
Homework exercises for
Polynomial Method in Combinatorics

1. Consider the map γ : R→ R2 given by

γ(t) = (t17 + t5 + 3, t14 + t9 − 7t2 − 1).

Prove that there is some non-zero polynomial P (x, y) so that image of γ is
contained in the zero-set of P . Can you give some estimate for the degree
of P?

2. Show that for any N lines in R3, there is some non-zero polynomial of
degree O(N1/2) that vanishes on all lines.

State and prove a similar result for k-planes in Rn for any dimensions
k ≤ n.

3. (Schwarz–Zippel lemma) Let Ai ⊂ F be finite subsets with |Ai| = N for
each i = 1, . . . , n. Let P be a non-zero polynomial over F on n variables
and total degree at most D. Show that the number of zeros of P in
A1 × · · · ×An is at most DNn−1.

In particular, a nonzero polynomial of degree D vanishes on at most D/|F|
fraction of points of Fn.

4. (Joints problem in higher dimensions) Let L be a set of L lines in Rn.
A joint of L is defined to be a point that lies in n lines of L pointing in
linearly-independent directons.

By extending the argument shown in class, prove that a set of L lines in
Rn determines at most CnL

n/(n−1) joints.

5. (Joints of axis parallel lines/Loomis-Whitney theorem) Let Li be a set
of Li lines parallel to the xi-axis in Rn. Let L =

⋃
i Li. Show that the

number of joints in L is at most
∏n
i=1 L

1/(n−1)
i (note that there is no extra

constant).

It is a good idea to start with the n = 3 case.

6. Let A,B,C ⊂ R with |A| < |B| < |C|. Let P (x, y, z) =
∏
a∈A(x − a).

Prove that P is a minimum degree polynomial that vanishes on the grid
A × B × C, and furthermore every minimum degree polynoial vanishing
on the grid is a multiple of P .

This example illustrates how the minimum degree polynomial picks up the
most important lines in the proof of the joints problem.

What happens when |A| = |B| = |C|?

7. Complete the proof of Wolff’s hairbrush method bound: if `1, . . . , `M are
lines in Fq, and suppose that at most q + 1 of the lines lie in any plane,
then their union has cardinality & q3/2M1/2 (in particular this implies
that if K ⊂ Fnq is a Kakeya set, then |K| ≥ (1/2)|q|(n+2)/2).
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The proof uses the hairbrush method. A hairbrush is a set of lines `j meet-
ing a fixed `i (but not including `i itself). Show there exists a hairbrush
containing (1/2)q2M/|X| lines.

8. Verify the following properties of the Hermitian variety H : xp+1 +yp+1 +
zp+1 = 1 in F3

q with q = p2:

(a) H contains Θ(q5/2) points

(b) H contains Θ(q2) lines, with at most O(q1/2) lines in every 2-plane.

Also, show that the following analogue of the unitary group on Fnq acts
transitively on H:

U(Fnq ) := {g ∈ GL(Fnq ) : 〈v, w〉 = 〈gv, g〉 for all v, w ∈ Fnq },

where the inner product is defined by

〈v, w〉 := v1w1 + v2w2 + v3w3

where x := xp is conjugation in Fq.

9. (Heisenberg surface [Mockenhaupt–Tao]) Let p be a prime. Let X ⊂ F3
p2

be the surface defined by the equation x− xp + yzp − zyp = 0. Show that
X is a set of Θ(p5) points, and contains p4 lines, with no more than p
lying on any plane.

10. Let Q ⊂ F4
q be the degree 2 hypersurface defined by the equation x21 +

x22 − x23 − x24 = 1. Prove that each point x ∈ Q lies in Θ(q) lines in Q,
and all of these lines lie in a 3-plane. Furthermore, check that Q contains
Θ(q3) points and Θ(q3) lines.

11. Let W be a subspace of functions Fn → F that satisfies the degree D
vanishing lemma, i.e., whenever f ∈W vanishes at D+ 1 points on a line,
then f vanishes at every point on the line.

Show that if |F| ≥ D + 1, then dimW ≤ (D + 1)n.

(Open) What is the maximum possible dimW (as a function of n and D)?

12. Prove the divisibility lemma: if P (x, y) and Q(x) are polynomials such
that P (x,Q(x)) is the zero polynomial, then P (x, y) = (y −Q(x))S(x, y)
for some polynomial S(x, y).

13. Let D < q. Show that for any function g : {0, . . . , D}n → Fq, there is a
unique polynomial P : Fnq → Fq so that P = g on {0, . . . , D}n and P has
degree at most D in every single variable.

14. Let N ⊂ Fnq be a Nikodym set, i.e., for every x ∈ Fnq , there is a line ` 3 x
with ` \ {x} ⊂ N . Let P : Fnq → Fq be a polynomial of degree at most
D < (q − 1)/n in each variable. Show that if we know P on a Nikodym
set N , then we can recover P everywhere. Combine this observation with
the previous exercise to show that |N | ≥ cnqn.
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15. Show that the following two versions of Szemerdi–Trotter theorem are
equivalent:

• The number of incidences between any S points and L lines in the
plane is O(S2/3L2/3 + S + L)

• The number of r-rich points among any L lines in the plane isO(L2/r3+
L/r)

16. Show that theO(L2/r3+L/r) bound on the number of r-rich points cannot
be improved by verifying the construction suggested in lecture: the N×N
square grid of points and r different slopes with rational coordinates of
small numerators and denominators.

17. (Harnack inequality) Show that if P (x, y) is a nonzero polynomial of degree
D in two variables, then R2\Z(P ) contains O(D2) connected components.

Hint: Use Bezout’s theorem to bound the number of ”unbounded regions”
by considering intersections with a large circle. For bounded regions, note
that P must contain a critical point (either a maximum or a minimum)
in each bounded region. Analyze the number of critical points of P (x, y)
(where both partial derivatives vanish) using Bezout’s theorem. (Be care-
ful if the two partial derivatives share a common factor, in which case you
can perturb P slightly to remove this issue.)

18. Prove the ham sandwich theorem using the Borsuk–Ulam theorem, stated
below.

Borsuk–Ulam theorem: If φ : SN → RN is continuous and antipodal (i.e.,
φ(−x) = −φ(x) for all x), then the image of φ contains the origin.

19. (Unit distance problem)

(a) Prove that the number of incidences between N unit circles and S
points in the plane is O(N2/3S2/3 +N + S). (Hint: use polynomial
partitioning)

(b) As a corollary, show that a set of N points in the plane determines
O(N4/3) unit distances. (This is currently the best known bound on
the unit distance problem. The truth is conjectured to be N1+o(1).)

(c) Construct a set of N parabolas of the form y = (x − a)2 + b and
N points in the plane so that the number of incidences is Θ(N4/3).
This example shows that it is hard to improve the bound on the unit
distance problem as it is difficult to distinguish between unit circles
and unit parabolas.

20. (a) Prove that the number of incidences between N circles and S points
in the plane is O(S3 +N) (this is an ”easy bound”).

(b) Use polynomial partitioning to improve the bound estimate toO(S3/5N4/5+
N + S))
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(c) As a corollary, show that the number of r-rich points is O(N2r−5/2)
(points that are contained in ≥ r circles).

21. Let P be a set of N points in the plane with εN distinct distances. Show
that P has an r-rich partial symmetry with r ≥ ecε−1

for some c > 0.

22. (The square grid example)

(a) Let G0 denote the set of points in R3 of the form (a, b, 0) with a, b
positive integers up to L1/4, and G1 the set of points (a, b, 1) with
a, b in the same range. Let L be the set of lines containing one point
of G0 and one point of G1. Show that the number of r-rich points in
L is & L3/2r−2 for all 2 ≤ r ≤ (1/400)L1/2.

(b) Let P be a square grid of N points in the plane. Show that the
number of r-rich partial symmetries of P is Θ(N3r−2) for all 2 ≤ r ≤
N/400.

23. Let F be an infinite field. Let N ≥
(
n+d
d

)
. Prove that there exists a set of

N points in Fn with degree greater than D.
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