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1 Diameter of incircle

1. (IMO 1992) In the plane let C be a circle, ` a line tangent to the circle C, and M a point on `. Find
the locus of all points P with the following property: there exists two points Q, R on ` such that
M is the midpoint of QR and C is the inscribed circle of triangle PQR.

Solution: Let C touch ` at D, and DE be a diameter of C. For any such P,Q, R described in the
problem, the line PE must intersect ` at a point F such that MD = MF , by the lemma. The
point F depends only on M , `, and C. It follows that P must lie on the ray FE beyond E.

Conversely, given a point P lying on the ray FE beyond E, let the tangents from P to C meet ` at
Q and R. By the lemma we must have QF = RD, from which it follows that M is the midpoint of
QR. Therefore, the locus is the ray FE beyond E.

2. (USAMO 1999) Let ABCD be an isosceles trapezoid with AB ‖ CD. The inscribed circle ω of
triangle BCD meets CD at E. Let F be a point on the (internal) angle bisector of ∠DAC such
that EF ⊥ CD. Let the circumscribed circle of triangle ACF meet line CD at C and G. Prove
that the triangle AFG is isosceles.

Solution: Observe that F is the center of the excircle of ADC opposite to A (since the center
satisfies the two defining properties of F ). Let line AC touch this excircle at X. Then, using fact
that GACF is cyclic, we have

∠GAF = ∠GCF = ∠XCF = ∠AGF,

and therefore AFG is isosceles.

3. (IMO Shortlist 2005) In a triangle ABC satisfying AB + BC = 3AC the incircle has centre I and
touches the sides AB and BC at D and E, respectively. Let K and L be the symmetric points of
D and E with respect to I. Prove that the quadrilateral ACKL is cyclic.

Solution: Let x = AD, y = BD = BE, z = CE. Then AB = x + y, BC = y + z, AC = x + z,
so the condition that AB + BC = 3AC is equivalent to x + y + y + z = 3x + 3z, or equivalently
y = x + z.

Let line CK meet AB at M and line AL meet BC at N . Then by the lemma, BM = AD = x,
so MD = BD − BM = y − x = z. Similarly NE = x. By comparing the lengths of the legs, we
see that the right triangles MDK and CEL are congruent, and so are ADK and NEL. Therefore
∠MKD = ∠CLE and ∠AKD = ∠NLE. Adding gives ∠MKA = ∠CLN , so ∠AKC = ∠ALC,
and hence ACKL is cyclic.

4. (Nagel line) Let ABC be a triangle. Let the excircle of ABC opposite to A touch side BC at D.
Similarly define E on AC and F on AB. Then AD, BE, CF concur (why?) at a point N known
as the Nagel point.

Let G be the centroid of ABC and I the incenter of ABC. Show that I, G, N lie in that order on
a line (known as the Nagel line, and GN = 2IG.
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Solution: Let the incircle of ABC touch BC at X, and let XY be a diameter of the incircle. By
the lemma, A, Y, D are collinear. Let M be the midpoint of BC. Then MI is a midline of triangle
XY D, so IM and Y D are parallel. The dilation centered at G with ratio −2 takes M to A, and
thus it takes line IM to the line through A parallel to IM , namely the line AD. Hence the image of
I under the dilation lies on the line AD. Analogously, it must also lie on BE and CF , and therefore
the image of I is precise N . This proves that I, G, N are collinear in that order with GN = 2IG.

5. (USAMO 2001) Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the points
where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides
BC and AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the point of
intersection of segments AD2 and BE2. Circle ω intersects segment AD2 at two points, the closer
of which to the vertex A is denoted by Q. Prove that AQ = D2P .

Solution: From the lemma we know that D1Q is a diameter of the incircle. Let the incenter of
ABC be I, its centroid be G, and the midpoint of BC be M . Note that P is the Nagel point of
ABC. From the previous problem, we know that the dilation centered at G with ratio −2 sends
M to A and I to P , and hence sends segment IM to PA, thus PA = 2IM . On the other hand,
a dilation centered at D1 with ratio 2 sends IM to QD2, so QD2 = 2IM = PA. Therefore,
AQ = PA−QP = QD2 −QP = D2P .

6. (Tournament of Towns 2003 Fall) Triangle ABC has orthocenter H, incenter I and circumcenter
O. Let K be the point where the incircle touches BC. If IO is parallel to BC, then prove that AO
is parallel to HK.

Solution: Let KE be a diameter of the incircle, and let line AE meet BC at D. Let M be the
midpoint of BC. By the lemma, M is also the midpoint of KD. Since IO is parallel to BC, KMOI
is a rectangle. Since I is the midpoint of KE and M is the midpoint of KD, we see that O must
be the midpoint of ED. Thus lines AE and AO coincide.

Let G be the centroid of ABC. A dilation centered at G with ratio −2 takes M to A and O to H
(by Euler line). So it takes segment MO to AH, and hence AH = 2MO = EK. Since AH and
EK are both perpendicular to BC, it follows that AHKE is a parallelogram, and hence HK is
parallel to AE, which coincides with line AO.

7. (IMO 2008) Let ABCD be a convex quadrilateral with |BA| 6= |BC|. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent
to the ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and
CD. Prove that the common external tangents of ω1 and ω2 intersect on ω.

(Hint: show that AB + AD = CB + CD. What does this say about the lengths along AC?)

Solution: Chasing some lengths using equal tangents yields AB + AD = CB + CD (details
omitted). Let ω1 and ω2 touch AC at P and Q respectively. Then AP = 1

2(AB + AC − BC) =
1
2(CD + AC −AD) = CQ.

Let PP ′ be a diameter of ω1, and let QQ′ be a diameter of ω2. By the lemma, B, P ′, Q are collinear,
and P,Q′, D are collinear.

Choose point T on ω so that the tangent to ω at T is parallel to AC and furthermore puts ω and
B on different sides. Then the dilation centered at B that sends ω1 to ω must send P ′ to T , so
B, P ′, Q, T are collinear. Analogously, the dilation centered at D (with negative ratio) that sends
ω2 to ω must take Q′ to T , so P,Q′, D, T are collinear.

Now, PP ′ and Q′Q are parallel diameters of ω1 and ω2, and lines P ′Q and PQ′ meet at T . It
follows that there is a dilation with positive ratio centered at T that takes ω1 to ω2, and hence T
is the intersection of the common external tangents of ω1 and ω2. Since T lies on ω, we are done.
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2 Center of spiral similarity

1. (IMO Shortlist 2006) Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠CBA = ∠DCA = ∠EDA.

Diagonals BD and CE meet at P . Prove that line AP bisects side CD.

Solution: Since A is the center of the spiral similarity sending BC to DE, by the lemma we know
that ABCP and APDE are both cyclic. Furthermore, since ∠ACD = ∠ABC, the circumcircle of
ABCP is tangent to CD. Since ∠ADC = ∠AEC, the circumcircle of APDE is also tangent to
CD. Let AP meet CD at M . Then by power of a point, MC2 = MP ·MA = MD2, so MC = MD,
as desired.

2. (USAMO 2006) Let ABCD be a quadrilateral, and let E and F be points on sides AD and
BC, respectively, such that AE/ED = BF/FC. Ray FE meets rays BA and CD at S and T ,
respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass through a
common point.

Solution: Note that ABCD cannot be a parallelogram, for otherwise FE and BA would be
parallel. Let P be the center of spiral similarity that carries AD to BC. It must also carry E
to F since AE/ED = BF/FC. Since the spiral similarity carries AE to BF , it follows by the
lemma that PAES and PBFS are concyclic. Similarly, since the spiral similarity carries DE to
CF , PEDT and PFCT are concyclic. Therefore the circumcircles of SAE, SBF, TCF, TDE all
pass through P .

3. (China 1992) Convex quadrilateral ABCD is inscribed in circle ω with center O. Diagonals AC
and BD meet at P . The circumcircles of triangles ABP and CDP meet at P and Q. Assume that
points O,P , and Q are distinct. Prove that ∠OQP = 90◦.

Solution: Let M and N be the midpoints of AC and BD, respectively. Let T be the spiral
similarity that carries A to B and C to D. By the lemma (and the fact after it), Q is the center of
the spiral similarity. Since T carries AC to BD, it preserves midpoints, so T brings M to N . Using
the lemma again, we see that M,N,P, Q are concyclic. Since ∠OMP = ∠ONP = 90◦, points
O,P, M, N are concyclic with diameter OP . Therefore, M, N,P, Q,O are concyclic with diameter
OP , and therefore ∠OQP = 90◦.

4. Let ABCD be a quadrilateral. Let diagonals AC and BD meet at P . Let O1 and O2 be the
circumcenters of APD and BPC. Let M , N and O be the midpoints of AC, BD and O1O2. Show
that O is the circumcenter of MPN .

Solution: Let the circumcircles of APD and BPC meet at P and Q. Let T denote the spiral
similarity that sends AD to CB. Then T is centered at Q by the lemma. Let id denote the
identity transformation, and consider the transformation R = 1

2(id + T). This is another spiral
similarity centered at Q (if you’re not convinced, think about it in terms of multiplication by
complex numbers). Then R(A) = M , R(D) = N , R(O1) = O. Since O1 is the circumcenter
of QAD, the transformation yields that O is the circumcenter of QMN , whose circumcircle must
again pass through P by the lemma. This proves the desired fact.

5. (Miquel point of a quadrilateral) Let `1, `2, `3, `4 be four lines in the plane, no two parallel. Let Cijk
denote the circumcircle of the triangle formed by the lines `i, `j , `k (these circles are called Miquel
circles). Then C123, C124, C134, C234 pass through a common point (called the Miquel point).

(It’s not too hard to prove this result using angle chasing, but can you see why it’s almost an
immediate consequence of the lemma?)
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Solution: Let Pij denote the intersection of `i and `j . Let C134 and C234 meet at P . Then by the
lemma, P is the center of the spiral similarity that sends P13 to P23 and P14 to P24. It follows that
P is also the center of the spiral similarity that sends P13 to P14 and P23 to P24. Applying the
lemma again, we find that C123 and C124 also pass through P , as desired.

6. (IMO 2005) Let ABCD be a given convex quadrilateral with sides BC and AD equal in length
and not parallel. Let E and F be interior points of the sides BC and AD respectively such that
BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q, the lines EF and
AC meet at R. Consider all the triangles PQR as E and F vary. Show that the circumcircles of
these triangles have a common point other than P .

Solution: Let S be the center of the spiral similarity that carries AD to CB, then it must also
carry F to E. Using the lemma, we see that SPAD, SRAF , SQFD are all cyclic. Note that they
are the Miquel circles of the quadrilateral formed by the lines AD,AP, PD,QF , and thus S is the
Miquel point of these circles. The remaining Miquel circle passes through P,Q, R, S, and hence S
lies on the circumcircle of PQR. Note that S is the desired point, as it does not depend on the
choice of E and F .

7. (IMO Shortlist 2006) Points A1, B1 and C1 are chosen on sides BC, CA, and AB of a triangle ABC,
respectively. The circumcircles of triangles AB1C1, BC1A1, and CA1B1 intersect the circumcircle
of triangle ABC again at points A2, B2, and C2, respectively (A2 6= A, B2 6= B, and C2 6= C).
Points A3, B3, and C3 are symmetric to A1, B1, C1 with respect to the midpoints of sides BC, CA,
and AB, respectively. Prove that triangles A2B2C2 and A3B3C3 are similar.

Solution: By the lemma, C2 is the center of the spiral similarity that takes A1 to B and B1 to A.
So triangles C2A1B1 and C2BA are similar. But C2 is also the center of the spiral similarity that
takes A1 to B1 and B to A. Then because BA1 = CA3 and AB1 = CB3,

C2A1

C2B1
=

BA1

AB1
=

CA3

CB3
.

Since ∠A1C2B1 = ∠A3CB3, triangles CA3B3, C2A1B1, and C2BA are similar. So ∠CA3B3 =
∠C2BA. Similarly, ∠BA3C3 = ∠B2CA. Then

∠B2A2C2 = ∠B2AC2 = 180◦ − ∠B2C2A− ∠C2B2A = 180◦ − ∠B2CA− ∠C2BA

= 180◦ − ∠BA3C3 − ∠CA3B3 = ∠B3A3C3.

Similarly ∠A2B2C2 = ∠A3B3C3, hence triangles A2B2C2 and A3B3C3 are similar.

3 Symmedian

1. (Poland 2000) Let ABC be a triangle with AC = BC, and P a point inside the triangle such that
∠PAB = ∠PBC. If M is the midpoint of AB, then show that ∠APM + ∠BPC = 180◦.

Solution: Since ∠CAB = ∠CBA, ∠PAB = ∠PBC implies that ∠PAC = ∠PBA, and thus
the circumcircle of ABP is tangent to CA and CB. It follows by the lemma that line CP is a
symmedian of APB, and therefore ∠APM = 180◦ − ∠BPC.

2. (IMO Shortlist 2003) Three distinct points A, B,C are fixed on a line in this order. Let Γ be a circle
passing through A and C whose center does not lie on the line AC. Denote by P the intersection of
the tangents to Γ at A and C. Suppose Γ meets the segment PB at Q. Prove that the intersection
of the bisector of ∠AQC and the line AC does not depend on the choice of Γ.

Solution: We follow the method of the first proof of the lemma. Let the bisector of ∠AQC meet
A at R, then AR/RC = AQ/QC, so it suffices to show that AQ/QC does not depend on Γ.
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Applying Sine law repeatedly, we find that

AQ

QC
=

sin ∠ACQ

sin ∠CAQ
=

sin ∠PAQ

sin ∠PCQ
=

PQ
AP sin ∠AQP
PQ
CP sin ∠CQP

=
sin ∠AQB

sin ∠CQB
=

AB
AQ sin ∠ABQ

CB
CQ sin ∠CBQ

=
AB

CB

QC

AQ
.

Thus AQ/QC =
√

AB/CB, which is independent of Γ, as desired.

3. (Vietnam TST 2001) In the plane, two circles intersect at A and B, and a common tangent intersects
the circles at P and Q. Let the tangents at P and Q to the circumcircle of triangle APQ intersect
at S, and let H be the reflection of B across the line PQ. Prove that the points A, S, and H are
collinear.

Solution: We will only do the configuration where B is closer to line PQ than A. You should
think about what happens in the other configuration, which is analogous.

Since AS coincides with the symmedian of APQ, it suffices to show that H lies on this symmedian.
Note that AB coincides with a median of APQ. Indeed, let line AB meet PQ at M , then by Power
of a Point, MP 2 = MB ·MA = MQ2, so MP = MQ.

Since ∠PHQ = ∠PBQ = 180◦ −∠BPQ−∠BQP = 180◦ −∠BAP −∠BAQ = 180◦ −∠PAQ, we
see that APHQ is cyclic. Then ∠HAQ = ∠HPQ = ∠BPQ = ∠BAP . Since AB coincides with
a median of APQ, it follows that AH coincides with a symmedian of APQ, and hence A, H, S are
collinear.

4. (USA TST 2007) Triangle ABC is inscribed in circle ω. The tangent lines to ω at B and C meet
at T . Point S lies on ray BC such that AS ⊥ AT . Points B1 and C1 lies on ray ST (with C1 in
between B1 and S) such that B1T = BT = C1T . Prove that triangles ABC and AB1C1 are similar
to each other.

Solution: Let M be the midpoint of BC. Since BT is tangent to ω, we have ∠TBA = 180◦−∠BCA.
By the lemma, we have ∠BAT = ∠CAM . Applying Sine law to triangles BAT and CAM , we get

BT

AT
=

sin ∠BAT

sin ∠TBA
=

sin ∠CAM

sin ∠BCA
=

MC

AM
.

Since TB = TC1, we have TC1/TA = MC/MA. Note that ∠TMS = ∠TAS = 90◦, so TMAS is
cyclic, and hence ∠AMS = ∠ATS. Therefore, triangles AMC and ATC1 are similar. Analogously,
triangles AMB and ATB1 are similar. Combine the two results, and we see that ABC and AB1C1

are similar.

5. Let ABC be a triangle. Let X be the center of spiral similarity that takes B to A and A to C.
Show that AX coincides with a symmedian of ABC.

Solution: Let the tangents to the circumcircle of ABC at B and C meet at D. Let AD meet the
circumcircle of BCD again at X ′. Then

∠ABX ′ = ∠BX ′D − ∠BAX ′ = ∠BCD − ∠BAD = ∠BAC − ∠BAD = ∠X ′AC,

and analogously we have ∠ACX ′ = ∠X ′AB. Therefore X = X ′, and it lies on the symmedian AD.

Second solution, not using the lemma: Let Y be a point on the circumcircle of ABC so that AY
coincides with a symmedian of ABC. Let X ′ be the midpoint of AY . Let M be the midpoint of
BC and N the midpoint of AC. Since AY is a symmedian, ∠BAY = ∠MAC. Additionally we
have ∠BY A = ∠MCA, so triangles ABY and AMC are similar. Since X ′ is the midpoint of Y
and N is the midpoint of AC, we see that ABX ′ and AMN are similar. Hence

∠ABX ′ = ∠AMN = ∠MAB = ∠CAX ′.

Analogously ∠ACX ′ = ∠BAX ′. Therefore X = X ′, and it lies on a symmedian.
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6. (USA TST 2008) Let ABC be a triangle with G as its centroid. Let P be a variable point on
segment BC. Points Q and R lie on sides AC and AB respectively, such that PQ ‖ AB and
PR ‖ AC. Prove that, as P varies along segment BC, the circumcircle of triangle AQR passes
through a fixed point X such that ∠BAG = ∠CAX.

Solution: Let X be the center of spiral similarity T that carries B to A and A to C, as in the
previous problem. Triangles BRP and PQC are similar as the corresponding sides are parallel.
Since AR/RB = QP/RB = QC/RP = CQ/QA, we see that T must carry R to Q. Thus triangles
ARX and XQC are similar, so ∠ARX = ∠XQC, and hence ARXQ is cyclic. Note that ∠BAG =
∠CAX since X lies on the symmedian. Therefore X has the required properties.

7. (USA 2008) Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints of BC,
CA, and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM in
points D and E respectively, and let lines BD and CE intersect in point F , inside of triangle ABC.
Prove that points A, N , F , and P all lie on one circle.

Solution: Let X be as in Problem 5. Then ∠ABX = ∠XAC = ∠BAM = ∠ABF , and analogously
∠ACX = ∠ACF , so X = F . Then this problem follows as a special case of the previous problem.

8. Let A be one of the intersection points of circles ω1, ω2 with centers O1, O2. The line ` is tangent
to ω1, ω2 at B, C respectively. Let O3 be the circumcenter of triangle ABC. Let D be a point such
that A is the midpoint of O3D. Let M be the midpoint of O1O2. Prove that ∠O1DM = ∠O2DA.

(Hint: use Problem 5.)

Solution: We have ∠AO3C = 2∠ABC = ∠AO1B, and triangles AO3C and AO1B are both
isosceles, hence they are similar. So the spiral similarity at A that carries O1 to B also carries O3

to C, and it follows that AO1O3 and ABC are similar. Analogously, triangles ABC and AO3O2

are similar. So triangles AO1O3 and AO3O2 are similar.

Compare triangles AO1D and ADO2. We have ∠O1AD = 180◦ − ∠O1AO3 = 180◦ − ∠O3AO2 =
∠DAO2. Also AO1/AD = AO1/AO3 = AO3/AO2 = AD/AO2. It follows that triangls AO1D
and ADO2 are similar. It follows by Problem 5 that DA is a symmedian of DO1O2, and thus
∠O1DM = ∠O2DA.
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