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Abstract
We explore an intimate connection between Young tableaux and representations of the symmetric
group. We describe the construction of Specht modules which are irreducible representations of
Sn, and also highlight some interesting results such as the branching rule and Young’s rule. Some
knowledge of basic representation theory is assumed.

4.1 Introduction
In this article, we explore a connection between representations of the symmetric group Sn and
combinatorial objects called Young tableaux. We define Young tableaux in Section 4.2, but for
now, it suffices to say that they are fillings of a certain configuration of boxes with entries from
{1, 2, . . . , n}, an example of which is shown below.

1 2 4
3 5 6
7 8
9

So how are representations of Sn related to Young tableau? It turns out that there is a very elegant
description of irreducible representations of Sn through Young tableaux. Let us have a glimpse of
the results. Recall that there are three irreducible representations of S3. It turns out that they can
be described using the set of Young diagrams with three boxes. The correspondence is illustrated
below.

trivial representation sign representation standard representation

It is true in general that the irreducible representations of Sn can be described using Young diagrams
of n boxes! Furthermore, we can describe a basis of each irreducible representation using standard
Young tableaux, which are numberings of the boxes of a Young diagram with 1, 2, . . . , n such that
the rows and columns are all increasing. For instance, the bases of the standard representation of
S3 correspond to the following two standard Young tableaux:

1 2
3

1 3
2
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The dimension of the irreducible representations can be easily computed from its Young diagram
through a result known as the hook-length formula, as we explain in Section 4.4.

There are many other surprising connections between Young tableaux and representations of
Sn, one of which is the following. Suppose we have an irreducible representation in Sn and we
want to find its induced representation in Sn+1. It turns out that the induced representation is
simply the direct sum of all the representations corresponding to the Young diagrams obtained by
adding a new square to the original Young diagram! For instance, the induced representation of the
standard representation from S3 to S4 is simply

IndS4
S3

= ⊕ ⊕ .

Similarly, the restricted representation can be found by removing a square from the Young diagram:

ResS2 = ⊕ .

In this paper, we describe the connection between Young tableaux and representations of Sn.
The goal is to attract readers to the subject by showing a selection of very elegant and surprising
results. Most proofs are omitted, but those who are interested may find them in [Fu], [FH], or
[Sa]. We assume familiarity with the basics of group representations, including irreducible repre-
sentations and characters. Induced representations are used in Section 4.5. For references on group
representations, see [FH], [Sa], or [Se].

In Section 4.2, we introduce Young diagrams and Young tableaux. In Section 4.3, we introduce
tabloids and use them to construct a representation of Sn known as the permutation module Mλ.
However, permutation modules are generally reducible. In Section 4.4, we construct irreducible
representations of Sn known as Specht modules Sλ. Specht modules Sλ correspond bijectively
to Young diagrams λ and they form a complete list of irreducible representations. In Section 4.5,
we discuss the Young lattice and the branching rule, which are used to determine the induced and
restricted representations of Sλ. Finally, in Section 4.6, we introduce Kostka numbers and state a
result concerning the decomposition of permutation modules into the irreducible Specht modules.

4.2 Young Tableaux
First we need to settle some definitions and notations regarding partitions and Young diagrams.

Definition 1. A partition of a positive integer n is a sequence of positive integers
λ = (λ1, λ2, · · · , λl) satisfying λ1 ≥ λ2 ≥ · · · ≥ λl > 0 and n = λ1 + λ2 + · · · + λl.
We write λ ` n to denote that λ is a partition of n.

For instance, the number 4 has five partitions: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). We can
also represent partitions pictorially using Young diagrams as follows.

Definition 2. A Young diagram is a finite collection of boxes arranged in left-justified rows,
with the row sizes weakly decreasing.1 The Young diagram associated to the partition λ =
(λ1, λ2, · · · , λl) is the one that has l rows, and λi boxes on the ith row.

For instance, the Young diagrams corresponding to the partitions of 4 are

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

Since there is a clear one-to-one correspondence between partitions and Young diagrams, we
use the two terms interchangeably, and we will use Greek letters λ and µ to denote them.

A Young tableau is obtained by filling the boxes of a Young diagram with numbers.

1The notation used here is known as the English notation. Most Francophones, however, use the French
notation, which is the upside-down form of the English notation. E.g. (3, 1) as .
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Definition 3. Suppose λ ` n. A (Young) tableau t of shape λ, is obtained by filling in the boxes
of a Young diagram of λ with 1, 2, . . . , n, with each number occurring exactly once. In this case,
we say that t is a λ-tableau.

For instance, here are all the tableaux corresponding to the partition (2, 1):

1 2
3

2 1
3

1 3
2

3 1
2

2 3
1

3 2
1

Definition 4. A standard (Young) tableau is a Young tableaux whose the entries are increasing
across each row and each column.

The only standard tableaux for (2, 1) are

1 2
3

and 1 3
2

.

Here is another example of a standard tableau:

1 2 4
3 5 6
7 8
9

.

The definitions that we use here are taken from [Sa], however, other authors have different
conventions. For instance, in [Fu], a Young tableau is a filling which is weakly increasing across
each row and strictly increasing down each column, but may have repeated entries. We call such
tableaux semistandard and we use them in Section 4.6.

Before we move on, let us recall some basic facts about permutations. Every permutation
π ∈ Sn has a decomposition into disjoint cycles. For instance (123)(45) denotes the permutation
that sends 1 → 2 → 3 → 1 and swaps 4 and 5 (if n > 5, then by convention the other elements
are fixed by π). The cycle type of π is the partition whose parts are the lengths of the cycles in
the decomposition. So (123)(45) ∈ S5 has cycle type (3, 2). It is a basic result that two elements
of Sn are conjugates if and only if they have the same cycle type. The easiest way to see this is
to consider conjugation as simply a relabeling of the elements when the permutation is written in
cycle notation. Indeed, if

π = (a1a2 . . . ak)(b1b2 . . . bl) · · · ,
and σ sends x to x′, then

σπσ−1 = (a′1a
′
2 . . . a

′
k)(b′1b

′
2 . . . b

′
l) · · · .

This means that the conjugacy classes of Sn are characterized by the cycle types, and thus they
correspond to partitions of n, which are equivalent to Young diagrams of size n. Recall from
representation theory that the number of irreducible representations of a finite group is equal to the
number of its conjugacy classes. So our goal for the next two sections is to construct an irreducible
representation of Sn corresponding to each Young diagram.

4.3 Tabloids and the Permutation Module Mλ

We would like to consider certain permutation representations of Sn. There is the obvious one:
the permutation action of Sn on the elements {1, 2, . . . , n}, which extends to the defining repre-
sentation. In this section, we construct other representations of Sn using equivalence classes of
tableaux, known as tabloids.

Definition 5. Two λ-tableaux t1 and t2 are row-equivalent, denoted t1 ∼ t2, if the corresponding
rows of the two tableaux contain the same elements. A tabloid of shape λ, or λ-tabloid is such an
equivalence class, denoted by {t} = {t1 | t1 ∼ t} where t is a λ-tabloid. The tabloid {t} is drawn
as the tableaux t without vertical bars separating the entries within each row.
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For instance, if

t = 1 2
3

then {t} is the tabloid drawn as
1 2
3

which represents the equivalence class containing the following two tableaux:

1 2
3

2 1
3

The notation is suggestive as it emphasizes that the order of the entries within each row is irrelevant,
so that each row may be shuffled arbitrarily. For instance:

1 4 7
3 6
2 5

=
4 7 1
6 3
2 5

6=
4 7 1
6 5
2 3

6=
4 7 1
2 3
6 5

We want to define a representation of Sn on a vector space whose basis is exactly the set of
tabloids of a given shape. We need to find a way for elements of Sn to act on the tabloids. We can
do this in the most obvious manner, that is, by letting the permutations permutate the entries of the
tabloid. For instance, the cycle (1 2 3) ∈ S3 acts on a tabloid by changing replacing its “1” by a
“2”, its “2” by a “3”, and its “3” by a “1”, as shown below:

(1 2 3)
1 2
3 =

2 3
1

We should check that this action is well defined, that is, if t1 and t2 are row-equivalent, so that
{t1} = {t2}, then the result of permutation should be the same, that is, π{t1} = π{t2}. This is
clear, as π simply gives the instruction of moving some number from one row to another.

Now that we have defined a way for Sn to act on tabloids, we are ready to define a representa-
tion of Sn. Recall that a representation of a group G on a complex vector space V is equivalent to
extending V to a C[G]-module, so we often use the term module to describe representations.

Definition 6. Suppose λ ` n. LetMλ denote the vector space whose basis is the set of λ-tabloids.
Then Mλ is a representation of Sn known as the permutation module corresponding to λ.

Let us show a few example of permutation modules. We see that the Mλ corresponding to the
following Young diagrams are in fact familiar representations.

Example 7. Consider λ = (n). We see thatMλ is the vector space generated by the single tabloid

1 2 · · · n .

Since this tabloid is fixed by Sn, we see that M (n) is the one-dimensional trivial representation.

Example 8. Consider λ = (1n) = (1, 1, . . . , 1). Then a λ-tabloid is simply a permutation of
{1, 2, . . . , n} into n rows and Sn acts on the tabloids by acting on the corresponding permutation.
It follows that M (1n) is isomorphic to the regular representation C[Sn].
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Example 9. Consider λ = (n − 1, 1). Let {ti} be the λ-tabloid with i on the second row. Then
Mλ has basis {t1}, {t2}, . . . , {tn}. Also, note that the action of π ∈ Sn sends ti to tπ(i). And so
M (n−1,1) is isomorphic to the defining representation C{1, 2, . . . , n}. For example, in the n = 4

case, the representation M (3,1) has the following basis:

t1 =
2 3 4
1

, t2 =
1 3 4
2

, t3 =
1 2 4
3

, t4 =
1 2 3
4

.

Now we consider the dimension and characters of the representation Mλ. First, we shall give
a formula for the number of tabloids of each shape.

Proposition 10. If λ = (λ1, λ2, · · · , λl),

dimMλ =
n!

λ1!λ2! · · ·λl!
.

We leave the proof of this proposition to the readers. It is a simple combinatorial exercise of
counting the number of λ-tabloids.

Now we give a formula for the characters of Mλ.

Proposition 11. Suppose λ = (λ1, . . . , λl), µ = (µ1, . . . , µm) are partitions of n. The character
of Mλ evaluated at an element of Sn with cycle type µ is equal to the coefficient of xλ1

1 xλ2
2 · · ·x

λl
l

in
mY
i=1

(xµi1 + xµi2 + · · ·+ xµil ).

To prove this formula, note that since Mλ can be realized as a permutation representation on
the λ-tabloids, its character at an element π ∈ Sn is equal to the number of tabloids fixed by π. The
rest of the proof consists of a simple generating function argument, which we leave to the readers.

Note that Proposition 10 also follows as a corollary to the above result. Indeed, the dimension
of a representation is simply the value of the character at the identity element, which has cycle type
µ = (1n). So Proposition 11 tells us that the dimension of Mλ is the coefficient of xλ1

1 xλ2
2 · · ·x

λl
l

in (x1 + · · · + xn)n, which is equal to dimMλ = n!
λ1!λ2!···λl!

by the multinomial expansion
formula.

Example 12. Let us compute the full list of the characters of the permutation modules for S4. The
character at the identity element is equal to the dimension, and it can found through Proposition 10.
For instance, the character of M (2,1,1) at e ∈ s4 is 4!/2! = 12.

Say we want to compute the character of M (2,2) at the permutation (12), which has cycle type
(2, 1, 1). Using Proposition 11, we see that the character is equal to the coefficient of x2

1x
2
2 in

(x2
1 + x2

2)(x1 + x2)2, which is 2. Other characters can be similarly computed, and the result is
shown in the following table.

permutation e (12) (12)(34) (123) (1234)
cycle type (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

M (4) 1 1 1 1 1

M (3,1) 4 2 0 1 0

M (2,2) 6 2 2 0 0

M (2,1,1) 12 2 0 0 0

M (1,1,1,1) 24 0 0 0 0

Note that in the above example, we did not construct the character table for S4, as all the Mλ

are in fact reducible with the exception of M (4). In the next section, we take a step further and
construct the irreducible representations of Sn.
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4.4 Specht Modules
In the previous section, we constructed representations Mλ of Sn known as permutation modules.
In this section, we consider an irreducible subrepresentation ofMλ that corresponds uniquely to λ.

The group Sn acts on the set of Young tableaux in the obvious manner: for a tableaux t of size
n and a permutation σ ∈ Sn, the tableaux σt is the tableaux that puts the number π(i) to the box
where t puts i. For instance,

(1 2 3)(4 5)
1 2 4 5
3 6
7

=
2 3 5 4
1 6
7

.

Observe that a tabloid is fixed by the permutations which only permute the entries of the rows
among themselves. These permutations form a subgroup of Sn, which we call the row group. We
can similarly define the column group.

Definition 13. For a tableau t of size n, the row group of t, denoted Rt, is the subgroup of Sn
consisting of permutations which only permutes the elements within each row of t. Similarly, the
column group Ct is the the subgroup of Sn consisting of permutations which only permutes the
elements within each column of t.

For instance, if

t = 4 1 2
3 5

then
Rt = S{1,2,4} × S{3,5}, and Ct = S{3,4} × S{1,5} × S{2}.

Let us select certain elements from the space Mλ that we use to to span a subspace.

Definition 14. If t is a tableau, then the associated polytabloid is

et =
X
π∈Ct

sgn(π)π{t}.

So we can find et by summing all the tabloids that come from column-permutations of t, taking
into account the sign of the column-permutation used. For instance, if

t = 4 1 2
3 5

,

then

et =
4 1 2
3 5

− 3 1 2
4 5

− 4 5 2
3 1

+
3 5 2
4 1

.

Now, through the following technical lemma, we see that Sn acts on the set of polytabloids.

Lemma 15. Let t be a tableau and π be a permutation. Then eπt = πet.

Proof. First observe that Cπt = πCtπ
−1, which can be viewed as a “relabeling” similar to the

discussion at the end of Section 4.2. Then, we have

eπt =
X
σ∈Cπt

sgn(σ)σ{πt} =
X

σ∈πCtπ−1

sgn(σ)σ{πt}

=
X
σ′∈Ct

sgn(πσ′π−1)πσ′π−1{πt} = π
X
σ′∈Ct

sgn(σ′)σ′{t} = πet. 2

Now we are ready to extract an irreducible subrepresentation from Mλ.
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Definition 16. For any partition λ, the corresponding Specht module, denoted Sλ, is the submod-
ule of Mλ spanned by the polytabloids et, where t is taken over all tableaux of shape λ.

Again, let us look at a few examples. We see that the Specht modules corresponding to the
following Young diagrams are familiar irreducible representations.

Example 17. Consider λ = (n). Then there is only one polytabloid, namely

1 2 · · · n

Since this polytabloid is fixed by Sn, we see that S(n) is the one-dimensional trivial representation.

Example 18. Consider λ = (1n) = (1, 1, . . . , 1). Let

t =

1
2
...
n

Observe that et is a sum of all the λ-tabloids multiplied by the sign of permutation it took to get
there. For any other λ-tableau t′, we have either et = et′ if t′ is obtained from t through an even
permutation, or et = −et′ if t′ is obtained from t through an odd permutation. So Sλ is a one-
dimensional representation. From Lemma 15 we have πet = eπt = sgn(π)et. From this we see
that S(1n) is the sign representation.

Example 19. Consider λ = (n − 1, 1). Continuing the notation from Example 9 where we use
{ti} to denote the λ-tabloid with i on the second row, we see that the polytabloids have the form
{ti} − {tj}. Indeed, the polytabloid constructed from the tableau

i a b · · ·
j

is equal to {ti} − {tj}. Let us temporarily use ei to denote the tabloid {ti}. Then Sλ is spanned
by elements of the form ei − ej , and it follows that

S(n−1,1) = {c1e1 + c2e2 + · · · cnen | c1 + c2 + · · ·+ cn = 0}.

This is an irreducible representation known as the standard representation. The direct sum of
the standard representation and the trivial representation gives the defining representation, that is,
S(n−1,1) ⊕ S(n) = M (n−1,1).

We know that the S3 has three irreducible representations: trivial, sign, and standard. These are
exactly the ones described above. Furthermore, there are exactly three partitions of 3: (3), (1, 1, 1),
(2, 1). So in this case, the irreducible representations are exactly the Specht modules. Amazingly,
this is true in general.

Theorem 20. The Specht modules Sλ for λ ` n form a complete list of irreducible representations
of Sn over C.

The proof may be found in [Sa]. Recall that at the end of Section 4.2 we noted that the number
of irreducible representations of Sn equals the number of Young diagrams with n boxes. This
Theorem gives a “natural” bijection between the two sets.
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Note that the polytabloids are generally not independent. For instance, as we saw in Example
18, any pair of polytabloids in S(1n) are in fact linearly dependent. Since we know that Sλ is
spanned by the polytabloids, we may ask how to select a basis for vector space from the set of
polytabloids. There is an elegant answer to this question: the set of polytabloids constructed from
standard tableaux form a basis for Sλ. Recall that a standard tableau is a tableau with increasing
rows and increasing columns.

Theorem 21. Let λ be any partition. The set

{et : t is a standard λ-tableau}

forms a basis for Sλ as a vector space.

The proof may be found in Sagan [Sa]. We only sketch an outline here. First, an ordering is
imposed on tabloids. If some linear combination of et is zero, summed over some standard tableaux
t, then by looking at a maximal tabloid in the sum, one can deduce that its coefficient must be zero
and conclude that {et : t is a standard λ-tableau} is independent. Next, to prove that the set spans
Sλ, a procedure known as the straightening algorithm is used to write an arbitrary polytabloid as
a linear combination of standard polytabloids.

Now we look at some consequences of the result. Let fλ denote the number of standard λ-
tableaux. Then the following result follows immediately from Theorem 21.

Corollary 22. Suppose λ ` n, then dimSλ = fλ.

Let us end this section with a few results concerning fλ.

Theorem 23. If n is a positive integer, thenX
λ`n

(fλ)2 = n!

where the sum is taken over all partitions of n.

Proof. Recall from representation theory that the sum of the squares of the irreducible representa-
tion is equal to the order of the group. This theorem follows from that fact and Corollary 22. 2

Theorem 23 also has an elegant combinatorial proof using the celebrated RSK correspondence.
See [Fu] or [Sa] for details.

Given the partition λ, the number dimSλ = fλ can be computed easily using the hook-length
formula of Frame, Robinson, and Thrall, which we state now.

Definition 24. Let λ be a Young diagram. For a square u in the diagram (denoted by u ∈ λ), we
define the hook of u (or at u) to be the set of all squares directly to the right of u or directly below
u, including u itself. The number of squares in the hook is called the hook-length of u (or at u),
and is denoted by hλ(u).

For example, consider the partition λ = (5, 5, 4, 2, 1). The figure on the left shows a typical
hook, and the figure on the right shows all the hook-lengths.

u • • •
•
•

9 7 5 4 1
8 6 4 3 1
6 4 2 1
3 1
1

Theorem 25 (Hook-length formula). Let λ ` n be a Young diagram. Then

dimSλ = fλ =
n!Q

u∈λ hλ(u)
.
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For instance, from the above example, we get

dimS(5,5,4,2,1) = f (5,5,4,2,1) =
17!

9 · 8 · 7 · 62 · 5 · 43 · 32 · 2 · 15
= 3403400.

For proof of the hook-length formula, see [Sa].
Finally, we state a formula for the characters of the representation Sλ.

Theorem 26 (Frobenius formula). Suppose λ = (λ1, . . . , λl), µ = (µ1, . . . , µm) are partitions
of n. The character of Sλ evaluated at an element of Sn with cycle type µ is equal to the coefficient
of xλ1+l−1

1 xλ2+l−2
2 · · ·xλll in

Y
1≤i<j≤l

(xi − xj)
mY
i=1

(xµi1 + xµi2 + · · ·+ xµil ).

See [FH] for proof. Observe the similarity between the statements of Proposition 10 and the
hook-length formula, and also between Proposition 11 and the Frobenius formula. The hook-length
formula can also be derived from the Frobenius formula by evaluating the character at the identity
element. Again, see [FH] for details.

4.5 Young Lattice and Branching Rule
Now let us consider the relationships between the irreducible representations of Sn and those of
Sn+1.

Consider the set of all Young diagrams. These diagrams can be partially ordered by inclusion.
The resulting partially ordered set is known as Young’s lattice.

We can represent Young’s lattice graphically as follows. Let λ ↗ µ denote that µ can be
obtained by adding a single square to λ. At the nth level, all the Young diagrams with n boxes are
drawn. In addition, λ to connected to µ if λ↗ µ. Here is a figure showing the bottom portion of
Young’s lattice (of course, it extends infinitely upwards).

;

Now we consider the following question: given Sλ a representation of Sn, how can we de-
termine its restricted representation in Sn−1 and its induced representation in Sn+1? There is a
beautiful answer to this question, given by Young’s branching rule.

Theorem 27 (Branching Rule). Suppose λ ` n, then

ResSn−1 S
λ ∼=

M
µ:µ↗λ

Sµ and Ind
Sn+1
Sn

Sλ ∼=
M
µ:λ↗µ

Sµ.
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For instance, if λ = (5, 4, 4, 2), so that

λ = ,

then the diagrams that can be obtained by removing a square are

So
ResS14 S

(5,4,4,2) = S(4,4,4,2) ⊕ S(5,4,3,2) ⊕ S(5,4,4,1).

Similarly, the diagrams that can be obtained by adding a square are

So
IndS16

S15
S(5,4,4,2) = S(6,4,4,2) ⊕ S(5,5,4,2) ⊕ S(5,4,4,3) ⊕ S(5,4,4,2,1).

The proof of Theorem 27 may be found in [Sa]. We shall only mention that the two parts of
the branching rules are equivalent through the Frobenius reciprocity theorem.

There is an interesting way to view this result. If we consider Sλ only as a vector space, then
the branching rule implies that

Sλ ∼=
M
µ:µ↗λ

Sµ ∼=
M

ν:ν↗µ↗λ

Sν ∼= · · · ∼=
M

∅=λ(0)↗λ(1)↗···↗λ(n)=λ

S∅.

The final sum is indexed over all upward paths from ∅ to λ in Young’s lattice. Since S∅ is simply
an one-dimensional vector space, it follows that we can construct a basis for Sλ where each basis
vector corresponds to a upward path in the Young lattice from ∅ to λ. However, observe that upward
paths in the Young lattice from ∅ to λ correspond to standard λ-tableaux! Indeed, for each standard
λ-tableaux, we can associate to it a path in the Young lattice constructed by adding the boxes in
order as labeled in the standard tableaux. The reverse construction is similar. As an example, the
following path in the Young lattice

∅↗ ↗ ↗ ↗ ↗

corresponds to the following standard tableau

1 2 4
3 5

.

So we have recovered a basis for Sλ which turned out to be the same as the one found in Theorem
21.

Now, one may object that this argument contains some circular reasoning, namely because
the proof of the branching rule (as given in [Sa]) uses Theorem 21, that a basis of Sλ can be
found through standard tableaux. This is indeed the case. However, there is an alternative view on
the subject, given recently by [VO], in which we start in an abstract algebraic setting with some
generalized form of the Young lattice. Then, we can form a basis known as the Gelfand-Tsetlin
basis by taking upward paths as we did above. We then specialize to the symmetric group and
“discover” the standard tableaux. This means that the standard tableaux in some sense form a
“natural” basis for Sλ.
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4.6 Decomposition of Mµ and Young’s Rule
First, we constructed the permutation modules Mλ, and from it we extracted irreducible subrepre-
sentations Sλ, such that Sλ forms a complete list of irreducible representations of Sn as λ varies
over all partitions of n.

Let us revisit Mµ and ask, how does Mµ decompose into irreducible representations. It turns
out that Mµ only contains the irreducible Sλ if λ is, in some sense, “greater” than µ. To make this
notation more precise, let us define a partial order on partitions of n. (Note that this is not the same
as the one used to define Young’s lattice!)

Definition 28. Suppose that λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µn) are partitions of n.
Then λ dominates µ, written λ D µ, if

λ1 + λ2 · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi

for all i ≥ 1. If i > l (respectively, i > m), then we take λi (respectively, µi) to be zero.

In other words, λ D µ if, for every k, the first k rows of the Young diagram of λ contains more
squares than that of µ. Intuitively, this means that diagram for λ is short and fat and the diagram
for µ is long and skinny.

For example, when n = 6, we have (3, 3) D (2, 2, 1, 1). However, (3, 3) and (4, 1, 1) are in-
comparable, as neither dominates the other. The dominance relations for partitions of 6 is depicted
using the following figure. Such diagrams are known as Hasse diagrams and are used to represent
partially ordered sets.

(6)

(5)

OO

(4, 2)

OO

(3, 3)

??�����
(4, 1, 1)

__?????

(3, 2, 1)

__?????
??�����

(3, 1, 1, 1)

??�����
(2, 2, 2)

__?????

(2, 2, 1, 1)

__?????
??�����

(2, 1, 1, 1, 1)

OO

(1, 1, 1, 1, 1, 1)

OO

Now we can precisely state what we wanted to say at the beginning of the section.

Proposition 29. Mµ contains Sλ as a subrepresentation if and only if λ D µ. Also, Mµ contains
exactly one copy of Sµ.

We may ask how many copies of Sλ is contained in Mµ. It turns out that this answer has a
nice combinatorial interpretation. In order to describe it, we need a few more definitions.
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Definition 30. A semistandard tableau of shape λ is an array T obtained by filling in the boxes
of λ with positive integers, repetitions allowed, and such that the rows weakly increase and the
columns strictly increase. The content of T is the composition µ = (µ1, µ2, . . . , µm), where µi
equals the number of i’s in T .

For instance, the semistandard tableau shown below may be seen to have shape (4, 2, 1) and
content (2, 2, 1, 0, 1, 1):

1 1 2 5
2 3
6

.

The number of semistandard tableau of a given type and content is known as the Kostka num-
ber.

Definition 31. Suppose λ, µ ` n, the Kostka number Kλµ is the number of semistandard
tableaux of shape λ and content µ.

For instance, if λ = (3, 2) and µ = (2, 2, 1), then Kλµ = 2 since there are exactly two
semistandard tableaux of shape λ and content µ:

1 1 2
2 3

and 1 1 3
2 2

.

We are almost ready to state the result, but let us first make the following observation, whose
proof we leave as a combinatorial exercise for the readers.

Proposition 32. Suppose that λ, µ ` n. Then Kλµ 6= 0 if and only if λ D µ. Also, Kλλ = 1.

We are now ready to state the result about the decomposition of Mλ into irreducible represen-
tations.

Theorem 33 (Young’s Rule). Mµ ∼=
M
λDµ

KλµS
λ.

For instance, from the table above, we see that

M (2,2,1) ∼= S(2,2,1) ⊕ S(3,1,1) ⊕ 2S(3,2) ⊕ 2S(4,1) ⊕ S(5).

Note that Proposition 32 is a consequence of Young’s rule. We shall end with a couple of
examples illustrating Young’s rule.

Example 34. Note that K(n)µ = 1 as there is only one (n)-semistandard tableau of content µ,
formed by filling in all the required entries in order. Then Young’s Rule implies that every Mµ

contains exactly one copy of the trivial representation S(n) (see Example 17).

Example 35. Since a semistandard tableau with content (1n) is just a standard tableau, we have
Kλ(1n) = fλ (the number of standard λ-tableaux). So Young’s rule says thatM (1n) ∼=

L
λ f

λSλ.
But from Example 8 we saw that M (1n) is simply the regular representation. By taking the magni-
tude of the characters of both sides, we get another proof of the identity n! =

P
λ`n(fλ)2 that we

saw in Theorem 23.
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