ANALYSIS PROBLEMS

We use the notation $f(x) \sim g(x)$ to mean $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$. One says that $f(x)$ is asymptotic to $g(x)$.

Exercises.

These are problems whose techniques are worth knowing, but will generally only form components of larger solutions. (Submit at most one.)

1. Show that $\int_{0}^{\infty} \frac{\cos (a x)}{1+x^{2}} d x$ exists for $a \in \mathbb{R}$ and compute its value.
2. Find a simple function $f(x)$ for which $x^{1 / x}-1 \sim f(x)$ as $x \rightarrow \infty$.
3. For what pairs (a, b) of positive real numbers does the improper integral

$$
\int_{b}^{\infty}(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}) d x
$$

converge?
4. Let a_{n} be the unique positive root of $x^{n}+x=1$. Find a simple function $f(n)$ for which $1-a_{n} \sim f(n)$ as $n \rightarrow \infty$.
5. For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} x^{2} f(x) d x$ and $J(f)=\int_{0}^{1} x f(x)^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f.

Problems.

6. For a positive real number a, calculate $\int_{0}^{\infty} t^{-1 / 2} e^{-a\left(t+t^{-1}\right)} d t$.
7. Let f be a function on $[0, \infty)$, differentiable and satisfying

$$
f^{\prime}(x)=-3 f(x)+6 f(2 x)
$$

for $x>0$. Assume that $|f(x)| \leq e^{-\sqrt{x}}$ for $x \geq 0$ (so that $f(x)$ tends rapidly to ∞ as x increases). For n a nonnegative integer, define

$$
\mu_{n}=\int_{0}^{\infty} x^{n} f(x) d x
$$

(the nth moment of f).
(a) Express μ_{n} in terms of μ_{0}.
(b) Prove that the sequence $\left\{\mu_{n} \cdot 3^{n} / n!\right\}$ always converges, and that the limit is 0 only if $\mu_{0}=0$.
8. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
9. Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$
a^{x} b^{1-x} \leq a \frac{\sinh u x}{\sinh u}+b \frac{\sinh u(1-x)}{\sinh u}
$$

for all u with $0<|u| \leq c$ and for all $x, 0<x<1$. (Note: $\sinh u=\left(e^{u}-e^{-u}\right) / 2$.)
10. The function $K(x, y)$ is positive and continuous for $0 \leq x \leq 1,0 \leq y \leq 1$, and the functions $f(x)$ and $g(x)$ are positive and continuous for $0 \leq x \leq 1$. Suppose that for all $x, 0 \leq x \leq 1$,

$$
\int_{0}^{1} f(y) K(x, y) d y=g(x)
$$

and

$$
\int_{0}^{1} g(y) K(x, y) d y=f(x)
$$

Show that $f(x)=g(x)$ for $0 \leq x \leq 1$.
11. Evaluate

$$
\int_{0}^{\infty}\left(x-\frac{x^{3}}{2}+\frac{x^{5}}{2 \cdot 4}-\frac{x^{7}}{2 \cdot 4 \cdot 6}+\cdots\right)\left(1+\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}+\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots\right) d x
$$

12. Let f be a twice-differentiable real-valued function satisfying

$$
f(x)+f^{\prime \prime}(x)=-x g(x) f^{\prime}(x)
$$

where $g(x) \geq 0$ for all real x. Prove that $|f(x)|$ is bounded.
13. Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999 , then

$$
|p(0)| \leq C \int_{-1}^{1}|p(x)| d x
$$

14. Find a real number c and a positive number L for which

$$
\lim _{r \rightarrow \infty} \frac{r^{c} \int_{0}^{\pi / 2} x^{r} \sin x d x}{\int_{0}^{\pi / 2} x^{r} \cos x d x}=L
$$

15. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ be the vertices of a convex polygon which contains the origin in its interior. Prove that there exist positive real numbers x and y such that

$$
\left(a_{1}, b_{1}\right) x^{a_{1}} y^{b_{1}}+\left(a_{2}, b_{2}\right) x^{a_{2}} y^{b_{2}}+\cdots+\left(a_{n}, b_{n}\right) x^{a_{n}} y^{b_{n}}=(0,0)
$$

16. Show that all solutions of the differential equation $y^{\prime \prime}+e^{x} y=0$ remain bounded as $x \rightarrow \infty$.
17. Let f be a real-valued function having partial derivatives and which is defined for $x^{2}+y^{2} \leq 1$ and is such that $|f(x, y)| \leq 1$. Show that there exists a point $\left(x_{0}, y_{0}\right)$ in the interior of the unit circle for which

$$
\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)^{2}+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)^{2} \leq 16
$$

18. (a) On $[0,1]$, let f have a continuous derivative satisfying $0<f^{\prime}(x) \leq 1$. Also, suppose that $f(0)=0$. Prove that

$$
\left(\int_{0}^{1} f(x) d x\right)^{2} \geq \int_{0}^{1} f(x)^{3} d x
$$

(b) Find an example where equality occurs.
19. Let $P(t)$ be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations

$$
0=\int_{0}^{x} P(t) \sin t d t=\int_{0}^{x} P(t) \cos t d t
$$

has only finitely many real solutions x.
20. Let C be the class of all real valued continuously differentiable functions f on the interval $0 \leq x \leq 1$ with $f(0)=0$ and $f(1)=1$. Determine the largest real number u such that

$$
u \leq \int_{0}^{1}\left|f^{\prime}(x)-f(x)\right| d x
$$

for all $f \in C$.
21. Given a convergent series $\sum a_{n}$ of positive terms, prove that the series $\sum \sqrt[n]{a_{1} a_{2} \cdots a_{n}}$ must also be convergent.
22. Given that $f(x)+f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$, prove that both $f(x) \rightarrow 0$ and $f^{\prime}(x) \rightarrow 0$.
23. Suppose that $f^{\prime \prime}(x)$ is continuous on \mathbb{R}, and that $|f(x)| \leq a$ on \mathbb{R}, and $\left|f^{\prime \prime}(x)\right| \leq b$ on \mathbb{R}. Find the best possible bound $\left|f^{\prime}(x)\right| \leq c$ on \mathbb{R}.
24. Let f be a real function with a continuous third derivative such that $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ are positive for all x. Suppose that $f^{\prime \prime \prime}(x) \leq f(x)$ for all x. Show that $f^{\prime}(x)<2 f(x)$ for all x. (Note that we cannot replace 2 by 1 because of the function $f(x)=e^{x}$.)
25. Show that the improper integral

$$
\lim _{B \rightarrow \infty} \int_{0}^{B} \sin (x) \sin \left(x^{2}\right) d x
$$

converges.
26. Fix an integer $b \geq 2$. Let $f(1)=1, f(2)=2$, and for each $n \geq 3$, define $f(n)=n f(d)$, where d is the number of base- b digits of n. For which values of b does

$$
\sum_{n=1}^{\infty} \frac{1}{f(n)}
$$

converge?
27. Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

28. Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.
29. Let k be an integer greater than 1 . Suppose $a_{0}>0$, and define

$$
a_{n+1}=a_{n}+\frac{1}{\sqrt[k]{a_{n}}}
$$

for $n>0$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{k+1}}{n^{k}} .
$$

30. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e .\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
31. Find all continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every rational number q, the number $f(q)$ is rational and has the same denominator as q. (The denominator of a rational number q is the unique positive integer b such that $q=a / b$ for some integer a with $\operatorname{gcd}(a, b)=1$.) (Note: gcd means greatest common divisor.)
32. Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{aligned}
f^{\prime} & =2 f^{2} g h+\frac{1}{g h}, & f(0)=1 \\
g^{\prime} & =f g^{2} h+\frac{4}{f h}, & g(0)=1 \\
h^{\prime} & =3 f g h^{2}+\frac{1}{f g}, & h(0)=1
\end{aligned}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 .
33. Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y, b=\int_{0}^{1} f(1, y) d y, c=\int_{0}^{1} f(x, 0) d x$, $d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point $\left(x_{0}, y_{0}\right)$ in $(0,1)^{2}$ such that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=b-a \quad \text { and } \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=d-c
$$

34. Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$$
f^{\prime}(x)=\frac{x^{2}-(f(x))^{2}}{x^{2}\left((f(x))^{2}+1\right)} \quad \text { for all } x>1
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=\infty$.
35. Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}
$$

for all real numbers x and all positive integers n.
36. Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.
37. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a strictly decreasing continuous function such that $\lim _{x \rightarrow \infty} f(x)=0$. Prove that $\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x$ diverges.
38. Is there a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x ?

