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Szemerédi’s regularity method

A powerful rough structural descrip3on of all large graphs

Many important applica3ons:
• Extremal graph theory
• Addi3ve combinatorics

Graph regularity lemma (Szemerédi ’70s).
For every ε > 0, every graph has an ε-regular 
vertex par33on into ≤ M(ε) parts.
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(U,W) is ε-regular if  
∀𝐴 ⊂ 𝑈, 𝐴 ≥ 𝜀|𝑈|
∀𝐵 ⊂ 𝑊, 𝐵 ≥ 𝜀|𝑊|

𝑑 𝐴, 𝐵 − 𝑑 𝑈,𝑊 ≤ 𝜀

An equitable vertex par77on is ε-regular
if at all but ≤ 𝜀-frac7on of pairs of 
vertex sets are ε-regular



Graph removal lemmas

Applica4ons:
• Extremal combinatorics/graph theory
• Property tes4ng
• Addi4ve combinatorics

Triangle removal lemma (Ruzsa–Szemerédi ’76). Every n-vertex graph 
with o(n3) triangles can be made triangle-free by removing o(n2) edges

Graph removal lemma. Fix a graph H. Every n-vertex graph with o(nv(H)) 
triangles can be made H-free by removing o(n2) edges

Graphs with “few” triangles can be made triangle-free by deleting “few” edges



Preview: sparse removal lemmas
n ver3ces, edge density on the order of p = p(n) = o(1)

“Sparse graph removal lemma”. Fix a graph H. [Addi3onal hypotheses]
An n-vertex graph with with o(pe(H)nv(H)) copies of H can be made H-free 
by removing o(pn2) edges.

Restric(ng to C4-free graphs: edge-density ≲ 𝑝 ≔ 1/ 𝑛 by Kővári–Sós–Turán

A new sparse {C3,C5}-removal lemma (Conlon, Fox, Sudakov, Z.).
Every n-vertex C4-free graph with o(p5n5) = o(n5/2) C5’s can be made 
C5-free and C3-free by removing o(pn2) = o(n3/2) edges.



Avoiding equa5ons

Proof (Ruzsa–Szemerédi ’76).
Given a 3-AP-free set S, set up a Cayley-like graph where 
every edge lies in exactly one triangle. 
Apply triangle removal lemma on this graph to deduce 
that it has o(N2) edges. 
Since #edges ≍ 𝑁 𝑆 , conclude 𝑆 = 𝑜 𝑁

Roth’s theorem (’53). Every subset of [N] = {1, 2, …, N} without a 3-term 
arithmetic progression (3-AP) has size o(N).

i.e., avoiding x + y = 2z



Preview: equa5on-avoidance in Sidon sets
A Sidon set is a set of integers avoiding nontrivial solu(ons to

𝑥 + 𝑦 = 𝑧 + 𝑤

Max size of a Sidon subset of [N] is ~ 𝑁
Ques%on: What can we say about Sidon sets of 
nearly maximum size? 

Theorem (Conlon, Fox, Sudakov, Z.). Every Sidon subset of [N] avoiding nontrivial 
solu(ons to 𝑥! + 𝑥" + 𝑥# + 𝑥$ = 4𝑥% has size 𝑜 𝑁 .

Ideally a descrip(on similar to Freiman’s theorem, but seems a bit hopeless

We give a weak answer: a Sidon set of size ≥ 𝑐 𝑁 contains solu(ons to 
every 5-variable transla(on-invariant linear equa(ons with integer coefficients.



Sparse regularity

• Szemerédi’s regularity lemma, in its original form, is useless for sparse 
graphs, i.e., with edge-density o(1)
• Sparse regularity: error tolerance commensurate with edge-density
• Obtaining a regularity par33on for sparse graphs
• Kohayakawa, Rödl (’90s): under addi(onal hypothesis of “no dense spots”
• Scoc (’11): no addi(onal hypothesis on the graph, but possibly hiding most of 

the graph in irregular pairs

• Applica3ons? Coun3ng lemma?



What is a coun5ng lemma?

Given three “regular pairs” from the regularity par33on, 
we want:

triangle density ≈ product of edge densi3es  

We call such a statement a triangle coun3ng lemma

True for dense graphs

Serious challenges for sparser graphs (false without addl. hyp.)



Failures of coun5ng lemmas in sparse graphs
Examples of random-like graphs without random-like triangle-counts

• G(n, p) minus all triangles when 𝑝 = 𝑜(1/ 𝑛) so that 𝑝#𝑛# = 𝑜(𝑝𝑛")

• Alon’s pseudorandom triangle-free graph

• (with Ashwin Sah, Mehtaab Sawhney, and Jonathan Tidor arXiv: 2003.05272)
Recent counterexample to Bollobás–Riordan conjectures on sparse graph limits,
showing a strong failure of Chung—Graham—Wilson for sparse graph sequences:

n ver0ces, edge density 𝑛!"($), and normalized H-density → exp(– #△’s of H)
(C4-pseudorandom ⇏ C3-pseudorandom)



Sparse regularity applica5ons

Significantly simplified in [Conlon, Fox, Z. ’15] via a new coun3ng lemma
Addi3onal hypothesis in this sparse coun3ng lemma: 

G is contained in some pseudorandom host

Green–Tao theorem (’08). The primes contain arbitrarily long APs.

“RelaAve Szemerédi theorem.” Fix k. Suppose S ⊂ ℤ/Nℤ sa3sfies some 
pseudorandomness hypotheses. Then every k-AP-free subset of S has 
size 𝑜 𝑆 .



Removal lemmas
Triangle removal lemma (Ruzsa–Szemerédi ’76). Every n-vertex graph with o(n3) triangles 
can be made triangle-free by removing o(n2) edges

A new sparse {C3,C5}-removal lemma (Conlon, Fox, Sudakov, Z.). Every n-vertex graph with 
• no C4
• & o(p5n5) = o(n5/2) C5’s 
can be made C5-free and C3-free by removing o(pn2) = o(n3/2) edges.

o(p4n4) = o(n2) C4’s

𝑝 ≔ 1/ 𝑛

Corollary. An n-vertex C5-free graph can be made triangle-free by deleRng o(n3/2) edges.

with o(n2) C5’s
o(n2) cannot be replaced by o(n2.442) 
but we don’t know the op5mal exponent 



Extremal results in hypergraphs

In a hypergraph a Berge cycle of length k consists of

• k dis4nct ver4ces v1, …, vk
• k dis4nct edges e1, …, ek

• vi, vi+1 ∈ ei ∀ i (indices mod k)
Ques%on. Max # edges in n-vertex 3-graph with no Berge cycle of length ≤ 5?
Previously: O(n3/2) [Lazebnik, Verstraëte ’03] [Ergemlidze, Methuku ’18+]

Corollary of new result: o(n3/2)       (also same answer for r-graphs for all r ≥ 3)

Also: # n-vertex 3-graphs with no Berge cycle of length ≤ 5 is 2&((!/#)



Brown—Erdős—Sós type problems

BES(n, e, v) = max # triples in an n-vertex 3-graph without e edges 
spanning ≤ v ver3ces?

Ruzsa—Szemerédi theorem: BES(n, 6, 3) = o(n2)

BES conjecture: BES(n,7,4) = o(n2),   BES(n, 8,5) = o(n2), …

Corollary of new result: BES(10, 5) = o(n3/2)



Avoiding solu5ons to equa5ons

Avoid this 5-var eqn ⇒ avoid 𝑥$ + 𝑥& = 𝑥' + 𝑥(, i.e., a Sidon set, thus 𝑂( 𝑁) size

Roth’s theorem (’53). Every subset of [N] = {1, 2, …, N} without a 3-AP has size o(N).

Theorem (CFSZ). Every subset of [N] without a nontrivial solu(on to
𝑥! + 𝑥" + 2𝑥# = 𝑥$ + 3𝑥%

has size 𝑜( 𝑁). Here trivial solu5ons are ones of the form (x,y,y,x,y) or (y,x,y,x,y) 

Theorem (CFSZ). The maximum size of a Sidon subset of [N] without a solu(on in 
dis(nct variables to the equa(on 

𝑥! + 𝑥" + 𝑥# + 𝑥$ = 4𝑥%
is at most 𝑜( 𝑁) and at least 𝑁!/"+&(!).



Erdős–Simonovits compactness conjecture

False for hypergraphs (due to Ruzsa–Szemerédi 6,3-theorem)

The equa(on-avoidance analog is false too! For subset of [N]

• Largest subset avoiding 𝑥! + 𝑥" = 𝑥# + 𝑥$ has size ~ 𝑁 (Sidon sets)

• Largest subset avoiding 𝑥! + 𝑥" + 𝑥# + 𝑥$ = 4𝑥% has size 𝑁!+& ! (Behrend)

But! Avoiding both equa(ons simultaneously     ⇒ size = 𝑜( 𝑁)

Conjecture. Given graphs F1, …, Fk, ∃i, c > 0 :
max # edges in an n-vertex graph avoiding all F1, …, Fk

≥ c ⋅ max # edges in an n-vertex graph avoiding Fi

Excluding a finite set of graphs ≈ excluding the worst one



Regularity recipe

1. ParAAon the vertex set using (sparse) regularity lemma
2. Clean up the graph
• Remove edges from irregular pairs and very sparse pairs
• (Only for sparse regularity) Remove edges from extra dense pairs

3. Count subgraphs

Removing dense spots: 
If o(n2) C4’s, then o(n3/2) edges lie between too-dense parts.



C5 coun5ng lemma
A coun%ng lemma compares subgraph densi(es between two (weighted) graphs 
that are close in cut norm

C5-coun%ng lemma in graphs with not too many C4’s.
• G : 5-par(te sparse graph with edge-density p

• has O(p4n4) C4’s between adjacent parts
• G’: is has edge-weights in [0, Cp] 
If G and G’ close in cut norm, then

C5-density in G > C5-density in G’   – o(p5)



Being C4-free helps coun5ng C5

A toy case: all vertex-degrees equal, and all 
bipar3te graphs pseudorandom
Second neighborhood expands to linear size, 
thereby giving lots of C5’s

In general, analy3c argument: replace two 
adjacent sparse pairs by a single “dense” pair

v

linear size linear size

≍ 𝑛no C4



Proof of sparse removal lemma

1. Par%%on. Apply regularity par((on to approximate G by a weighted graph G’
2. Clean. Remove o(n3/2) edges from irregular, too-sparse, or too-dense pairs in G
3. Count. If any C3 or C5 remain in G, then can find C5 in G’. Apply coun(ng lemma 

to deduce that G has lots of C5’s

Sparse {C3,C5}-removal lemma (CFSZ). Every n-vertex graph with 
• o(n2) C4’s     and
• o(n5/2) C5’s 
can be made C5-free and C3-free by removing o(n3/2) edges.



Proof of equa5on-avoidance in Sidon sets

Set up a 5-par4te graph
Avoiding 𝑥! + 𝑥" + 𝑥# + 𝑥$ = 4𝑥%

⇒ every edge lies in exactly one C5

Sidon ⇒ C4-free between parts
Sparse C5-removal lemma ⇒ 𝑜(𝑁#/") edges 

⇒ 𝐴 = 𝑜( 𝑁)

Theorem (CFSZ). If A ⊂ [N] is a Sidon set 
without nontrivial solu(on to

𝑥! + 𝑥" + 𝑥# + 𝑥$ = 4𝑥%,
then 𝐴 = 𝑜( 𝑁).

each vertex set = ℤ/Nℤ

𝑎 ∈ ℤ/Nℤ

𝑎 + 𝑥!
(𝑥! ∈ 𝐴)

𝑎 + 𝑥!
+ 𝑥"

𝑎 + 𝑥! + 𝑥" + 𝑥#

𝑎 + 𝑥! + 𝑥"
+ 𝑥# + 𝑥$

𝑎 + 𝑥! + 𝑥" + 𝑥#
+ 𝑥$ − 4𝑥%



Sparse regularity and applica5ons

• New C5-counAng lemma in sparse graphs with not too many C4’s
• Sparse removal lemmas. Every n-vertex graph with o(n2) C4’s and 

o(n5/2) C5’s can be made C5-free and C3-free by removing o(n3/2) edges.
• An n-vertex C5-free graph can be made triangle-free by dele3ng 

o(n3/2) edges. 
• Applica(ons to extremal problems on hypergraphs

• A Sidon subset of [N] avoiding solu3ons to a fixed 5-variable 
transla3on-invariant equa3on has size 𝑜( 𝑁)


