
PROBLEMS ON ABSTRACT ALGEBRA

1. (68P) A is a subset of a finite group G (with group operation called multiplication), and A
contains more than one half of the elements of G. Prove that each element of G is the product
of two elements of A.

2. (69P) Show that a finite group can not be the union of two of its proper subgroups. Does the
statement remain true if “two” is replaced by “three”?

3. (71P) Let S be a set and let ◦ be a binary operation on S satisfying the two laws

x ◦ x = x for all x in S, and

(x ◦ y) ◦ z = (y ◦ z) ◦ x for all x, y, z in S.

Show that ◦ is associative and commutative.

4. (72P) Let S be a set and let ∗ be a binary operation on S satisfying the laws

x ∗ (x ∗ y) = y for all x, y in S,

(y ∗ x) ∗ x = y for all x, y in S.

Show that ∗ is commutative but not necessarily associative.

5. (72P) Let A and B be two elements in a group such that ABA = BA2B, A3 = 1 and
B2n−1 = 1 for some positive integer n. Prove B = 1.

6. (76P) Suppose that G is a group generated by elements A and B, that is, every element of G
can be written as a finite “word” An1Bn2An3 · · ·Bnk , where n1, . . . , nk are any integers, and
A0 = B0 = 1 as usual. Also, suppoes that A4 = B7 = ABA−1B = 1, A2 ̸= 1, and B ̸= 1.

(a) How many elements of G are of the form C2 with C in G?

(b) Write each such square as a word in A and B.

7. (77P, B6) Let H be a subgroup with h elements in a group G. Suppose that G has an element
a such that for all x in H, (xa)3 = 1, the identity. In G, let P be the subset of all products
x1ax2a · · ·xna, with n a positive integer and the xi’s in H.

(a) Show that P is a finite set.

(b) Show that, in fact, P has no more than 3h2 elements.

8. (78P) A “bypass” operation on a set S is a mapping from S × S to S with the property

B(B(w, x), B(y, z)) = B(w, z) for all w, x, y, z inS.

(a) Prove that B(a, b) = c implies B(c, c) = c when B is a bypass.

(b) Prove that B(a, b) = c implies B(a, x) = B(c, x) for all x in S when B is a bypass.

(c) Construct a table for a bypass operation B on a finite set S with the following three
properties:

(i) B(x, x) = x for all x in S.

(ii) There exist d and e in S with B(d, e) = d ̸= e.
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(iii) There exist f and g in S with B(f, g) ̸= f .

9. (79P) Let F be a finite field having an odd number m of elements. Let p(x) be an irreducible
(i.e., nonfactorable) polynomial over F of the form

x2 + bx+ c, b, c ∈ F.

For how many elements k in F is p(x) + k irreducible over F?

10. (84P) Prove or disprove the following statement: If F is a finite set with two or more elements,
then there exists a binary operation ∗ on F such that for all x, y, z in F ,

(i) x ∗ z = y ∗ z implies x = y (right cancellation holds), and

(ii) x ∗ (y ∗ z) ̸= (x ∗ y) ∗ z (no case of associativity holds).

11. (87P) Let F be the field of p2 elements where p is an odd prime. Suppose S is a set of
(p2 − 1)/2 distinct nonzero elements of F with the property that for each a ̸= 0 in F , exactly
one of a and −a is in S. Let N be the number of elements in the intersection S∩{2a : a ∈ S}.
Prove that N is even.

12. (89P) Let S be a nonempty set with an associative operation that is left and right cancellative
(xy = xz implies y = z, and yx = zx implies y = z). Assume that for every a in S the set
{an : n = 1, 2, 3, . . . } is finite. Must S be a group?

13. (90P) Let G be a finite group of order n generated by a and b. Prove or disprove: there is a
sequence

g1, g2, g3, . . . , g2n

such that

(1) every element of G occurs exactly twice, and

(2) gi+1 equals gia or gib for i = 1, 2, . . . , 2n. (Interpret g2n+1 as g1.)

14. (91P) Let P be an odd prime and let Zp denote (the field of) integers modulo p. How many
elements are in the set

{x2 : x ∈ Zp} ∩ {y2 + 1 : y ∈ Zp}?

15. (92P) Let M be a set of real n× n matrices such that

(i) I ∈ M, where I is the n× n identity matrix;

(ii) if A ∈ M and B ∈ M, then either AB ∈ M or −AB ∈ M, but not both;

(iii) if A ∈ M and B ∈ M, then either AB = BA or AB = −BA;
(iv) if A ∈ M and A /∈ I, there is at least one B ∈ M such that AB = −BA.

Prove that M contains at most n2 matrices.

16. (94P, B6) For any integer a, set

na = 101a− 100 · 2a.

Show that for 0 ≤ a, b, c, d ≤ 99, na + nb ≡ nc + nd (mod 10100) implies {a, b} = {c, d}.
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17. (96P, A4) Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A.
Suppose that

(1) (a, b, c) ∈ S if and only if (b, c, a) ∈ S;

(2) (a, b, c) ∈ S if and only if (c, b, a) /∈ S [for a, b, c distinct];

(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to R such that g(a) < g(b) < g(c)
implies (a, b, c) ∈ S.

18. (97P, A4) Let G be a group with identity e and ϕ : G→ G a function such that

ϕ(g1)ϕ(g2)ϕ(g3) = ϕ(h1)ϕ(h2)ϕ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists an element a ∈ G such that ψ(x) =
aϕ(x) is a homomorphism (that is, ψ(xy) = ψ(x)ψ(y) for all x, y ∈ G).

19. (01P, A1) Consider a set S and a binary operation ∗, i.e., for each a, b ∈ S, a∗ b ∈ S. Assume
(a ∗ b) ∗ a = b for all a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

20. (07P, A5) Suppose that a finite group has exactly n elements of order p, where p is a prime.
Prove that either n = 0 or p divides n+ 1.

21. (08P, A6) Prove that there exists a constant c > 0 such that in every nontrivial finite group
G there exists a sequence of length at most c ln |G| with the property that each element of G
equals the product of some subsequence. (The elements of G in the sequence are not required
to be distinct. A subsequence of a sequence is obtained by selecting some of the terms,
not necessarily consecutive, without reordering them; for example, 4, 4, 2 is a subsequence of
2, 4, 6, 4, 2, but 2, 2, 4 is not.)

22. (09P, A5) Is there a finite abelian group G such that the product of the orders of all its
elements is 22009?

23. (10P, A5)

Let G be a group, with operation ∗. Suppose that

(a) G is a subset of R3 (but ∗ need not be related to addition of vectors);

(b) For each a,b ∈ G, either a × b = a ∗ b or a × b = 0 (or both), where × is the usual
cross product in R3.

Prove that a× b = 0 for all a,b ∈ G.

24. (11P, A6) Let G be an abelian group with n elements, and let {g1 = e, g2, . . . , gk} ⊊ G be
a (not necessarily minimal) set of distinct generators of G. A special die, which randomly
selects one of the elements g1, g2, . . . , gk with equal probability, is rolled m times and the
selected elements are multiplied to produce an element g ∈ G.

Prove that there exists a real number b ∈ (0, 1) such that

lim
m→∞

1

b2m

∑
x∈G

(
Prob(g = x)− 1

n

)2

is positive and finite.
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25. (12P, A2) Let ∗ be a commutative and associative binary operation on a set S. Assume that
for every x and y in S, there exists z in S such that x ∗ z = y. (This z may depend on x and
y.) Show that if a, b, c are in S and a ∗ c = b ∗ c, then a = b.

26. (16P, A5) Suppose that G is a finite group generated by the two elements g and h, where the
order of g is odd. Show that every element of G can be written in the form

gm1hn1gm2hn2 · · · gmrhnr

with 1 ≤ r ≤ |G| and m1, n1,m2, n2, . . . ,mr, nr ∈ {1,−1}.

27. (18P, A4) Let m and n be positive integers with gcd(m,n) = 1, and let

ak = ⌊mk/n⌋ − ⌊m(k − 1)/n⌋

for k = 1, 2, . . . , n. Suppose that g and h are elements in a group G and that

gha1gha2 . . . ghan = e,

where e is the identity element. Show that gh = hg.

28. Let x, y be elements in a (not necessarily commutative) ring such that 1 − xy is invertible.
Prove that 1− yx is also invertible.

29. Let R be a noncommutative ring with identity. Suppose that x, y are elements of R such that
1 − xy and 1 − yx are invertible. (By the previous problem it suffice to assume that only
1− xy is invertible, but this is irrelevant.) Show that

(1 + x)(1− yx)−1(1 + y) = (1 + y)(1− xy)−1(1 + x). (1)

This problem illustrates that “noncommutative high school algebra” is a lot harder than
ordinary (commutative) high school algebra.

Note. Formally we have

(1− yx)−1 = 1 + yx+ yxyx+ yxyxyx+ · · ·

and similarly for (1 − xy)−1. Thus both sides of (1) are formally equal to the sum of all
“alternating words” (products of x’s and y’s with no two x’s or y’s appearing consecutively).
This makes the identity (1) plausible, but our formal argument is not a proof.

30. Let G be a finite abelian group of order n. Suppose that for each prime divisor p of n, there
is exactly one subgroup of G of order p. Prove that G is a cyclic group.

31. Prove that there is no nontrivial automorphism of the ring of real numbers. That is, if
f : R → R is a function such that f(0) = 0, f(1) = 1, f(x+ y) = f(x) + f(y) for all x, y ∈ R,
and f(xy) = f(x)f(y) for all x, y ∈ R, then f(x) = x for all x ∈ R.

32. (a) Let G be a finitely generated group in which g2 = 1 for each g ∈ G. Prove that G is
finite and abelian.

(b) Let G be a finitely generated group in which g3 = 1 for each g ∈ G. Prove that G is
finite.

(Beware that (b) is hard, while its analogue with 3 replaced by an arbitrary positive integer
is in fact false!)
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33. Let G be a group of order 4n + 2, n ≥ 1. Prove that G is not a simple group, i.e., G has a
proper normal subgroup.

34. Let R be a noncommutative ring with identity. Show that if an element x ∈ R has more than
one right inverse (i.e., there is more than one y ∈ R such that xy = 1), then x has infinitely
many right inverses.

35. Let R be a ring for which x2 = 0 for all x ∈ R. Show that xyz + xyz = 0 for all x, y, z ∈ R.

36. Let R satisfy all the axioms of a ring except commutativity of addition. Show that ax+ by =
by + ax for all a, b, x, y ∈ R.

37. How many n× n matrices of rank r are there over the finite field Fq?

38. Let G denote the set of all infinite sequences (a1, a2, . . . ) of integers ai. We can add elements
of G coordinate-wise, i.e.,

(a1, a2, . . . ) + (b1, b2, . . . ) = (a1 + b1, a2 + b2, . . . ).

Let Z denote the set of integers. Suppose f : G → Z is a function satisfying f(x + y) =
f(x) + f(y) for all x, y ∈ G.

(a) Let ei be the element of G with a 1 in position i and 0’s elsewhere. Suppose that
f(ei) = 0 for all i. Show that f(x) = 0 for all x ∈ G. (Note. From the fact that f
preserves the sum of two elements it follows easily that f preserves finite sums. However,
it does not necessarily follow that f preserves infinite sums.)

(b) Show that f(ei) = 0 for all but finitely many i.

39. Let G be a finite group, and set f(G) = #{(u, v) ∈ G × G : uv = vu}. Find a formula
for f(G) in terms of the order of G and the number k(G) of conjugacy classes of G. (Two
elements x, y ∈ G are conjugate if y = axa−1 for some a ∈ G. Conjugacy is an equivalence
relation whose equivalence classes are called conjugacy classes.)

40. (difficult) Let n be an odd positive integer. Show that the number of ways to write the identity
permutation ι of 1, 2, . . . , n as a product uvw = ι of three n-cycles is 2(n− 1)!2/(n+ 1).

41. Let G be any finite group, and let w ∈ G. Find the number of pairs (u, v) ∈ G×G satisfying
w = uvu2vuv.

42. Show that the number of ways to write the cycle (1, 2, . . . , n) as a product of n− 1 transpo-
sitions is nn−2. For instance, when n = 3 we have (multiplying permutations left-to-right)
three ways:

(1, 2, 3) = (1, 3)(2, 3) = (1, 2)(1, 3) = (2, 3)(1, 2).

43. (difficult) Let si = (i, i + 1) ∈ Sn, i.e., si is the permutation of 1, 2, . . . , n that transposes i
and i + 1 and fixes all other j. Let f(n) be the number of ways to write the permutation
n, n − 1, . . . , 1 in the form si1si2 · · · sip , where p =

(
n
2

)
. For instance, 321 = s1s2s1 = s2s1s2,

so f(3) = 2. Moreover, f(4) = 16. Show that f(n) is the number of sequences a1, . . . , ap of
n− 1 1’s, n− 2 2’s, . . . , one n− 1, such that in any prefix a1, a2, . . . , ak, the number of i+1’s
does not exceed the number of i’s. For instance, when n = 3 there are the two sequences 112
and 121.

Note. An explicit formula is known for f(n), but this is irrelevant here.
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44. (difficult) In the notation of the previous problem, show that∑
i1,i2,...,ip

i1i2 · · · ip = p!,

where the sum is over all sequences i1, . . . , ip for which n, n − 1, . . . , 1 = si1si2 · · · sip . For
instance, when n = 3 we get 1 · 2 · 1 + 2 · 1 · 2 = 3!.

Note. The only known proofs are algebraic. It would be interesting to give a combinatorial
proof.
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