18.A34 PROBLEMS \#7

77. [1] (a) What is the least number of weights necessary to weigh any integral number of pounds from 1 lb . to 63 lb . inclusive, if the weights must be placed on only one of the scale-pans of a balance? Generalize to any number of pounds.
(b) Same as (a), but from 1 lb . to 40 lb . if the weights can be placed in either of the scale-pans. Generalize.
(c) A gold chain contains 23 links. What is the least number of links which need to be cut so a jeweler can sell any number of links from 1 to 23 , inclusive? Generalize.
78. [2.5] A perfect partition of the positive integer n is a finite sequence $a_{1} \geq$ $a_{2} \geq \cdots \geq a_{k}$ of positive integers a_{i}, such that each integer $1 \leq m \leq n$ can be written uniquely (regarding equal a_{i} 's as indistinguishable) as a sum of a_{i} 's. For instance, there are three perfect partitions of 5 , viz., 11111, 221, and 311, since we have the unique representations $1,1+1$, $1+1+1,1+1+1+1,1+1+1+1+1$ in the first case; $1,2,2+1$, $2+2,2+2+1$ in the second; and $1,1+1,3,3+1,3+1+1$ in the third. Show that the number of perfect partitions of n is equal to the number of ordered factorizations of $n+1$ into parts greater than one. For instance, the ordered factorizations of 12 are $12,6 \cdot 2,2 \cdot 6,4 \cdot 3$, $3 \cdot 4,2 \cdot 2 \cdot 3,2 \cdot 3 \cdot 2$, and $3 \cdot 2 \cdot 2$, so there are eight perfect partitions of 11 .
79. [1] Here is a proof by induction that all people have the same height. We prove that for any positive integer n, any group of n people all have the same height. This is clearly true for $n=1$. Now assume it for n, and suppose we have a group of $n+1$ persons, say $P_{1}, P_{2}, \ldots, P_{n+1}$. By the induction hypothesis, the n people $P_{1}, P_{2}, \ldots, P_{n}$ all have the same height. Similarly the n people $P_{2}, P_{3}, \ldots, P_{n+1}$ all have the same height. Both groups of people contain $P_{2}, P_{3}, \ldots, P_{n}$, so P_{1} and P_{n+1} have the same height as $P_{2}, P_{3}, \ldots, P_{n}$. Thus all of $P_{1}, P_{2}, \ldots, P_{n+1}$ have the same height. Hence by induction, for any n any group of n people have the same height. Letting n be the total number of people in the world, we conclude that all people have the same height. Is there a flaw in this argument?
80. [1] The following figure consists of three equal squares lined up together, with three diagonals as shown.

Show that angle C is the sum of angles A and B.
81. [1] Let n be a positive integer.
(a) Show that if $2^{n}-1$ is prime, then n is prime.
(b) Show that if $2^{n}+1$ is prime, then n is a power of two.

Hint: The simplest way to show that a number is not prime is to factor it explicitly.
82. (a) [2.5] A point P in the interior of an equilateral triangle T is at a distance of 3,5 , and 7 units from the three vertices of T. What is the length of a side of T ?

(b) [2.5] More generally, let the point P be at distances a, b, c from the vertices A, B, C of an equilateral triangle of side length d. Find a (nonzero) polynomial equation $f(a, b, c, d)=0$, symmetric in a, b, c, d.
(c) [2.5] The symmetry of f in a, b, c is obvious, but why also the "hidden symmetry" in d ? Find a noncomputational proof.
(d) [2.8] Generalize to n dimensions, i.e., find a (nonzero) polynomial equation $f\left(a_{0}, \ldots, a_{n}, d\right)=0$, symmetric in all $n+2$ variables, satisfied by the distances a_{0}, \ldots, a_{n} from a point to the vertices of a regular simplex of side length d.
(e) [5] Give a noncomputational explanation of the hidden symmetry of the variable d.
83. [3] Into how few pieces can an equilateral triangle be cut and reassembled to form a square?
84. [2] Let n be an integer greater than one. Show that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is not an integer.
85. [2.5]
(a) Persons X and Y have nonnegative integers painted on their foreheads which only the other can see. They are told that the sum of the two numbers is either 100 or 101. A third person P asks X if he knows the number on his forehead. If X says "no," then P asks Y. If Y says "no," then P asks X again, etc. Assume both X and Y are perfect logicians. Show that eventually one of them will answer "yes." (This may seem paradoxical. For instance, if X and Y both have 50 then Y knows that X will answer "no" to the first question, since from Y 's viewpoint X will see either 50 or 51 , and in either case cannot deduce his number. So how does either person gain information?)
(b) Generalize to more than two persons.
86. [2.5] Let $a(n)$ be the exponent of the largest power of 2 dividing the numerator of $\sum_{i=1}^{n} \frac{2^{i}}{i}$ (when written as a fraction in lowest terms). For instance, $a(1)=1, a(2)=2, a(3)=2, a(4)=5$. Show that $\lim _{n \rightarrow \infty} a(n)=\infty$.
87. [3-] Write the permutation $n, n-1, \ldots, 1$ as a product of $\binom{n}{2}$ (the minimum possible) adjacent transpositions $s_{i}=(i, i+1), 1 \leq i \leq n-1$. For instance, $321=s_{1} s_{2} s_{1}$ (or $s_{2} s_{1} s_{2}$). What is the least number of $s_{i}{ }^{\prime}$ s we need to remove from this product in order to get a product equal to the identity permutation $1,2, \ldots, n$? For instance, if we remove s_{2} from $s_{1} s_{2} s_{1}$ then we get $s_{1}^{2}=123$ (clearly the minimum possible for $n=3$). Does the answer depend on the way in which we write $n, n-1, \ldots, 1$ as a product of s_{i} 's?

