Practice problems:

1. A primitive root mod n is a number g such that the smallest positive integer k for which $g^k \equiv 1 \pmod{n}$ is $\phi(n)$.

 (a) Show that 2 is a primitive root mod 3^n for any $n \geq 1$.
 (b) Show that if g is an odd primitive root mod p such that $p^2 \nmid g^{p-1} - 1$, then g is also a primitive root mod p^n and $2p^n$ for any $n \geq 1$.

Solution. (a) Since $\phi(3^n) = 2 \cdot 3^{n-1}$, the problem amounts to showing that $3^n \nmid 2^{3^{n-1}} - 1$ and $3^n \nmid 2^{2 \cdot 3^{n-2}} - 1$ (when $n \geq 2$). The first claim follows from reduction mod 3, and the second claim follows from the exponent lifting trick, as $3 \parallel 2^2 - 1$, so that $3^{n-1} \parallel 2^{2 \cdot 3^{n-2}} - 1$.

(b) Since $\phi(p^n) = \phi(2p^n) = (p - 1)p^{n-1}$, it suffices to show $p^n \nmid g^{(p-1)p^{n-2}} - 1$ and $p^n \nmid g^{dp^{n-1}} - 1$ for any divisor d of $p - 1$ with $d < p - 1$. The first claim follows from $p^{n-1} \parallel g^{(p-1)p^{n-2}} - 1$ by the exponent lifting trick as $p \parallel g^{p-1} - 1$ by assumption, and the second claim follows from the fact that $p \mid g^m - 1$ if and only if $(p - 1) \mid m$ as g is a primitive root mod p.

2. (Cyclotomic polynomials) For a positive integer n, define the polynomial $\Phi_n(x)$ by

$$\Phi_n(x) = \prod_{1 \leq k \leq n, \gcd(n,k)=1} (x - e^{\frac{2\pi ik}{n}}).$$

 (a) Prove the polynomial identity $\prod_{d|n} \Phi_d(x) = x^n - 1$, where the product is taken over all divisors d of n.
 (b) Prove that $\Phi_n(x)$ is an integer polynomial.
 (c) Let m and n be positive integers, and let p be a prime divisor of $\Phi_n(m)$. Prove that either $p \mid n$ or $n \mid p - 1$.
 (d) (Special case of Dirichlet’s theorem) Prove that for every positive integer n, there are infinitely many primes p with $p \equiv 1 \pmod{n}$.

Solution. (a) The right-hand side polynomial $x^n - 1$ can be factored as $\prod_{k=1}^{n} (x - e^{\frac{2\pi ik}{n}})$. For $1 \leq k \leq n$, each factor $x - e^{\frac{2\pi ik}{n}}$ appears exactly once in the left hand side (in $\Phi_d(x)$ for $d = \frac{n}{\gcd(n,k)}$) and all factors in the left hand side are of this form.

(b) Use induction on d. We have $\Phi_1(x) = x - 1$. Suppose $\Phi_d(x)$ is an integer polynomial for all $d < n$. Then by (a) $\Phi_n(x)$ is the quotient of two monic integer polynomials, and hence it must also be an integer polynomial.

(c) Suppose $p \nmid n$ and $n \nmid p - 1$. We have $p \mid \Phi_n(m) \mid m^n - 1$ by (a). So $p \nmid m$, and hence $p \mid m^{p-1} - 1$ by Fermat’s little theorem. Thus $p \mid m^{\gcd(p-1,n)} - 1$. Since $n \nmid p - 1$,
Trinity Training 2011

3. (IMO 2003) Let p be a prime number. Prove that there exists a prime number q such that for every integer n, $n^p - p$ is not divisible by q.

Solution. Let q be a prime divisor of $\Phi_p(p) = \frac{p^q - 1}{p - 1} = p^{q-1} + p^{q-2} + \cdots + p + 1$ with $p^2 \not| q - 1$ (this must exist since $\Phi_p(p) \neq 1$ (mod p^2)). By problem 2, $p | q - 1$. If $n^p \equiv p$ (mod q), then $n^{p^2} \equiv p^q \equiv n^q \equiv 1$ (mod q). We have $q | \gcd(p^{q-1} - 1, p^q - 1) = p^{\gcd(q-1,q,p)} - 1$, which equals to $p - 1$ since $p^2 \not| q - 1$. However, we cannot simultaneously have $q | p - 1$ and $p | q - 1$. Thus $n^p - p$ is not divisible by q.

4. (a) Prove that $\Phi_m(x)$ and $\Phi_n(x)$ are always relatively prime as polynomials for $m \neq n$.

(b) Show that if for some integer x, $\Phi_m(x)$ and $\Phi_n(x)$ are not relative prime, then m/n is an integer power of a prime.

Solution. (a) The zeros of $\Phi_m(x)$ and $\Phi_n(x)$ are distinct, since the zeros of $\Phi_n(x)$ are precisely the primitive n-th roots of unity. Thus the polynomials are relatively prime.

(b) Suppose some prime p divides both $\Phi_m(x)$ and $\Phi_n(x)$. By replacing x by $x + p$ if necessary, we may assume that $x > 1$. Let us deal with the $p = 2$ case separately. We claim that if $\Phi_m(x)$ is even then m must be a power of 2. Indeed, otherwise let q be an odd prime divisor of m, and let $m = qs$, then by the previous problem, $\Phi_m(x)$ divides $x^{m-1} - 1 = x^{(q-1)s} + x^{(q-2)s} + \cdots + x^s + 1$, which is always odd. The $p = 2$ case follows.

Now assume that $p > 2$. By the previous problem, p divides $x^n - 1$ and $x^n - 1$, and hence $p | x^{\gcd(m,n)} - 1$. Let $p^k | x^{\gcd(m,n)} - 1$. One of $\frac{m}{\gcd(m,n)}$ and $\frac{n}{\gcd(m,n)}$ is not divisible by p, and assume that it is the latter. Then by the exponent lifting trick, $p^k \equiv x^{n\cdot\gcd(m,n)} - 1$, which is not divisible by p by the above analysis. This contradicts $p | \Phi_n(x)$. Hence $\gcd(m,n) = n$, i.e., $n | m$.

We claim that $\frac{m}{n}$ is a power of p. If not, then pick some prime q dividing $\frac{m}{n}$. We have $p | \Phi_n(x) \mid x^n - 1 \mid x^{m/q} - 1$. By the exponent lifting trick, the same power of p divides both $x^m - 1$ and $x^{m/q} - 1$. But $\Phi_m(x)$ divides $x^{m-1} - 1$, which contradicts $p | \Phi_m(x)$. Thus $\frac{m}{n}$ is a power of p.

5. Let p_1, p_2, \ldots, p_k be distinct primes greater than 3. Let $N = 2^{p_1p_2\cdots p_k} + 1$.

(a) (IMO Shortlist 2002) Show that N has at least 4^n divisors.

(b) Show that N has at least $2^{2^{k-1}}$ divisors. (Hint: use cyclotomic polynomials)

Solution. (a) Observe that if a and b are co-prime odd numbers, then $\gcd(2^a + 1, 2^b + 1) = 3$, since their gcd must divide $\gcd(2^{2a} - 1, 2^{2b} - 1) = 2^{\gcd(2a,2b)} - 1 = 2^2 - 1 = 3$. Since $2^{ab} + 1$ is divisible by both $2^a + 1$ and $2^b + 1$, it must also be divisible by $\frac{1}{3}(2^a + 1)(2^b + 1)$.

...
We use induction on \(k \). When \(k = 1 \), \(2^{p_1} + 1 \) is divisible by 3 and greater than 9, so it must have at least 4 divisors. Let \(a = p_1 \cdots p_{k-1} \) and \(b = p_k \). Suppose that \(2^a + 1 \) has at least \(4^{k-1} \) divisors. Since \(2a + 1 \) is coprime to \(\frac{1}{2}(2b+1) \), the number \(M = \frac{1}{2}(2^a+1)(2^b+1) \) must have at least \(2 \cdot 4^{k-1} \) divisors (for each divisor \(d \) of \(2^a+1 \), we get two divisors \(d \) and \(\frac{1}{2}(2^b+1)d \) of \(M \)). Also \(M \mid N \) and \(N = 2^{ab} + 1 > M^2 \) (since \(2^{ab} + 1 > 2^{ab} > 2^{(a+b+1)} > M^2 \)). So \(N \) has at least \(4^k \) divisors (for each divisor \(d \) of \(M \), we have divisors \(d \) and \(N/d \)). This completes the induction.

(b) It suffices to show that \(N \) is divisible by at least \(2^{k-1} \) distinct prime. We have

\[
N = 2^{p_1} \cdots p_k + 1 = \frac{2^{p_1} \cdots p_k - 1}{2^{p_1} - 1} \prod_{d|p_1 \cdots p_k} \Phi_d(x) = \prod_{d|p_1 \cdots p_k} \Phi_{2d}(2).
\]

Consider the set of divisors \(d \) of \(p_1 \cdots p_k \) with an odd number of prime factors. There are \(2^{k-1} \) such divisors \(d \), and they provide mutually coprime \(\Phi_d(2) \) by Problem 4. Take one prime divisor from each such \(\Phi_d(2) \) and we get what we want.

6. (IMO 1990) Determine all positive integers \(n \) such that \(\frac{2^n + 1}{n^2} \) is an integer.

Solution. We claim that the only solutions are \(n = 1, 3 \). Suppose \(n \notin \{1, 3\} \). Let \(p \) be the smallest prime divisor of \(n \). Then \(p \mid 2^n + 1 \), so \(p \mid 2^{n+1} - 1 \). By Fermat’s little theorem, we also have \(p \mid 2^{n-1} - 1 \). Thus \(p \mid 2^{\gcd(p, n+1)} - 1 \). Since \(p \) is the smallest prime divisor of \(n \), we must have \(\gcd(p, 1, 2n) = 2 \). So \(p \mid 2^n - 1 \) and hence \(p = 3 \).

Suppose \(3^k \mid n \). We have \(3 \mid 2^2 - 1 \). So by the exponent lifting trick, \(3^{k+1} \mid 2^{2n} - 1 \). If \(n^2 \mid 2^n + 1 \), then \(3^{2k} \mid 2^{2n} - 1 \). Thus \(2k \leq k + 1 \), hence \(k = 1 \). Thus \(3 \mid n \).

Let \(n = 3m \). Suppose \(m \neq 1 \). Let \(q \) denote the smallest prime divisor of \(m \). By the same argument as above, we have \(q \mid 2^{\gcd(q,6m)} - 1 \), and \(\gcd(q - 1, 6m) \in \{2, 6\} \), so \(q \) divides either \(2^2 - 1 = 3 \) or \(2^6 - 1 = 63 = 7 \cdot 3^2 \). Since \(3 \mid n \), \(q \neq 3 \), so \(q = 7 \). However, \(2^n + 1 \) is divisible by \(2^n + 1 \) has at least 4 divisors (for each divisor \(d \) of \(2^n + 1 \), we get two divisors \(d \) and \(2^n - 1 \)). This shows that \(1 \) and \(3 \) are the only solutions.

7. (IMO 2000) Does there exist a positive integer \(N \) which is divisible by exactly 2000 different prime numbers and such that \(2^N + 1 \) is divisible by \(N \)?

Solution. Yes. We will show by induction that for any \(m \geq 1 \), there exists a positive integer \(N \) divisible by exactly \(m \) different prime numbers such that \(N \mid 2^N + 1 \).

When \(m = 1 \), choose \(N = 3 \).

We will use the following variant of the exponent lifting trick: if \(p \) is an odd prime, \(a \geq 2 \), \(k, m \geq 1 \), \(\ell \geq 0 \), \(n \) odd, \(p^k \mid a + 1 \), and \(p^\ell \mid n \), then \(p^{k+\ell} \mid a^n + 1 \). This in fact follows from our usual exponent lifting trick, as neither \(a - 1 \) nor \(a^n - 1 \) are divisible by \(p \) (since \(a \equiv -1 \) (mod \(p \)) and \(n \) is odd), so the claim follows as \(p^k \mid a^2 - 1 \) implies \(p^{k+\ell} \mid a^{2n} - 1 \).

Now suppose \(N = p_1^{a_1} \cdots p_m^{a_m} \) satisfies \(N \mid 2^N + 1 \), where \(p_1, \ldots, p_m \) are distinct prime and \(a_i \geq 1 \). Suppose \(p_i^{b_i} \mid 2^N + 1 \) for each \(i \). Write this as \(p_i^{b_i} \mid 2^{b_i} \cdots p_m^{b_m} \mid 2^{N'} + 1 \). Then above variant of the exponent lifting trick, we have \(p_i^{b_i+\ell} \mid 2^{N'} + 1 \). For \(\ell \) sufficiently large, we also have \(p_i^{b_i+\ell} \mid p_i^{b_2} \cdots p_m^{b_m} < 2^{N'} + 1 \), so that \(2^{N'} + 1 \) has some prime divisor \(p_{k+1} \) distinct from \(p_1, \ldots, p_k \). Then \(Np_i^{b_i+\ell} \mid 2^{N'}p_{k+1} + 1 \), and hence we can choose \(N' = Np_i^{b_i+\ell}p_{k+1} \) to complete the induction.

8. Let \(N \) be a positive integer ending in digits 25, and \(m \) a positive integer. Prove that for some positive integer \(n \), the rightmost \(m \) digits of \(5^n \) and \(N \) agree in parity (i.e., for
1 \leq k \leq m$, the k-th digit from the right in n is odd if and only if the k-th digit from the right in N is odd).

Solution. We will prove by induction on m that there exists infinitely many n that works. This is trivial when $m = 1, 2$.

For the inductive step, it suffices to prove the following claim: if $n \geq m \geq 2$, then the rightmost m digits of 5^n and 5^{n+2m-2} agree in parity, but the $(m+1)$-th digit from the right differ in parity.

By the exponent lifting trick, we have $2^m \parallel 5^{2m-2} - 1$ as $2^2 \parallel 5 - 1$. It follows that $5^{2m-2+n} - 5^n$ is divisible by 10^m but not $2 \cdot 10^m$. The claim follows.

9. (Hensel’s lemma) Let

\[f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_2 x^2 + c_1 x + c_0 \]

be a polynomial with integer coefficients. Its derivative f' is a polynomial defined by

\[f'(x) = nc_n x^{n-1} + (n-1)c_{n-1} x^{n-2} + \cdots + 2c_2 x + c_1. \]

Suppose that $a \in \mathbb{Z}$ satisfies $p \mid f(a)$ and $p \nmid f'(a)$. Prove that for any integer k, there exists an integer b satisfying $p^k \mid f(b)$ and $p \nmid b - a$.

Solution. We use induction on k to find, for each $k \geq 1$, an integer b_k, satisfying $b_1 = a$ and

\[b_{k+1} \equiv b_k \pmod{p^k} \]

and

\[f(b_k) \equiv 0 \pmod{p^k}. \]

Note that this implies $b_k \equiv b_1 = a \pmod{p}$.

When $k = 1$, we can just take $b_1 = a$. Now assume that $k > 1$ and b_{k-1} has already been chosen. Set

\[b_{k+1} = b_k + p^k r \]

for some integer r to be decided later. We have

\[f(b_{k+1}) = f(b_k + p^k r) = \sum_{j=0}^{n} c_j (b_k + p^k r)^j \]

\[\equiv \sum_{j=0}^{k} c_j (b_k^j + jp^k rb_k^{j-1}) = f(b_k) + p^k r f'(b_k) \pmod{p^{k+1}}, \]

where the modulo equivalence comes from binomial expansion. (This is related to the taylor expansion in calculus: $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$.) From the induction hypothesis, we know $p^k \mid f(b_k)$. Also $b_k \equiv a \pmod{p}$, so $p \nmid f'(b_k)$, and hence $f'(b_k)$ has an inverse mod p, say $t \in \mathbb{Z}$, satisfying $f'(b_k) t \equiv 1 \pmod{p}$. Then setting $r = -\frac{f(b_k)}{p^k f'(b_k)}$, we have

\[f(b_{k+1}) - f(b_k) = f(b_k)(1 - r f'(b_k)) \equiv 0 \pmod{p^{k+1}}. \]

since $p^k \mid f(b_k)$ and $p \mid 1 - r f'(b_k)$. This completes the induction step.