Regularity method for sparse graphs and its applications

Yufei Zhao (MIT)

Joint work with

David Conlon (Caltech) Jacob Fox (Stanford) Benny Sudakov (ETH Zurich)

arXiv:2004.10180

Szemerédi's regularity method

A powerful rough structural description of all large graphs

Graph regularity lemma (Szemerédi '70s). For every $\varepsilon > 0$, every graph has an ε -regular vertex partition into $\leq M(\varepsilon)$ parts.

Many important applications:

- Extremal graph theory
- Additive combinatorics

 $(U,W) \text{ is } \varepsilon\text{-regular if}$ $\forall A \subset U, |A| \ge \varepsilon |U|$ $\forall B \subset W, |B| \ge \varepsilon |W|$ $|d(A,B) - d(U,W)| \le \varepsilon$

An equitable vertex partition is ε -regular if at all but $\leq \varepsilon$ -fraction of pairs of vertex sets are ε -regular

Graph removal lemmas

Graphs with "few" triangles can be made triangle-free by deleting "few" edges

Triangle removal lemma (Ruzsa–Szemerédi '76). Every *n*-vertex graph with $o(n^3)$ triangles can be made triangle-free by removing $o(n^2)$ edges

Graph removal lemma. Fix a graph *H*. Every *n*-vertex graph with $o(n^{\nu(H)})$ triangles can be made *H*-free by removing $o(n^2)$ edges

Applications:

- Extremal combinatorics/graph theory
- Property testing
- Additive combinatorics

Preview: sparse removal lemmas

n vertices, edge density on the order of p = p(n) = o(1)

"Sparse graph removal lemma". Fix a graph H. [Additional hypotheses] An *n*-vertex graph with with $o(p^{e(H)}n^{v(H)})$ copies of H can be made H-free by removing $o(pn^2)$ edges.

Restricting to C₄-free graphs: edge-density $\leq p \coloneqq 1/\sqrt{n}$ by Kővári–Sós–Turán

A new sparse { C_3 , C_5 }-removal lemma (Conlon, Fox, Sudakov, Z.). Every *n*-vertex C_4 -free graph with $o(p^5n^5) = o(n^{5/2}) C_5$'s can be made C_5 -free and C_3 -free by removing $o(pn^2) = o(n^{3/2})$ edges.

Avoiding equations

i.e., avoiding x + y = 2z

Roth's theorem ('53). Every subset of $[N] = \{1, 2, ..., N\}$ without a 3-term arithmetic progression (3-AP) has size o(N).

Proof (Ruzsa–Szemerédi '76).

Given a 3-AP-free set *S*, set up a Cayley-like graph where every edge lies in exactly one triangle.

Apply triangle removal lemma on this graph to deduce that it has $o(N^2)$ edges.

Since #edges $\approx N|S|$, conclude |S| = o(N)

Preview: equation-avoidance in Sidon sets

A Sidon set is a set of integers avoiding nontrivial solutions to

$$x + y = z + w$$

Max size of a Sidon subset of [N] is $\sim \sqrt{N}$

Question: What can we say about Sidon sets of nearly maximum size?

What are dense Sidon subsets of {1,2,...,n} like?

The short answer if you don't feel like reading a post with some actual mathematics in it is that I don't know.

Ideally a description similar to Freiman's theorem, but seems a bit hopeless

We give a weak answer: a Sidon set of size $\geq c\sqrt{N}$ contains solutions to every 5-variable translation-invariant linear equations with integer coefficients.

Theorem (Conlon, Fox, Sudakov, Z.). Every Sidon subset of [N] avoiding nontrivial solutions to $x_1 + x_2 + x_3 + x_4 = 4x_5$ has size $o(\sqrt{N})$.

Sparse regularity

- Szemerédi's regularity lemma, in its original form, is useless for sparse graphs, i.e., with edge-density *o*(1)
- Sparse regularity: error tolerance commensurate with edge-density
- Obtaining a regularity partition for sparse graphs
 - Kohayakawa, Rödl ('90s): under additional hypothesis of "no dense spots"
 - Scott ('11): no additional hypothesis on the graph, but possibly hiding most of the graph in irregular pairs
- Applications? Counting lemma?

What is a counting lemma?

Given three "regular pairs" from the regularity partition, we want:

triangle density ≈ product of edge densities

We call such a statement a triangle counting lemma

True for dense graphs

Serious challenges for sparser graphs (false without addl. hyp.)

Failures of counting lemmas in sparse graphs

Examples of random-like graphs without random-like triangle-counts

- G(n, p) minus all triangles when $p = o(1/\sqrt{n})$ so that $p^3n^3 = o(pn^2)$
- Alon's pseudorandom triangle-free graph

• (with Ashwin Sah, Mehtaab Sawhney, and Jonathan Tidor arXiv: 2003.05272)

Recent counterexample to Bollobás–Riordan conjectures on sparse graph limits, showing a strong failure of Chung—Graham—Wilson for sparse graph sequences: n vertices, edge density $n^{-o(1)}$, and normalized H-density $\rightarrow \exp(-\#\Delta's \text{ of } H)$

(C_4 -pseudorandom $\Rightarrow C_3$ -pseudorandom)

Sparse regularity applications

Green–Tao theorem ('08). The primes contain arbitrarily long APs.

"Relative Szemerédi theorem." Fix k. Suppose $S \subset \mathbb{Z}/N\mathbb{Z}$ satisfies some pseudorandomness hypotheses. Then every k-AP-free subset of S has size o(|S|).

Significantly simplified in [Conlon, Fox, Z. '15] via a new counting lemma Additional hypothesis in this sparse counting lemma: *G* is contained in some *pseudorandom host*

Removal lemmas

Triangle removal lemma (Ruzsa–Szemerédi '76). Every *n*-vertex graph with $o(n^3)$ triangles can be made triangle-free by removing $o(n^2)$ edges

 $p \coloneqq 1/\sqrt{n}$

A new sparse {C₃, C₅}-removal lemma (Conlon, Fox, Sudakov, Z.). Every *n*-vertex graph with

- $\frac{10 C_4}{10 C_4} o(p^4 n^4) = o(n^2) C_4's$
- & $o(p^5n^5) = o(n^{5/2}) C_5's$

can be made C_5 -free and C_3 -free by removing $o(pn^2) = o(n^{3/2})$ edges.

Corollary. An *n*-vertex C_5 -free graph can be made triangle-free by deleting $o(n^{3/2})$ edges.

with $o(n^2) C_5$'s

 $o(n^2)$ cannot be replaced by $o(n^{2.442})$ but we don't know the optimal exponent

Extremal results in hypergraphs

In a hypergraph a Berge cycle of length k consists of

- *k* distinct vertices *v*₁, ..., *v*_k
- *k* distinct edges *e*₁, ..., *e*_{*k*}
- $v_i, v_{i+1} \in e_i \forall i \text{ (indices mod } k)$

Question. Max # edges in *n*-vertex 3-graph with no Berge cycle of length ≤ 5 ? Previously: $O(n^{3/2})$ [Lazebnik, Verstraëte '03] [Ergemlidze, Methuku '18+] **Corollary of new result**: $O(n^{3/2})$ (also same answer for *r*-graphs for all $r \geq 3$) Also: # *n*-vertex 3-graphs with no Berge cycle of length ≤ 5 is $2^{O(n^{3/2})}$

Brown—Erdős—Sós type problems

BES(n, e, v) = max # triples in an n-vertex 3-graph without e edges spanning $\leq v$ vertices?

Ruzsa—Szemerédi theorem: $BES(n, 6, 3) = o(n^2)$

BES conjecture: $BES(n,7,4) = o(n^2)$, $BES(n, 8,5) = o(n^2)$, ...

Corollary of new result: BES(10, 5) = $o(n^{3/2})$

Avoiding solutions to equations

Roth's theorem ('53). Every subset of $[N] = \{1, 2, ..., N\}$ without a 3-AP has size o(N).

Theorem (CFSZ). Every subset of [N] without a nontrivial solution to $x_1 + x_2 + 2x_3 = x_4 + 3x_5$

has size $o(\sqrt{N})$. Here trivial solutions are ones of the form (x,y,y,x,y) or (y,x,y,x,y)

Avoid this 5-var eqn \Rightarrow avoid $x_1 + x_2 = x_4 + x_5$, i.e., a Sidon set, thus $O(\sqrt{N})$ size

Theorem (CFSZ). The maximum size of a Sidon subset of [N] without a solution in distinct variables to the equation

$$x_1 + x_2 + x_3 + x_4 = 4x_5$$

is at most $o(\sqrt{N})$ and at least $N^{1/2-o(1)}$.

Erdős–Simonovits compactness conjecture

Excluding a finite set of graphs ≈ excluding the worst one

Conjecture. Given graphs $F_1, ..., F_k$, $\exists i, c > 0$: max # edges in an *n*-vertex graph avoiding all $F_1, ..., F_k$ $\geq c \cdot \max$ # edges in an *n*-vertex graph avoiding F_i

False for hypergraphs (due to Ruzsa–Szemerédi 6,3-theorem)

The equation-avoidance analog is false too! For subset of [N]

- Largest subset avoiding $x_1 + x_2 = x_3 + x_4$ has size $\sim \sqrt{N}$ (Sidon sets)
- Largest subset avoiding $x_1 + x_2 + x_3 + x_4 = 4x_5$ has size $N^{1-o(1)}$ (Behrend)

But! Avoiding both equations simultaneously \Rightarrow size = $o(\sqrt{N})$

Regularity recipe

- 1. Partition the vertex set using (sparse) regularity lemma
- 2. Clean up the graph
 - Remove edges from irregular pairs and very sparse pairs
 - (Only for sparse regularity) Remove edges from extra dense pairs
- **3.** Count subgraphs

Removing dense spots:

If $o(n^2) C_4$'s, then $o(n^{3/2})$ edges lie between too-dense parts.

C_5 counting lemma

A **counting lemma** compares subgraph densities between two (weighted) graphs that are close in cut norm

C_5 -counting lemma in graphs with not too many C_4 's.

- G : 5-partite sparse graph with edge-density p
 - has $O(p^4n^4) C_4$'s between adjacent parts
- G': is has edge-weights in [0, Cp]
- If G and G' close in cut norm, then

 C_5 -density in $G > C_5$ -density in $G' - o(p^5)$

Being C_4 -free helps counting C_5

A toy case: all vertex-degrees equal, and all bipartite graphs pseudorandom Second neighborhood expands to linear size,

thereby giving lots of C₅'s

In general, analytic argument: replace two adjacent sparse pairs by a single "dense" pair

Proof of sparse removal lemma

Sparse {C₃, C₅}-removal lemma (CFSZ). Every *n*-vertex graph with

- $o(n^2) C_4$'s and
- $o(n^{5/2}) C_5's$

can be made C_5 -free and C_3 -free by removing $o(n^{3/2})$ edges.

- **1.** Partition. Apply regularity partition to approximate *G* by a weighted graph *G*'
- 2. Clean. Remove $o(n^{3/2})$ edges from irregular, too-sparse, or too-dense pairs in G
- **3.** Count. If any C_3 or C_5 remain in *G*, then can find C_5 in *G*'. Apply counting lemma to deduce that *G* has lots of C_5 's

Proof of equation-avoidance in Sidon sets

Theorem (CFSZ). If $A \subset [N]$ is a Sidon set without nontrivial solution to $x_1 + x_2 + x_3 + x_4 = 4x_5$, then $|A| = o(\sqrt{N})$.

Set up a 5-partite graph Avoiding $x_1 + x_2 + x_3 + x_4 = 4x_5$ \Rightarrow every edge lies in exactly one C_5 Sidon $\Rightarrow C_4$ -free between parts Sparse C_5 -removal lemma $\Rightarrow o(N^{3/2})$ edges $\Rightarrow |A| = o(\sqrt{N})$

Sparse regularity and applications

- New C_5 -counting lemma in sparse graphs with not too many C_4 's
- Sparse removal lemmas. Every *n*-vertex graph with $o(n^2) C_4$'s and $o(n^{5/2}) C_5$'s can be made C_5 -free and C_3 -free by removing $o(n^{3/2})$ edges.
- An *n*-vertex C_5 -free graph can be made triangle-free by deleting $o(n^{3/2})$ edges.
 - Applications to extremal problems on hypergraphs
- A Sidon subset of [N] avoiding solutions to a fixed 5-variable translation-invariant equation has size $o(\sqrt{N})$