
PROBLEMS ON SUMS AND INTEGRALS
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1 An example

1.1 Background

This example is taken from Proofs from THE BOOK, which contains many wonderful tricks of
summation and integrals. It is definitely worth a read before the Putnam.

We have all heard about the Riemann Function

ζ(s) =

∞!

n=1

1

ns

Our task today is to explicitly find its values at the even positive integers. Evaluating this function at
any other points is extremely difficult: with great effort people finally showed that ζ(3) is irrational,
and little else is known. In 18.112 you can explore how to define this function everywhere, and how
to evaluate this function at the negative integers.

1.2 An Identity

Our method of finding this sum comes from an unexpected place: the following identity about a
trigonometry function

π cotπx =
!

n∈Z

1

x+ n

We first note that the sum, as presented, doesn’t quite make sense: it diverges. The correct way of
presenting the sum is

1

x
+

!

n∈N

1

x+ n
+

1

x− n
=

1

x
+

!

n∈N

2x

x2 − n2

Now the sum converges, and it satisfies two other important properties: it converges absolutely,
and converges uniformly on any compact interval minus the integers. If you are unfamiliar with
these two concepts, I strongly recommend reading Principles of Mathematical Analysis by Walter
Rudin, which contains a nice exposition.

Now we are supposed to prove the identity. Euler did this by a fancy bash; however, a more
beautiful proof was discovered by Herglotz, and properly named Herglotz Trick.
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Proof. Let f, g be functions equal to LHS and RHS of the equation. We want prove that they are
equal; we achieve this by proving several properties of the function h = f − g.

(1) The function h = f − g is defined everywhere, and continuous everywhere. We only need to
show this on a neighbor of 0, and the rest is analogous. We first note that π cotπx− 1

x is continuous
in the neighbor(this can be shown by Taylor series, or straight from definition). Then we note that
the rest of the sum converges uniformly, and thus is also continuous.

(2) The function h = f − g is periodic of period 1. This can be easily seen from the expression.
(3) The function h = f − g satisfy the functional equation

2h(x) = h(
x

2
) + h(

x+ 1

2
) (1)

We can verify this for f and g individually at the non-integer points(note there is an interchange
of summation on LHS, which needs to be justified by absolute convergence). The equations carry
to the integer points by continuity.

Now we use the trick: we note that any periodic, continuous function that satisfy (1) must be
a constant! In fact, |h| must assume maximum value at some point x0. However, from (1) we find
that if |h| has maximum at x0, then it must assume maximum at x0

2 and x0+1
2 as well. Repeating

the argument, we find that |h| assumes maximum at a series of points approaching 0, thus it is
equal to |h(0)| everywhere. We conclude that h = 0, by noting that |h(0)| = 0.

1.3 Application to the Riemann Zeta Function

Now some of you might be able to see the connection between the identity and the zeta function.

π cotπx− 1

x
=

!

n∈N

2x

x2 − n2

We consider x in a neighbor of 0. Expanding RHS,

!

n∈N

2x

x2 − n2
=

!

n∈N

∞!

j=1

− 2

n2j
x2j−1

We can swap the sum by absolute convergence

!

n∈N

∞!

j=1

− 2

n2j
x2j−1 = −

∞!

j=1

2ζ(2j)x2j−1

Note this is precisely the Taylor Expansion! With one formula, we have captured the values of the
ζ function at all the positive even points!

All is left is to find the Taylor expansion of π cotπx − 1
x at a neighbor of 0. But this is very

easy: we can do it by direct differentiation, or we can do it smartly by noting that

π cotπx− 1

x
=

πx cosπx− sinπx

x sinπx

Thus, if we let

π cotπx− 1

x
=

∞!

j=1

ajx
2j−1
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Then the series aj satisfy the relation

j−1!

i=0

(−1)iπ2i+1

(2i+ 1)!
aj−i = (−1)jπ2j+1(

1

(2j)!
− 1

(2j + 1)!
)

A convention is to write

ζ(2j) =
Bjπ

2j

(2j)!

Thus the recursion becomes

−2

j−1!

i=0

(−1)i

(2i+ 1)!(2j − 2i)!
Bj−i = (−1)j(

1

(2j)!
− 1

(2j + 1)!
)

cleaning up,
j!

i=1

(−1)i
"
2j + 1

2i

#
Bi = −j

We can calculate some values, just for fun

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
· · ·

2 Problems

2.1 Concept Problems

1. Compute

lim
n→∞

$
1√

4n2 − 12
+

1√
4n2 − 22

+ · · ·+ 1√
4n2 − n2

%
.

2. Find

lim
n→∞

1

n

n!

a=1

n!

b=1

a

a2 + b2
.

3. Show that
&∞
−∞ e−x2

dx =
√
π.

4. Find ' 1

0
log x log(1− x)dx

5. Exhibit a sequence aij indexed by Z2 such that

!

i

(
!

j

aij) ∕=
!

j

(
!

i

aij)

with all sums converging.

6. Exhibit a smooth (i.e. infinitely differentiable) function f : R → R such that f(x) = 1 when
x < 0 yet f(x) = 0 when x > 1.(This function is one of the most important gadgets in
Analysis)
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2.2 Putnam-Style Problems

7. Evaluate the improper integral ' 1

0

log(1− x)

x
dx.

8. Determine the value of the improper integral
' ∞

0

x

ex − 1
dx.

9. (a) Show that that min(a, b) =
&∞
0 1≤a(t)1≤b(t) dt for any nonnegative real numbers a, b ≥

0. (What do you think 1≤c(t) means?)

(b) Show that if r1, . . . , rn are nonnegative reals and x1, . . . , xn are real numbers then

n!

i=1

n!

j=1

min(ri, rj)xixj ≥ 0.

10. Evaluate the following:

' ∞

0

"
x− x3

2
+

x5

2 · 4 − x7

2 · 4 · 6 + · · ·
# "

1 +
x2

22
+

x4

22 · 42 +
x6

22 · 42 · 62 + · · ·
#

dx.

11. Show that ' 1

0
x−x dx =

!

n≥1

n−n.

12. Suppose that f is a function on the interval [1, 3] such that −1 ≤ f(x) ≤ 1 for all x and& 3
1 f(x) dx = 0. Determine the largest possible value of

' 3

1

f(x)

x
dx.

13. Let f : R → R be continuous and satisfy f(x) ≥ 1 for all x. Suppose that

f(x)f(2x) . . . f(nx) ≤ 2018n2019

for every positive integer n and x ∈ R. Must f be constant?

14. A rectangle in R2 is called great if either its width or height is an integer. Prove that if a
rectangle X can be dissected into great rectangles, then the rectangle X is itself great.

15. Compute
!

k≥0

2k

52k + 1
.

4



16. Prove that

lim
n→∞

(
n)

k=0

"
n

k

#* 1
n(n+1)

=
√
e.

17. Let f : R≥0 → R be a strictly decreasing continuous function such that limx→∞ f(x) = 0.
Prove that ' ∞

0

f(x)− f(x+ 1)

f(x)
dx

diverges.

18. A rectangular prism X is contained within a rectangular prism Y .

(a) Is it possible the surface area of X exceeds that of Y ?

(b) Is it possible the sum of the 12 side lengths of X exceeds that of Y ?

19. For a, b, c > 0 prove that

1

a
+

1

b
+

1

c
+

4

a+ b
+

4

b+ c
+

4

c+ a
≥ 12

3a+ b
+

12

3b+ c
+

12

3c+ a
.

20. Evaluate

lim
x→1−

)

n≥0

"
1 + xn+1

1 + xn

#xn

.

21. Suppose that f : [0, 1]2 → R is continuous. Show that

' 1

0

"' 1

0
f(x, y)dx

#2

dy +

' 1

0

"' 1

0
f(x, y)dy

#2

dx

≤
"' 1

0

' 1

0
f(x, y) dx dy

#2

+

' 1

0

' 1

0
[f(x, y)]2 dx dy.

22. For each positive integer k, let A(k) be the number of odd divisors of k in the interval+
1,
√
2k

,
. Evaluate:

∞!

k=1

(−1)k−1A(k)

k
.

2.3 Exhibit of MIT classes

Each of the following problems represent one course offered at MIT. You are welcome to consult
the internet for some concepts involved.

23. (18.100B) Prove the most basic result of Ergodic Theory: if f is a continuous function on the
unit circle S1 parametrized by θ ∈ [0, 2π), θ0 is an angle such that θ0

2π is irrational, then

lim
n→∞

1

n

n!

m=1

f(mθ0) =
1

2π

' 2π

0
f(θ)dθ

Hint: Fourier expansion does not hold here, but can you do something similar?
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24. (18.103)Let f(x) be a smooth function with compact support on R, and f̂ be its Fourier
transform

f̂(ξ) =

' ∞

−∞
f(x)e−2πxξidx

Prove the Poisson Summation Formula

!

n∈Z
f̂(n) =

!

n∈Z
f(n)

Using this result, prove that for all t > 0

!

n∈Z
e−πn2t =

1√
t

!

n∈Z
e−

πn2

t

This formula is useful in the complex extension of the Riemann Zeta function.

Hint: Consider the function !

n∈Z
f̂(x+ n)

25. (18.112) Prove the following Jacobi Triple Product Formula for |q| < 1

∞)

m=1

(1− q2m)(1 + ω2q2m−1)(1 + ω−2q2m−1) =

∞!

n=−∞
ω2nqn

2

Using this, either find the number of integer solutions for 12345654321 = a2 + b2, or exhibit
the difference between the number of even and odd partitions of n(a partition n = a1+· · ·+ak
is even iff k is even).

Hint: write LHS as a function of ω, and try to write down a functional equation.

26. (18.152) A smooth function f : C → C is harmonic if

∆f ≡ (
∂2

∂x2
+

∂2

∂y2
)f = 0

(1) Prove the Mean Value Property of Harmonic functions: given any z on the plane and
r > 0, ' 2π

0
f(z + eiθr)dθ = 2πf(z)

(2) For all a > b > 0, find ' 2π

0
ln(a+ b sin θ)dθ

27. (More advanced 18.152; taken from S.T. Yau Contest)

(1) Find all harmonic functions on C that is real and positive everywhere.

(2) Harmonic functions can be similarly defined on any open subset of the plane. Find all
harmonic functions on C\{0} that is real and positive on its domain.(Hint: MVP no longer
holds everywhere in this case. If you solve the problem, please email a copy of the solution
to stzh1555@mit.edu).
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