The joints problem for varieties

Yufei Zhao

Massachusetts Institute of Technology

Joint work with

Jonathan Tidor and Hung-Hsun Hans Yu

Joints problem

What's the max # of joints that \(N \) lines in \(\mathbb{R}^3 \) can make?

A joint is a point contained in 3 non-coplanar lines.

Examples

1. \(\Theta(N^{3/2}) \) joints
 - \(N^{3/2} \) joints
 - \(\frac{N}{3} \) joints
 - \(\frac{N}{3} \) joints

2. \(k \sim \sqrt{N} \) generic planes
 - pairwise form
 - \(\binom{k}{2} \sim N \) lines
 - triplewise form
 - \(\binom{k}{3} \sim \frac{k^3}{3} N^{3/2} \) joints
Counting and cutting cycles of lines and rods in space*

Bernard Chazelle

Herbert Edelsbrunner
Dept. Comput. Sci., Univ. Illinois, Urbana, IL 61801, USA

Leonidas J. Guibas
Lab. Comput. Sci., MIT, Cambridge, MA 02139 and DEC SRC, Palo Alto, CA 94304, USA

Richard Pollack

Raimund Seidel
Dept. Comput. Sci., Univ. California, Berkeley, CA 94720, USA

Micha Sharir

School Math. Sci., Tel Aviv Univ., Tel Aviv 69990, Israel

Jack Snoeyink

Communicated by Kurt Mehlhorn
Received 2 October 1990
Accepted 1 February 1991

Connections

To Kakeya problem in analysis (Wolff)

Finite field Kakeya problem (Dvir) ← polynomial method

Erdős distinct distance problem (Guth-Katz)

Multilinear Kakeya, "joints of tubes" (Bennett-Carbery-Tao, Guth)

Many extensions & generalizations of the joints problem

Kaplan-Sharir-Shustin, Quilodrán Simplification & extension to all dimensions

Thm (joints of lines) N lines in F^d have $O_d(N^{d-1})$ joints.

Joints of flats: max # joints for N planes in F^d?

Construction $\Theta(N^{3/2})$ joints: generic 4-flats, \cap pair \to planes, \cap triple \to joints

Why I like this problem:

\ast natural extension of joints

\ast a key step of pf of joints thm fails badly

*Introduced the joints problem & proved $O(N^{7/4})$ upper bd on # joints

... many subsequent improvements on until:

Algebraic methods in discrete analogs of the Kakeya problem

Larry Guth *, Nets Hawk Katz **

Theorem 1.1. Any set of N lines in \mathbb{R}^3 form at most $O(N^{3/2})$ joints.

Recently Hans Yu & I improved the constant factor to optimal: $\leq \frac{12}{3} N^{3/2}$ joints
Incidence geometry for higher dimensional objects

Solymosi-Tao: nearly tight \((t+1)\) in exponent bound for point-variety incidences in \(\mathbb{R}^d\) (in the spirit of Szemerédi-Trotter)

- Extension of the Guth-Katz polynomial partitioning method
 - Use bounded degree polynomials

[Walsh]: a different, algebraic, partitioning method

\(\Rightarrow\) Incidences among higher dim, higher degree varieties in \(\mathbb{F}^d\)

Previous results:

[Yang] \(N\) planes in \(\mathbb{R}^6\) have \(N^{\frac{3}{2}+o(1)}\) joints

(technique: bounded deg partitioning, restrict to codim-1 variety)

Limitations

1. Error term in exponent
2. Only in \(\mathbb{R}\)

[Yu-Z./Carbery-Iliopoulou] \(N\) lines \& \(M\) planes in \(\mathbb{F}^4\) make \(O(NM^{\frac{3}{2}})\) joints

(line-line-plane, in indep \& spanning directions)

Our results

[Tidor-Yu-Z.] \(N\) planes in \(\mathbb{F}^6\) have \(O(N^{\frac{3}{2}})\) joints

\(N\) \(k\)-flats in \(\mathbb{F}^{mk}\) have \(O_{m,k}(N^{\frac{m}{m-1}})\) joints

A set of \(k\)-dim varieties in \(\mathbb{F}^{mk}\) of total degree \(N\) has \(O_{m,k}(N^{\frac{m}{m-1}})\) joints

A new way to apply polynomial method to higher dim objects

Several sets of lines \& flats, varieties \([Conj by Carbery]\)

and count joints formed by taking one object from each set
Multijoints of lines \((\text{Iliopoulos } \mathbb{R}^d \& \mathbb{F}^3; \text{Zhang } \mathbb{F}^d) \)

\(L_1, L_2, \ldots, L_d \) sets of lines in \(\mathbb{F}^d \)

joints formed by taking one line from each set is \(\binom{1}{d-1} \sum L_1 \ldots L_d \).

[Tidor-Yu-Z.] We extend from lines to varieties of arb dim.

Joints of lines with multiplicities \((\text{Carbery conj; Iliopoulos } \mathbb{R}^3; \text{Zhang } \mathbb{F}^d) \)

\(L_1, L_2, \ldots, L_d \) sets of lines in \(\mathbb{F}^d \)

\[
\sum_{\text{joints } p} \left(\#(l_1, \ldots, l_d) \in L_1 \times \cdots \times L_d \text{ making a joint at } p \right)^{\frac{1}{d-1}} \leq \binom{1}{d-1} \sum L_1 \ldots L_d^{\frac{1}{d-1}}.
\]

[Tidor-Yu-Z.] Also \(\text{lines} \rightarrow \text{varieties} \)

Review of the proof of: [Kaplan-Sharir-Shustin, Quilodrán]

\(N \) lines in \(\mathbb{R}^3 \) have \(O(N^{3/2}) \) joints

1. **Parameter counting:**

 Using \(\dim \mathbb{R}[x_1, \ldots, x_n] = (n+d) \)

 deduce that \(\exists \text{non-zero } \text{poly } g, \deg g < C \sqrt{J} \), vanishing on joints

 Take \(g \) with min \(\deg \).

2. **Vanishing lemma:** a single-variable polynomial cannot vanish more times than its degree

3. **A joints-specific argument.** If all lines have \(> C J^{3/2} \) joints,

 then vanishing lemma \(\Rightarrow g \) vanishes on all lines \(\Rightarrow \forall g \) vanishes on all joints

 \(\Rightarrow \) one of \(\partial_x g, \partial_y g, \partial_z g \) is non-zero, lower \(\deg \) & vanish on all joints

 So some line has \(\leq C J^{3/2} \) joints. Remove this line \& induction \(\square \)

How to generalize vanishing lemma to 2-var polynomials? 😃
Thm (Tidor-Yu-Z.) \(N \) planes in \(\mathbb{R}^6 \) have \(O(N^{3/2}) \) joints

Wishful thinking: only if we had something like...

- every nonzero \(g(x,y) \) of deg \(\leq n \) has \(\leq n^2 \) zeros

 or

- two polynomials, each deg \(\leq N^{1/6} \), vanishing at all joints and no common factors when restricted to each plane (related: inverse Bézout)

Method of multiplicities: ask a polynomial to vanish at each joint to some high order

By counting parameters, maybe hope for:

- Every nonzero \(g(x,y) \) of deg \(\leq ns \) vanish to order \(\geq s \) at \(\leq n^2 pt \)

Counterexample: \(g(x,y) = y^s \)

Linear dependencies among vanishing conditions

\(e.g.: g(p) = 0, \ xg(p) = 0, (\partial_{xx} - \partial_{xy})g(p) = 0 \)

Key idea 1: Restricting to a plane for now

We will construct a set of \(\dim \mathbb{R}[x,y]_{\leq n}(n+2) \)

linearly indep vanishing conditions on \(\mathbb{R}[x,y]_{\leq n} \)
Attached to each point p is a set of vanishing conditions for $g \in \mathbb{R}[x,y]_{\leq n}$:

$$
g(p) = 0, \quad \partial_x g(p) = 0, \quad \partial_y g(p) = 0
$$

$$
\partial_{xx} g(p) = 0, \quad \partial_{xy} g(p) = 0, \quad \partial_{yy} g(p) = 0, \quad \partial_{xxx} g(p) = 0, \ldots
$$

If we take all these conditions up to order $n+1$, then any satisfying $g \in \mathbb{R}[x,y]_{\leq n}$ must be zero.

The above vanishing conditions attached to several different points are linearly dependent as linear functionals on $\mathbb{R}[x,y]_{\leq n}$.

We will select a basis of linear functionals on $\mathbb{R}[x,y]_{\leq n}$ via the following procedure.

First attempt

Cycle through the points on the plane (say 100 pts)

$p_1, p_2, p_3, \ldots, p_1, p_2, p_3, \ldots, p_1, p_2, p_3, \ldots$

p_1 : add vanishing condition $g(p_1) = 0$

p_2 : add vanishing condition $g(p_2) = 0$, as long as it does not already follow from previously added vanishing condition.

p_3 : add a nonredundant subset of $\partial_x g(p_1) = 0, \partial_y g(p_1) = 0$

none implied by other added + prev. added

i.e. basis extension

p_2 : add a nonredundant subset of $\partial_x g(p_2) = 0, \partial_y g(p_2) = 0$
The process assigns a total of \(\binom{n+2}{2} \) vanishing conditions each attached to a point.

Can we control the # of vanishing attached to each pt?

Example:

![Diagram]

\(\text{pts on grid get way more vanishing conditions than pts on the line} \)

-Un-desirable

(This example also comes up for inverse Bézout; see Tao blog)

Key idea 2 Let some points get a head start

\(e.g. \quad P_1, P_2, \ldots, P_{50}, \quad P_1, \ldots, P_{50}, \quad \ldots, P_1, \ldots, P_{100}, \quad P_1, \ldots, P_{100}, \ldots \)

Handicap \(\vec{d} \) assigns an integer to each point

\(e.g. \quad \begin{array}{cccccc}
\text{points} & a & b & c & d & e \\
\text{handicap} & 0 & 1 & 3 & 0 & -1
\end{array} \)

\(\rightarrow \text{order: c c b c a b c d a b c d e a b c d e ...} \)

Modify process of assigning vanishing conditions

\(c \) : add a non-redundant set of 0th order derivative vanishing @c

\(c \) :

\(\begin{array}{cccccc}
\text{1st} & \ldots & \ldots & \ldots & \ldots & \ldots \\
\text{2nd} & \ldots & \ldots & \ldots & \ldots & \ldots \\
\text{3rd} & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array} \)
Want a “good” choice of handicaps: treating all joints “fairly”

Hard to compute how # vanishing cond at each pt depends on the handicap.

1. Monotonicity: \(\alpha_p \Rightarrow \# \text{van. cond at } p \text{ cannot } \Delta \)
2. Lipschitz continuity: small \(\Delta \) in handicap \(\Rightarrow \) small \(\Delta \) in \(\# \text{van cond} \)
3. Bounded domain: suffices to consider handicaps with bounded values (else some pt gets 0 van. cond)

Key idea 3: Decide on handicap choice later, implicitly (existence via compactness/smoothing)

Putting different planes together at joints of planes in \(\mathbb{R}^b \)

Handicap \(\alpha \in \mathbb{Z}^g \) assigns an integer to each joint

Separately for each plane \(F \), apply above process to assign vanishing conditions restricted to \(F \) to joints on \(F \)

A new vanishing lemma: Given \(0 \neq g \in \mathbb{R}[x_1, \ldots, x_b] \leq \eta \),

\(\exists \) joint \(p \), contained in planes \(F_1, F_2, F_3 \) (indepl spanning directions) \& derivative operator \(D \), assigned to \(p \) on \(F_1 \) (likewise \(D_2, D_3 \))

s.t. \(D_1D_2D_3 g(p) \neq 0 \).
By parameter counting,
\[\sum_{\text{joint } p} \left(\text{# choices of } D_1, D_2, D_3 \text{ at } p \right) \geq \dim \mathbb{R}[x, \ldots, x_6]_{\leq n} = \binom{n+6}{6} \]

By compactness/smoothing, \(\exists \) handicap so that these terms are roughly all equal.

Also recall that \(\# \) van. cond. on each plane is exactly \(\binom{n+2}{2} \)

Putting together + AM-AM \(\Rightarrow \) theorem

Joints of varieties

Flats: higher order directional directives along a flat.

Varieties: derivatives in local coordinates.

E.g. \(y = x^2 + y^2 \) on the circle,

\[y = x^2 + y^2 = x^2 + (x^2 + y^2)^2 = x^2 + x^4 + 2x^6 + \cdots \]

2nd order derivative operator at the origin is \(\frac{\partial^2}{\partial x^2} + \frac{2}{\partial y} \) (not \(\frac{\partial^2}{\partial x^2} \)) so that evaluations give linear functional on the space of regular functions.

Extension to arbitrary fields \(F \)

When differentiating, we only care about coeff extraction.

Hasse derivatives (formal algebraic derivatives).

Question: Other applications of this variant of polynomial method for higher dim objects?