Homework exercises for Polynomial Method in Combinatorics

1. Consider the map $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ given by

$$\gamma(t) = (t^{17} + t^5 + 3, t^{14} + t^9 - 7t^2 - 1).$$

Prove that there is some non-zero polynomial P(x, y) so that image of γ is contained in the zero-set of P. Can you give some estimate for the degree of P?

2. Show that for any N lines in \mathbb{R}^3 , there is some non-zero polynomial of degree $O(N^{1/2})$ that vanishes on all lines.

State and prove a similar result for k-planes in \mathbb{R}^n for any dimensions $k \leq n$.

3. (Schwarz-Zippel lemma) Let $A_i \subset \mathbb{F}$ be finite subsets with $|A_i| = N$ for each i = 1, ..., n. Let P be a non-zero polynomial over \mathbb{F} on n variables and total degree at most D. Show that the number of zeros of P in $A_1 \times \cdots \times A_n$ is at most DN^{n-1} .

In particular, a nonzero polynomial of degree D vanishes on at most $D/|\mathbb{F}|$ fraction of points of \mathbb{F}^n .

4. (Joints problem in higher dimensions) Let \mathcal{L} be a set of L lines in \mathbb{R}^n . A *joint* of \mathcal{L} is defined to be a point that lies in n lines of \mathcal{L} pointing in linearly-independent directons.

By extending the argument shown in class, prove that a set of L lines in \mathbb{R}^n determines at most $C_n L^{n/(n-1)}$ joints.

5. (Joints of axis parallel lines/Loomis-Whitney theorem) Let \mathcal{L}_i be a set of L_i lines parallel to the x_i -axis in \mathbb{R}^n . Let $\mathcal{L} = \bigcup_i \mathcal{L}_i$. Show that the number of joints in \mathcal{L} is at most $\prod_{i=1}^n L_i^{1/(n-1)}$ (note that there is no extra constant).

It is a good idea to start with the n = 3 case.

6. Let $A, B, C \subset \mathbb{R}$ with |A| < |B| < |C|. Let $P(x, y, z) = \prod_{a \in A} (x - a)$. Prove that P is a minimum degree polynomial that vanishes on the grid $A \times B \times C$, and furthermore every minimum degree polynoial vanishing on the grid is a multiple of P.

This example illustrates how the minimum degree polynomial picks up the most important lines in the proof of the joints problem.

What happens when |A| = |B| = |C|?

7. Complete the proof of Wolff's hairbrush method bound: if ℓ_1, \ldots, ℓ_M are lines in \mathbb{F}_q , and suppose that at most q + 1 of the lines lie in any plane, then their union has cardinality $\gtrsim q^{3/2} M^{1/2}$ (in particular this implies that if $K \subset \mathbb{F}_q^n$ is a Kakeya set, then $|K| \geq (1/2)|q|^{(n+2)/2}$).

The proof uses the hairbrush method. A hairbrush is a set of lines ℓ_j meeting a fixed ℓ_i (but not including ℓ_i itself). Show there exists a hairbrush containing $(1/2)q^2M/|X|$ lines.

- 8. Verify the following properties of the Hermitian variety $H: x^{p+1} + y^{p+1} + z^{p+1} = 1$ in \mathbb{F}_q^3 with $q = p^2$:
 - (a) *H* contains $\Theta(q^{5/2})$ points
 - (b) *H* contains $\Theta(q^2)$ lines, with at most $O(q^{1/2})$ lines in every 2-plane.

Also, show that the following analogue of the unitary group on \mathbb{F}_q^n acts transitively on H:

 $U(\mathbb{F}_q^n) := \{ g \in \mathrm{GL}(\mathbb{F}_q^n) : \langle v, w \rangle = \langle gv, g \rangle \text{ for all } v, w \in \mathbb{F}_q^n \},\$

where the inner product is defined by

$$\langle v, w \rangle := v_1 \overline{w_1} + v_2 \overline{w_2} + v_3 \overline{w_3}$$

where $\overline{x} := x^p$ is conjugation in \mathbb{F}_q .

- 9. (Heisenberg surface [Mockenhaupt–Tao]) Let p be a prime. Let $X \subset \mathbb{F}_{p^2}^3$ be the surface defined by the equation $x x^p + yz^p zy^p = 0$. Show that X is a set of $\Theta(p^5)$ points, and contains p^4 lines, with no more than p lying on any plane.
- 10. Let $Q \subset \mathbb{F}_q^4$ be the degree 2 hypersurface defined by the equation $x_1^2 + x_2^2 x_3^2 x_4^2 = 1$. Prove that each point $x \in Q$ lies in $\Theta(q)$ lines in Q, and all of these lines lie in a 3-plane. Furthermore, check that Q contains $\Theta(q^3)$ points and $\Theta(q^3)$ lines.
- 11. Let W be a subspace of functions $\mathbb{F}^n \to \mathbb{F}$ that satisfies the degree D vanishing lemma, i.e., whenever $f \in W$ vanishes at D+1 points on a line, then f vanishes at every point on the line.

Show that if $|\mathbb{F}| \ge D + 1$, then dim $W \le (D + 1)^n$.

(Open) What is the maximum possible $\dim W$ (as a function of n and D)?

- 12. Prove the divisibility lemma: if P(x, y) and Q(x) are polynomials such that P(x, Q(x)) is the zero polynomial, then P(x, y) = (y Q(x))S(x, y) for some polynomial S(x, y).
- 13. Let D < q. Show that for any function $g: \{0, \ldots, D\}^n \to \mathbb{F}_q$, there is a unique polynomial $P: \mathbb{F}_q^n \to \mathbb{F}_q$ so that P = g on $\{0, \ldots, D\}^n$ and P has degree at most D in every single variable.
- 14. Let $N \subset \mathbb{F}_q^n$ be a Nikodym set, i.e., for every $x \in \mathbb{F}_q^n$, there is a line $\ell \ni x$ with $\ell \setminus \{x\} \subset N$. Let $P \colon \mathbb{F}_q^n \to \mathbb{F}_q$ be a polynomial of degree at most D < (q-1)/n in each variable. Show that if we know P on a Nikodym set N, then we can recover P everywhere. Combine this observation with the previous exercise to show that $|N| \ge c_n q^n$.

- 15. Show that the following two versions of Szemerdi–Trotter theorem are equivalent:
 - The number of incidences between any S points and L lines in the plane is $O(S^{2/3}L^{2/3} + S + L)$
 - The number of r-rich points among any L lines in the plane is $O(L^2/r^3 + L/r)$
- 16. Show that the $O(L^2/r^3 + L/r)$ bound on the number of r-rich points cannot be improved by verifying the construction suggested in lecture: the $N \times N$ square grid of points and r different slopes with rational coordinates of small numerators and denominators.
- 17. (Harnack inequality) Show that if P(x, y) is a nonzero polynomial of degree D in two variables, then $\mathbb{R}^2 \setminus Z(P)$ contains $O(D^2)$ connected components.

Hint: Use Bezout's theorem to bound the number of "unbounded regions" by considering intersections with a large circle. For bounded regions, note that P must contain a critical point (either a maximum or a minimum) in each bounded region. Analyze the number of critical points of P(x, y) (where both partial derivatives vanish) using Bezout's theorem. (Be careful if the two partial derivatives share a common factor, in which case you can perturb P slightly to remove this issue.)

18. Prove the ham sandwich theorem using the Borsuk–Ulam theorem, stated below.

Borsuk–Ulam theorem: If $\phi: S^N \to \mathbb{R}^N$ is continuous and antipodal (i.e., $\phi(-x) = -\phi(x)$ for all x), then the image of ϕ contains the origin.

- 19. (Unit distance problem)
 - (a) Prove that the number of incidences between N unit circles and S points in the plane is $O(N^{2/3}S^{2/3} + N + S)$. (Hint: use polynomial partitioning)
 - (b) As a corollary, show that a set of N points in the plane determines $O(N^{4/3})$ unit distances. (This is currently the best known bound on the unit distance problem. The truth is conjectured to be $N^{1+o(1)}$.)
 - (c) Construct a set of N parabolas of the form $y = (x a)^2 + b$ and N points in the plane so that the number of incidences is $\Theta(N^{4/3})$. This example shows that it is hard to improve the bound on the unit distance problem as it is difficult to distinguish between unit circles and unit parabolas.
- 20. (a) Prove that the number of incidences between N circles and S points in the plane is $O(S^3 + N)$ (this is an "easy bound").
 - (b) Use polynomial partitioning to improve the bound estimate to ${\cal O}(S^{3/5}N^{4/5}+N+S))$

- (c) As a corollary, show that the number of r-rich points is $O(N^2 r^{-5/2})$ (points that are contained in $\geq r$ circles).
- 21. Let P be a set of N points in the plane with ϵN distinct distances. Show that P has an r-rich partial symmetry with $r \ge e^{c\epsilon^{-1}}$ for some c > 0.
- 22. (The square grid example)
 - (a) Let G_0 denote the set of points in \mathbb{R}^3 of the form (a, b, 0) with a, b positive integers up to $L^{1/4}$, and G_1 the set of points (a, b, 1) with a, b in the same range. Let \mathcal{L} be the set of lines containing one point of G_0 and one point of G_1 . Show that the number of r-rich points in \mathcal{L} is $\gtrsim L^{3/2}r^{-2}$ for all $2 \leq r \leq (1/400)L^{1/2}$.
 - (b) Let P be a square grid of N points in the plane. Show that the number of r-rich partial symmetries of P is $\Theta(N^3r^{-2})$ for all $2 \le r \le N/400$.
- 23. Let \mathbb{F} be an infinite field. Let $N \geq \binom{n+d}{d}$. Prove that there exists a set of N points in \mathbb{F}^n with degree greater than D.