GENERATING FUNCTIONS

BENJAMIN GUNBY

1. ORDINARY GENERATING FUNCTIONS

A generating function is just a way of storing the data of a sequence that happens to be extremely

useful.
o0

Instead of {a,}, we write Z anx", a power series in x.
n=0
Why is this useful?
e Compute closed-form expressions
e Convert less-natural operations on sequences (e.g. convolution) to simpler ones.
e Prove combinatorial identities
n—1
Example (Classic). Let a9 = 1, and for n > 1, let a, := Zaian_l_i. Find a closed-form
i=0
expression for a;.

Solution. Let f(x) = anz". So zf(x)?+ 1= f(x). Solving, f(x) = 1=¥1=% VZ;M.
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SO % = E_O 2(22"‘1)< (;_:_1 )>x’ (Shift index by 1.) We can rewrite this coefficient in the

usual way as ZJ%I (2;)
Example (From Putnam). Let AU B be a partition of the nonnegative integers. Suppose that for
every n > 0, the number of solutions to a1 + a2 = n, a; # az € A, is the same as the number of

solutions to b1 4+ bs = n, by # bs € B. Find all possibilities for A and B.
o

Solution. Let 14 be the indicator function of A. Define f(x) = Z 14(i)2", and g(z) similarly for
i=0

B. Then f (JU)2 gives the number of solutions to a; + a2 = n. The solutions where a1 = ay are given

by f(x?).
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So f(x)? = f(a?) = g(x)? — g(2?). That is, f(2%) —g(2?) = f(2)? —g(2)* = (f(2) —g(2))(f(2) +
9(2)) = (f(2) = g()) 155
So f(x) — g(x) = (F(z2) — g(&)(1 — 2). Terating, f(z) — g(x) = (1 2)(1 —22)---(1 -
)). Assuming that 0 € A, f(2?") — g(2®") = 1 as n — 0o. So f(z) — g(x) =
H(l - in).

i=0
The right hand side has +1 and —1 as coefficients depending on the terms in the binary expansion
of n. So A and B must be, in some order, the set of nonnegative integers with an even and odd

number of ones in their binary representation.

Example (USA TST 2010). Let m,n € Z*, m > n. Let Sy, be the set of all n-term sequences
of positive integers (aq,...,a,) such that a; + - -+ + a, = m. Show that

n—1 /n -
%1“12@--%% _Z(—w(i)(n—z) .

Solution. The giant sum on the left indicates that we’ll likely be looking at a product of generating
functions. We'd like to be able to sum over all n-tuples, not just those that sum to m, as the sum
over all n-tuples of positive integers can be broken apart into several subsums.

Thus we sum the left side over all such m, first multiplying each term by 2™ to form a generating
function. We obtain the generating function
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The corresponding generating function for the right side is

m=0 \7=0

oo n—1 /n .
= ()
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=20 () X
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What to do now? This is simply a case of partial fractions. We must have

nlz™

f(x):(1_33)(1—2x).--(1—nx) :(_1)n+;1—ix

for some ¢q, ..., ¢, € R. Applying the usual trick of multiplying by (1 —iz) and substituting x = %,

we see that

n! n!
CZ = y = . . N
ZnH(l_‘]> ZH(Z_J)
i ’ i
Now, H(] —i) = (=1)"""(i — 1)!(n — i)!. Therefore, ¢; = (—1)"~ (). Putting this together,

JFi

i) +Z Ol

1—wx

But this is the same sum we obtained for g(z), just with ¢ replaced by n — ¢ and an extra (—1)".
Thus f(z) = g(x) + (=1)", so for all m > 1 the coefficient of x in f is the same as that in g, as
desired.

2. EXPONENTIAL GENERATING FUNCTIONS

Instead of ) a,x™, use ) “ma”.

Why is this helpful7 Well, for one thing, if our sequence grows very fast, the usual g.f. might
not converge.

Also, multiplication becomes, instead of convolution, ) a;by,— Z( ) In other words, if a,, counts
the number of A-structures on n objects, and b,, counts the number of B-structrues on n objects, the
product of the egf’s becomes the number of ways to write n objects as the union of an A-structure
and a B-structure.

For example, let a,, be the number of trees on n labelled vertices, and f4(z) be the corresponding
EGF. Let b, be the number of cycles on n labelled vertices, and let fg(x) be the corresponding
EGF. Then f4fp is the EGF for the number of ways to have a graph on n labelled vertices that is
the disjoint union of a tree and a cycle.

What if we wanted to instead find the number of ways to have a disjoint union of 2 trees on n

2
vertices? We would then have %A, where the 2 is because we can switch the two trees.

Similarly, if we wanted to have a disjoint union of k trees, we would have 1A -
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So if we wanted to find the number of forests on n vertices, it would have EGF Z fA = el

What we have just shown in this example is the following:
If f is the EGF for the number of A-structures on n objects, ef is the EGF for the number of
partitions into A-structures on n objects.

Example. A permutation is a partition of n elements into cycles. There are (n — 1)! cycles on n

vertices, so the EGF for cycles is ‘”7 =—In(l —z).

The EGF for permutations is simply > 2! = ix

So our identity just says that e~ (1=2) = 1— which is not illuminating but is a nice check.
Example. What about set partitions? How many ways can you partition the set {1,...,n} into

other sets? Well, for each i > 0, there is one set of size i, so the egf for sets (of size > 0) is

't o . z
E - = e” — 1, so the EGF for set partitions is e¢ 1.
1!

Example. How many derangements are there on n elements? Well, these are just the permutations
with no cycles of size 1. The EGF for cycles of size more than 1 is —In(1 — x) — x, so we get

o0
e~ In(l=2)—z e~ as the EGF. This equals () 2*) (Z(—l)“ﬁ—f) =
-

n .
1)t
So there are n! ( E ( 5 ) > derangements on n elements. Could use PIE, but this way requires
0!
i=0
less thought!

Example. How many cycles of length k& does the average permutation of size n have?
1
If we weight each length-k cycles with weight ¢, we get that Z —'t# of length k cycles .n
n!

n,0€Sny
e . Differentiating and setting ¢t = 1, we get “-e = k(l D ?
(obviously) there are no length-k cycles in permutations of length < k, and for all > k, the

average permutation has % cycles of length k.
A final example, to show another way of using generating functions:

Example. Consider the set of all alternating permutations on n vertices—that is, permutations on
[n] with a1 < ag > a3 < aq > ---. Roughly how many such permutations are there?
We’ll want an EGF here; there are too many alternating permutations for a regular GF to suffice.
3,
Casework on the location of 1 yields that (for n > 1) f(n) = Z ( . )agiangil. Similarly,

= 21
B,
fln) = <2, n 1) A2i+10n—2i—2, caseworking on the location of n.
i
=0
l Ky |
Adding, 2f(n) = 2 ( ; >aiani1.
1=

So if F(z) = Y f(n)z", then 2F'(x) = F(x)? + 1. This differential equation has solution
f(z) =tan (% + C).
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Setting # = 0, we want F(0) = 1, so C = Z. Therefore, f(z) = tan (£ + %) = itzzé =

2

secr + tan .
One nice feature here is that sec gives the even terms, and tan gives the odd terms.

So, how fast does this sequence grow? Well, we have a pole at §, so (likely) the sequence will

grow at rate (%)n nl.
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