
GENERATING FUNCTIONS

BENJAMIN GUNBY

1. Ordinary Generating Functions

A generating function is just a way of storing the data of a sequence that happens to be extremely
useful.

Instead of {an}, we write
∞∑
n=0

anx
n, a power series in x.

Why is this useful?

• Compute closed-form expressions
• Convert less-natural operations on sequences (e.g. convolution) to simpler ones.
• Prove combinatorial identities

Example (Classic). Let a0 = 1, and for n ≥ 1, let an :=
n−1∑
i=0

aian−1−i. Find a closed-form

expression for ai.

Solution. Let f(x) =
∑

anx
n. So xf(x)2 + 1 = f(x). Solving, f(x) = 1−

√
1−4x
2x .

√
1− 4x = (1− 4x)

1
2

=
∞∑
i=0

(
1
2

) (
−1

2

)
· · ·
(
3−2i
2

)
i!

(−1)i4ixi

=
∞∑
i=0

−2i
1 · 3 · · · (2i− 3)

i!
xi

=
∞∑
i=0

−2i
(2i)!

i!2ii!(2i− 1)
xi

= −
∞∑
i=0

1

2i− 1

(
2i

i

)
xi,

so 1−
√
1−4x
2x =

∞∑
i=0

1

2(2i + 1)

(
2(i + 1)

i + 1

)
xi. (Shift index by 1.) We can rewrite this coefficient in the

usual way as 1
i+1

(
2i
i

)
.

Example (From Putnam). Let A∪B be a partition of the nonnegative integers. Suppose that for
every n ≥ 0, the number of solutions to a1 + a2 = n, a1 6= a2 ∈ A, is the same as the number of
solutions to b1 + b2 = n, b1 6= b2 ∈ B. Find all possibilities for A and B.

Solution. Let 1A be the indicator function of A. Define f(x) =

∞∑
i=0

1A(i)xi, and g(x) similarly for

B. Then f(x)2 gives the number of solutions to a1 +a2 = n. The solutions where a1 = a2 are given
by f(x2).
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So f(x)2− f(x2) = g(x)2− g(x2). That is, f(x2)− g(x2) = f(x)2− g(x)2 = (f(x)− g(x))(f(x) +
g(x)) = (f(x)− g(x)) 1

1−x .

So f(x) − g(x) = (f(x2) − g(x2))(1 − x). Iterating, f(x) − g(x) = (1 − x)(1 − x2) · · · (1 −
x2

n−1
)(f(x2

n
)− g(x2

n
)). Assuming that 0 ∈ A, f(x2

n
)− g(x2

n
)→ 1 as n→∞. So f(x)− g(x) =

∞∏
i=0

(1− x2
i
).

The right hand side has +1 and −1 as coefficients depending on the terms in the binary expansion
of n. So A and B must be, in some order, the set of nonnegative integers with an even and odd
number of ones in their binary representation.

Example (USA TST 2010). Let m,n ∈ Z+, m ≥ n. Let Sm,n be the set of all n-term sequences
of positive integers (a1, . . . , an) such that a1 + · · ·+ an = m. Show that

∑
Sm,n

1a12a2 · · ·nan =

n−1∑
i=0

(−1)i
(
n

i

)
(n− i)m.

Solution. The giant sum on the left indicates that we’ll likely be looking at a product of generating
functions. We’d like to be able to sum over all n-tuples, not just those that sum to m, as the sum
over all n-tuples of positive integers can be broken apart into several subsums.

Thus we sum the left side over all such m, first multiplying each term by xm to form a generating
function. We obtain the generating function

f(x) :=

∞∑
m=0

∑
Sm,n

1a12a2 · · ·nan
xm

=

∞∑
m=0

∑
Sm,n

(x)a1(2x)a2 · · · (nx)an

=
∑

a1,...,an∈Z+

(x)a1(2x)a2 · · · (nx)an

=

( ∞∑
a1=1

xa1

)( ∞∑
a1=1

(2x)a2

)
· · ·

( ∞∑
a1=1

(nx)an

)

=

(
x

1− x

)(
2x

1− 2x

)
· · ·
(

nx

1− nx

)
=

n!xn

(1− x)(1− 2x) · · · (1− nx)
.
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The corresponding generating function for the right side is

g(x) :=

∞∑
m=0

(
n−1∑
i=0

(−1)i
(
n

i

)
(n− i)m

)
xm

=

∞∑
m=0

n−1∑
i=0

(−1)i
(
n

i

)
((n− i)x)m

=

n−1∑
i=0

(−1)i
(
n

i

) ∞∑
m=0

((n− i)x)m

=
n−1∑
i=0

(−1)i
(
n
i

)
1− (n− i)x

.

What to do now? This is simply a case of partial fractions. We must have

f(x) =
n!xn

(1− x)(1− 2x) · · · (1− nx)
= (−1)n +

n∑
i=1

ci
1− ix

for some c1, . . . , cn ∈ R. Applying the usual trick of multiplying by (1− ix) and substituting x = 1
i ,

we see that

ci =
n!

in
∏
j 6=i

(
1− j

i

) =
n!

i
∏
j 6=i

(i− j)
.

Now,
∏
j 6=i

(j − i) = (−1)n−i(i− 1)!(n− i)!. Therefore, ci = (−1)n−i
(
n
i

)
. Putting this together,

f(x) = (−1)n +
n∑
i=1

(−1)n−i
(
n
i

)
1− ix

.

But this is the same sum we obtained for g(x), just with i replaced by n − i and an extra (−1)n.
Thus f(x) = g(x) + (−1)n, so for all m ≥ 1 the coefficient of x in f is the same as that in g, as
desired.

2. Exponential Generating Functions

Instead of
∑

anx
n, use

∑ an
n! x

n.
Why is this helpful? Well, for one thing, if our sequence grows very fast, the usual g.f. might

not converge.
Also, multiplication becomes, instead of convolution,

∑
aibn−i

(
n
i

)
. In other words, if an counts

the number of A-structures on n objects, and bn counts the number of B-structrues on n objects, the
product of the egf’s becomes the number of ways to write n objects as the union of an A-structure
and a B-structure.

For example, let an be the number of trees on n labelled vertices, and fA(x) be the corresponding
EGF. Let bn be the number of cycles on n labelled vertices, and let fB(x) be the corresponding
EGF. Then fAfB is the EGF for the number of ways to have a graph on n labelled vertices that is
the disjoint union of a tree and a cycle.

What if we wanted to instead find the number of ways to have a disjoint union of 2 trees on n

vertices? We would then have
f2A
2 , where the 2 is because we can switch the two trees.

Similarly, if we wanted to have a disjoint union of k trees, we would have
fkA
k! .
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So if we wanted to find the number of forests on n vertices, it would have EGF

∞∑
k=0

fkA
k!

= efA .

What we have just shown in this example is the following:
If f is the EGF for the number of A-structures on n objects, ef is the EGF for the number of

partitions into A-structures on n objects.

Example. A permutation is a partition of n elements into cycles. There are (n − 1)! cycles on n

vertices, so the EGF for cycles is
∑ xi

i = − ln(1− x).

The EGF for permutations is simply
∑

xi = 1
1−x .

So our identity just says that e− ln(1−x) = 1
1−x , which is not illuminating but is a nice check.

Example. What about set partitions? How many ways can you partition the set {1, . . . , n} into
other sets? Well, for each i > 0, there is one set of size i, so the egf for sets (of size > 0) is
∞∑
i=1

xi

i!
= ex − 1, so the EGF for set partitions is ee

x−1.

Example. How many derangements are there on n elements? Well, these are just the permutations
with no cycles of size 1. The EGF for cycles of size more than 1 is − ln(1 − x) − x, so we get

e− ln(1−x)−x = 1
1−xe

−x as the EGF. This equals
(∑

xi
) (∑

(−1)i x
i

i!

)
=

∞∑
n=0

xn
n∑
i=0

(−1)i

i!
.

So there are n!

(
n∑
i=0

(−1)i

i!

)
derangements on n elements. Could use PIE, but this way requires

less thought!

Example. How many cycles of length k does the average permutation of size n have?

If we weight each length-k cycles with weight t, we get that
∑

n,σ∈Sn

1

n!
t# of length k cyclesxn =

ex+
x2

2
+···+tx

k

k
+···. Differentiating and setting t = 1, we get xk

k e
− ln(1−x) = xk

k(1−x) =
∞∑
n=k

xn

k
. So

(obviously) there are no length-k cycles in permutations of length < k, and for all n > k, the
average permutation has 1

k cycles of length k.

A final example, to show another way of using generating functions:

Example. Consider the set of all alternating permutations on n vertices–that is, permutations on
[n] with a1 < a2 > a3 < a4 > · · · . Roughly how many such permutations are there?

We’ll want an EGF here; there are too many alternating permutations for a regular GF to suffice.

Casework on the location of 1 yields that (for n > 1) f(n) =

bn2 c∑
i=0

(
n− 1

2i

)
a2ian−2i−1. Similarly,

f(n) =

dn2 e−1∑
i=0

(
n− 1

2i + 1

)
a2i+1an−2i−2, caseworking on the location of n.

Adding, 2f(n) =
n−1∑
i=0

(
n− 1

i

)
aian−i−1.

So if F (x) =
∑

f(n)xn, then 2F ′(x) = F (x)2 + 1. This differential equation has solution
f(x) = tan

(
x
2 + C

)
.
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Setting x = 0, we want F (0) = 1, so C = π
4 . Therefore, f(x) = tan

(
x
2 + π

4

)
=

1+tan x
2

1−tan x
2

=

secx + tanx.
One nice feature here is that sec gives the even terms, and tan gives the odd terms.
So, how fast does this sequence grow? Well, we have a pole at π

2 , so (likely) the sequence will

grow at rate
(
2
π

)n
n!.
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