{i}. We can add elements of G coordinate-wise, i.e.,

$$
\left(a_{1}, a_{2}, \ldots\right)+\left(b_{1}, b_{2}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right)
$$

Let \mathbb{Z} denote the set of integers. Suppose $f: G \rightarrow \mathbb{Z}$ is a function satisfying $f(x+y)=$ $f(x)+f(y)$ for all $x, y \in G$.
(a) Let e_{i} be the element of G with a 1 in position i and 0 's elsewhere. Suppose that $f\left(e_{i}\right)=0$ for all i. Show that $f(x)=0$ for all $x \in G$. (Note. From the fact that f preserves the sum of two elements it follows easily that f preserves finite sums. However, it does not necessarily follow that f preserves infinite sums.)
(b) Show that $f\left(e_{i}\right)=0$ for all but finitely many i.
39. Let G be a finite group, and set $f(G)=\#\{(u, v) \in G \times G: u v=v u\}$. Find a formula for $f(G)$ in terms of the order of G and the number $k(G)$ of conjugacy classes of G. (Two elements $x, y \in G$ are conjugate if $y=a x a^{-1}$ for some $a \in G$. Conjugacy is an equivalence relation whose equivalence classes are called conjugacy classes.)
40. (difficult) Let n be an odd positive integer. Show that the number of ways to write the identity permutation ι of $1,2, \ldots, n$ as a product $u v w=\iota$ of three n-cycles is $2(n-1)!^{2} /(n+1)$.
41. Let G be any finite group, and let $w \in G$. Find the number of pairs $(u, v) \in G \times G$ satisfying $w=u v u^{2} v u v$.
42. Show that the number of ways to write the cycle $(1,2, \ldots, n)$ as a product of $n-1$ transpositions is n^{n-2}. For instance, when $n=3$ we have (multiplying permutations left-to-right) three ways:

$$
(1,2,3)=(1,3)(2,3)=(1,2)(1,3)=(2,3)(1,2)
$$

43. (difficult) Let $s_{i}=(i, i+1) \in S_{n}$, i.e., s_{i} is the permutation of $1,2, \ldots, n$ that transposes i and $i+1$ and fixes all other j. Let $f(n)$ be the number of ways to write the permutation $n, n-1, \ldots, 1$ in the form $s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}$, where $p=\binom{n}{2}$. For instance, $321=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$, so $f(3)=2$. Moreover, $f(4)=16$. Show that $f(n)$ is the number of sequences a_{1}, \ldots, a_{p} of $n-11$'s, $n-22$'s, \ldots, one $n-1$, such that in any prefix $a_{1}, a_{2}, \ldots, a_{k}$, the number of $i+1$'s does not exceed the number of i 's. For instance, when $n=3$ there are the two sequences 112 and 121.
Note. An explicit formula is known for $f(n)$, but this is irrelevant here.
44. (difficult) In the notation of the previous problem, show that

$$
\sum_{i_{1}, i_{2}, \cdots, i_{p}} i_{1} i_{2} \cdots i_{p}=p!
$$

where the sum is over all sequences i_{1}, \ldots, i_{p} for which $n, n-1, \ldots, 1=s_{i_{1}} s_{i_{2}} \cdots s_{i_{p}}$. For instance, when $n=3$ we get $1 \cdot 2 \cdot 1+2 \cdot 1 \cdot 2=3$!.

Note. The only known proofs are algebraic. It would be interesting to give a combinatorial proof.

