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§1 Swapping sums

§1.1 Finite sums

Here is an example that many of you might already know from high school math contests.

Example 1.1

Let n be a positive integer. Prove that∑
k≥1

ϕ(k)
⌊n
k

⌋
=

1

2
n(n+ 1).

Proof. The key idea is to rewrite the floor as a sum involving divisors:∑
k≥1

ϕ(k)
⌊n
k

⌋
=
∑
k≥1

ϕ(k)
∑
k|m
k≤n

1 =
∑
k≥1

∑
k|m
m≤n

ϕ(k).

Thus we’re computing the sum of ϕ(k) over several pairs of integers (k,m) for which
k | m, m ≤ n. For example, if n = 6, the possible pairs (k,m) are given be the following
table:

(k,m) ∈



(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 2) (2, 4) (2, 6)

(3, 3) (3, 6)
(4, 4)

(5, 5)
(6, 6)


Nominally, we’re supposed to be summing by the rows of this table (i.e. fix k and run
the sum over corresponding m). However, by interchanging the order of summation we
can instead consider this as a sum over the rows: if we instead pick the value of m first,
we see that ∑

k≥1

∑
k|m
m≤n

ϕ(k) =

n∑
m=1

∑
k|m

ϕ(k).

Using the famous fact
∑

d|n ϕ(d) = n, we conclude

n∑
m=1

∑
k|m

ϕ(k) =

n∑
m=1

m =
1

2
n(n+ 1).

Here one has the idea that one can “swap the order of summation”: even though there
is a single

∑
initially, by rewriting it as a double

∑
and then swapping the order, we

are able to solve the problem.
The goal of this lecture is to try and push this idea to allow us to do similar calculations

over both infinite sums and integrals. Because of the introduction of infinity, things
become a little more complicated and some more care is necessary. So, in the first part
of the lecture we will address conditions on which rearranging the order of summation or
integration is permissible. After that we will see several applications.
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§1.2 Absolute and conditional convergence

Let
∑

n an be an infinite series of complex numbers; then its limit is defined as

∑
n

an := lim
N→∞

(
N∑
n=1

an

)
.

Note that this depends on the order of the terms: if we permute the sequence, the limit
might change! This is weird and bad since we would want “infinite addition” to be
commutative, so we want a way to avoid this behavior. This is accomplished by using
the so-called notion of absolute convergence.

Definition 1.2. If
∑
ak converges, we say it converges absolutely if

∑
|ak| < ∞, and

converges conditionally otherwise.

Theorem 1.3 (Rearrangement okay iff absolutely convergent)

Let
∑
an be a convergent series of complex numbers.

(a) If
∑
an is absolutely convergent, it is invariant under permutation of the terms

(the sum will still converge, and the limit remains the same).

(b) If
∑
an is conditionally convergent and an are real numbers, then there exists

a permutation of the terms for which the sum converges to 2018.

Thus, any time before you try to rearrange the series, you must check first that it’s
absolutely convergent. With two

∑
signs the statement reads:

Theorem 1.4 (Fubini for doubly-indexed infinite sums)

Let am,n ∈ C. If any of the three quantities

∑
(m,n)∈N2

|am,n|,
∑
m

(∑
n

|am,n|

)
,

∑
n

(∑
m

|am,n|

)

are convergent, then

∑
(m,n)∈N2

am,n =
∑
m

(∑
n

am,n

)
=
∑
n

(∑
m

am,n

)

and all three series are convergent.

Corollary 1.5 (Tonelli for doubly-indexed infinite sums)

Let am,n ∈ R≥0. Then

∑
(m,n)∈N2

am,n =
∑
m

(∑
n

am,n

)
=
∑
n

(∑
m

am,n

)

where we allow the possibility all three diverge.
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Here is the classic example.

Example 1.6 (Putnam 2016 B6)

Evaluate
∞∑
k=1

(−1)k−1

k

∞∑
n=0

1

k2n + 1
.

Proof. Before anything else, the sum is absolutely convergent since we have∑
k≥1
n≥0

1

k(k · 2n + 1)
<
∑
k≥1

k−2
∑
n≥0

1

2n
=
π2

6
· 2 <∞.

Thus we may swap the order of summation.
We use d = k · 2n + 1 ≥ 2 as the summation variable, so that the sum in question is

∑
d≥2

1

d

∑
k

∃n:d−1=k·2n

(−1)k−1

k
.

Now we claim that the inner sum is exactly 1
d−1 . Indeed, if d − 1 = 2rm with m odd,

then the sum is

(−1)m−1

m
+

(−1)2m−1

2m
+ · · ·+ (−1)2

rm−1

2rm
=

1

m

(
1

1
− 1

2
− · · · − 1

2r

)
=

1

2rm

=
1

d− 1
.

Consequently, the final answer is∑
d≥2

1

d(d− 1)
=
∑
d≥2

(
1

d− 1
− 1

d

)
= 1 .

§2 Riemann integral

So far all of this is fair-game on high school. We’ll now move into the realm of calculus.

Definition 2.1. A tagged partition P of [a, b] consists of a partition of [a, b] into n
intervals, with a point ξi in the nth interval, denoted

a ≤ x0 < x1 < x2 < · · · < xn ≤ b and ξi ∈ [xi−1, xi] ∀ 1 ≤ i ≤ n.

The mesh of P is the width of the longest interval, i.e. maxi(xi − xi−1).
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Theorem 2.2 (Riemann integral)

Let f : [a, b]→ C be continuous. Then the definition∫ b

a
f(x) dx = lim

P tagged partition
meshP→0

(
n∑
i=1

f(ξi)(xi − xi−1)

)

is well-defined (and finite).

There are a bunch of remarks I want to make about this result.

§2.1 Compactness and improper integrals

We won’t prove the definition of the Riemann integral works out, but we will mention
that its proof hinges crucially on:

Fact 2.3. The interval [a, b] is compact, so continuous functions f : [a, b] → C behave
well. In particular, f is bounded, and “uniformly continuous”.

This fact is false for open (or unbounded) intervals: consider the function 1/
√
x on

(0, 1), for example. This gives rise to the notion of “improper integrals”, such as∫ 1

0

1√
x
dx.

As written, this does not officially make sense as a Riemann integral, since f(x) = 1√
x

is

not a function on [0, 1]. Rather, we implicitly mean

lim
ε→0+

∫ 1

ε

1√
x
dx

since f(x) is well-defined on [ε, 1]. In this case, there is no guarantee the limit exists; for
example

∫ 1
0 x
−1 dx =∞.

Similarly, it’s possible to set endpoints at ∞ by e.g.∫ ∞
−∞

f(x) := lim
B→∞

∫ B

−B
f(x)

for example.

§2.2 Mesh sums

Sometimes, you will find that a sum can be written in such a way that it corresponds to
the mesh of a Riemann integral. In that case, one is very happy, because then it turns
the entire sum into a single integral!

Example 2.4

Evaluate

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
.
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Proof. Write as

lim
n→∞

(
1

n

n∑
k=1

1

1 + k
n

)
.

Then, this is a mesh sum for f(x) = 1
1+x over [0, 1]. Thus by definition it approaches∫ 1

0
1

1+x dx = log 2.

§2.3 Discretization and inequalities

If asked to prove an identity or inequality about integrals, it is often possible to revert
back to a discrete sum, a technique called discretization. For example, suppose one wishes
to prove the Cauchy-Schwarz inequality in the form(∫ b

a
f(x)g(x) dx

)2

≤
(∫ b

a
f(x)2 dx

)(∫ b

a
g(x)2 dx

)
for continuous functions f, g : [a, b]→ R. By taking meshes, it is sufficient to prove(

1

n

∑
i

f(ai)g(ai) dx

)2

≤

(
1

n

∑
i

f(ai)
2 dx

)(
1

n

∑
i

g(ai)
2 dx

)
.

which is of course just the classical Cauchy-Schwarz from high school.
In practice, aside from discretization, most integral inequalities on competitions will

really just use the following fact:

Lemma 2.5 (The obvious inequality)

Let f, g : [a, b]→ R be continuous functions. If f(x) ≤ g(x) for all x ∈ [a, b] then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

§3 Lebesgue integrals

§3.1 Advantages of Lebesgue integrals

Unfortunately, Riemann integrals are terrible. In order to properly state theorems about
interchanging order of summation, it’ll be much more convenient to proceed with the
Lebesgue integral, which I will generally denote by

∫
X to distinguish it from the

Riemann integral
∫ b
a .

Defining the Lebesgue integral is much more involved, because it involves a bunch of
measure theory, so I won’t define what it is (but those of you taking 18.175 will find out
really soon). However, I’ll at least mention the following reasons it’s appreciated.

• Better theorems about swapping limits and sums. For example, for the
Riemann integral, swapping

∑
n

∫ b
a fn and

∫ b
a

∑
n fn requires uniform convergence,

which is a pretty strong condition (although it’ll be true for Taylor series, which is
a frequent use case for us).

• Improper integrals can be handled natively. You can write
∫
(0,1)

1√
x
dx and∫

R exp(−x2) dx and it makes sense, unlike for the Riemann case where one has to
use an improper integral.
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• More versatile. Although we won’t encounter any, some functions that were
previously not Riemann integrable can now be assigned values. The classic example
is
∫
[0,1] 1Q = 0.

§3.2 Riemann integrals and Lebesgue integrals

Of course, it’d be really silly if there wasn’t some guarantee that the Riemann integrals
and Lebesgue integrals agree.

The rules for converting a Riemann and Lebesgue integral are as follows:

• For continuous functions f : [a, b]→ C, the Riemann integral and Lebesgue integrals
coincide. So proper Riemann integrals work out of the box.

• For continuous nonnegative functions f : (a, b) → R≥0 on an open (or half-open)
interval where one needs improper integrals, the improper Riemann integral and
Lebesgue integrals coincide (where we allow the possibility that the integrals are
both +∞). Here, a = −∞ and b = +∞ are allowed too.

• For general f : (a, b) → C, if the partial integrals
∫ d
c |f | dx are bounded for any

[c, d] ⊂ (a, b) then we can also swap as above.

On the other hand, if your signs are all over the place, then there isn’t hope in general of
converting improper Riemann integrals to Lebesgue ones. A famous textbook example is∫∞
0

sinx
x dx which in fact is not covered by Lebesgue integration.

§3.3 Swapping double integrals

I’ll state this in the full generality, though we’ll only use it in the cases where the
“σ-finite measure spaces” are N (corresponding to infinite sums) or sub-intervals of R
(corresponding to Riemann integrals).

Theorem 3.1 (Fubini)

Let X and Y be “σ-finite measure spaces”. Let f : X × Y → C be continuous
(or just “measurable”). If any of

∫
X

(∫
Y |f(x, y)| dy

)
dx,

∫
Y

(∫
X |f(x, y)| dx

)
dy,∫

X×Y |f(x, y)| d(x, y) are finite, then we have∫
X

(∫
Y
f(x, y) dy

)
dx =

∫
Y

(∫
X
f(x, y) dx

)
dy =

∫
X×Y

f(x, y) d(x, y).

Corollary 3.2 (Tonelli)

Let X and Y be “σ-finite measure spaces”. Let f : X × Y → R≥0 be continuous (or
just “measurable”) and nonnegative. Then∫

X

(∫
Y
f(x, y) dy

)
dx =

∫
Y

(∫
X
f(x, y) dx

)
dy =

∫
X×Y

f(x, y) d(x, y)

where we allow the possibility that all three are +∞.

Remark 3.3. • If X = N and Y = N, then this corresponds to the double sums we
stated earlier.
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• If X = N and Y ⊂ R is an interval, then this states that
∑∫

and
∫ ∑

can be
swapped.

• Note that if X and Y are finite closed intervals and f : X × Y → C is continuous,
then hypotheses of Fubini are automatically satisfied, since X × Y is compact. The
situation where X and Y are open/infinite is more slippery, although in most cases
we’ll have nonnegativity and then Tonelli will save us.

Tonelli’s theorem (together with the result that even improper Riemann integrals are
okay with nonnegative functions) means that whenever you have nonnegative functions,
you can proceed no holds barred — everything works beautifully. In other words
nonnegative =⇒ euphoria.

§3.4 Interchanging limits and Lebesgue integrals

You can read this off of the results on sums, but we’ll state them here since they have
names.

Theorem 3.4 (Dominated convergence theorem)

Let fn : I → C be a sequence of continuous functions on an interval I ⊆ R. Assume
that |fn(x)| ≤ g(x) for all x, where

∫
I g(x) <∞ (i.e. g is integrable). Then limn fn(x)

is integrable and

lim
n→∞

∫
I
fn(x) dx =

∫
I

lim
n→∞

fn(x) dx.

Theorem 3.5 (Monotone convergence theorem)

Suppose that fn : I → R≥0 is a sequence of continuous functions on an interval
I ⊆ R which are also nonnegative. Assume further that fn(x) ≤ fn+1(x) for n ∈ N,
x ∈ I. Then

lim
n→∞

∫
I
fn(x) dx =

∫
I

lim
n→∞

fn(x) dx

where the value of any of these integrals is allowed to be infinite.

§4 Techniques for introducing more sums

§4.1 Taylor series

Some common ones:

exp(x) =
∑
n≥0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . ∀ x ∈ R

log(1− x) = −
∑
n≥1

xn

n
= −x− x2

2
− x3

3
− . . . ∀ |x| < 1

1

1− x
=
∑
n≥0

xn = 1 + x+ x2 + . . . ∀ |x| < 1

arctan(x) =
∑
n≥0

(−1)nx2n+1

2n+ 1
= x− x3

3
+
x5

5
− . . . ∀ |x| < 1.
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There is a nice theorem about Taylor series in general:

Theorem 4.1 (Convergence of Taylor series)

Let f be an analytic function. Within its radius of convergence, the Taylor series for
f will

• converge absolutely for any x as a series of complex numbers, and

• converge uniformly on any compact sub-interval, as a series of functions (i.e. it
is compactly convergent).

I mention uniform convergence here since it’s actually strong enough to allow swapping
integration even for the Riemann integral. Here’s the definition:

Definition 4.2. A sequence of functions Fn : [a, b]→ C is said to converge uniformly to
the function F : [a, b]→ C if

lim
n→∞

sup
x∈[a,b]

|Fn(x)− F (x)| = 0.

A series
∑

n fn converges uniformly if its partial sums Fn =
∑n

k=1 fk do.

But we’ll be mostly using Lebesgue integrals anyways.
So, whenever you have an analytic function on a closed interval, all the summation

results work fine! Here is a very famous example.

Example 4.3

Compute ∫ 1

0
log x log(1− x) dx.

There is some subtlety here since this integral looks like it might be improper! Fortunately,
it’s not quite, since limx→0+ log(x) log(1−x) = 0, and in this way we can actually regarding
log(x) log(1− x) as a proper integral on [0, 1].

Proof. Switch to Lebesgue integration. The integral is then

I = −
∫
[0,1]

log x
∑
n≥1

xn

n
dx

= −
∑
n≥1

1

n

∫ 1

0
xn log x dx (by Tonelli)

= −
∑
n≥1

1

n

[
xn+1 · (n+ 1) log x− 1

(n+ 1)2

]x=1

x=0

(integration by parts)

= −
∑
n≥1

1

n

[
xn+1 · (n+ 1) log x− 1

(n+ 1)2

]x=1

x=0

=
∑
n≥1

1

n(n+ 1)2

=
∑
n≥1

[
1

n
− 1

n+ 1
− 1

(n+ 1)2

]
.
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The Nth partial sum of this is equal to 1 − 1
N+1 −

∑N
n=1

1
(n+1)2

which gives 2 − π2

6 as
N →∞.

Remark (An application of Feynman’s trick). In my original notes, I had obtained the
identity

∫ 1
0 x

n log x dx = − 1
(n+1)2

using integration by parts. In class it was pointed out

that Feynman’s trick, more descriptively called “differentiating under the integral sign”,
gives a shorter way to prove this. Start by writing∫ 1

0
xn dx =

1

n+ 1

and then treat n ∈ R as a parameter. This allows one to differentiate both sides with
respect to n, yielding ∫ 1

0

d

dn
xn dx =

d

dn

1

n+ 1

=⇒
∫ 1

0
xn log x dx = − 1

(n+ 1)2
.

See http://www.math.uconn.edu/~kconrad/blurbs/analysis/diffunderint.pdf for
more details on this trick.

§4.2 Eliminating fractions

The following seemingly obvious statement is surprisingly useful.

Lemma 4.4 (Denominator → integral)

For any real number s > −1 we have

1

s+ 1
=

∫
(0,1)

ts ds.

As a simple use case, let’s suppose we were given
∑

n
xn

n for some |x| < 1 and wanted to
figure out what function it was (without knowing anything about log in advance). We
can write ∑

n

xn

n
=
∑
n

xn
∫
[0,1]

tn−1 dt

=
∑
n

∫
[0,1]

x(xt)n−1 dt

=

∫
[0,1]

∑
n

x(xt)n−1 dt

=

∫
[0,1]

x

1− xt
dt

= [− log(1− xt)]1t=0

= [− log(1− xt)]1t=0 = − log(1− x).

Let’s also see a solution to the earlier double sum.

10
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Example 4.5 (Putnam 2016 B6)

Evaluate
∞∑
k=1

(−1)k−1

k

∞∑
n=0

1

k2n + 1
.

Proof. Check conditional convergence of the double sum in the same way as before. Thus
we apply Fubini freely:

∞∑
k=1

(−1)k−1

k

∞∑
n=0

1

k2n + 1
=
∞∑
k=1

(−1)k−1

k

∞∑
n=0

∫
[0,1]

tk2
n
dt

=

∫
[0,1]

(
−
∞∑
n=0

∞∑
k=1

(−t2n)k

k

)
dt

=

∫
[0,1]

∞∑
n=0

log(1 + t2
n
) dt =

∫
[0,1]

log

( ∞∏
n=0

(1 + t2
n
)

)
dt

=

∫
[0,1]

log

(
1

1− t

)
dt =

∫
[0,1]
− log(1− t) dt = 1.

§4.3 Fourier series

If f : R→ C is continuous with period 1, then

f(x) = lim
N→∞

N∑
m=−N

am exp(2πimx).

The Fourier coefficients am are given by

am =

∫ 1

0
f(x) exp(−2πimx) dx.

We again have convergence results:

Theorem 4.6

Let f : [0, 1]→ C be periodic.

(a) The Fourier series converges uniformly provided f is continuously differentiable
(this can be weakened to “absolutely continuous”, but we won’t need that level
of generality).

(b) The Fourier series converges absolutely as long as
∑

m∈Z |am| <∞.

Example 4.7

If f : R → C is continuously differentiable with period 1, and α is an irrational
number, then

lim
n→∞

f(α) + · · ·+ f(nα)

n
=

∫ 1

0
f(x) dx.
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Proof. Just write f(x) =
∑

m am exp(2πimx). Then note that for m 6= 0, if we let
z = exp(2πimα) then

z1 + z2 + · · ·+ zn

n
=
z(1− zn)

n(1− z)
→ 0

as long as z 6= 1, which holds since z is not a root of unity. This leaves just the
contribution form a0 =

∫ 1
0 f(x) dx.

In general, Fourier-type sums are good things to keep an eye out for, even if they don’t
explicitly come from Fourier series. For example, given a complex polynomial p(z) (or
even a series):

• The discrete sum
∑n−1

k=0 p
(
e

2πik
n

)
extracts the coefficients with indices divisible by

n,

• the integral
∫ 2π
t=0 p(e

it) dt = 2π · p(0) extracts the constant term of the polynomial,

and so on. This is related to complex analysis, in which it turns complex differentiable
functions C→ C are exactly the same as complex analytic functions, which means you
can go nuts with all sorts of beautiful results such as Cauchy’s theorem.
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§A Problems

Problem A.1. Evaluate the improper integral∫ 1

0

log(1− x)

x
dx.

Problem A.2. Determine the value of the improper integral∫ ∞
0

x

ex − 1
dx.

Problem A.3. (a) Show that that min(a, b) =
∫∞
0 1≤a(t)1≤b(t) dt for any nonnegative

real numbers a, b ≥ 0. (What do you think 1≤c(t) means?)

(b) Show that if r1, . . . , rn are nonnegative reals and x1, . . . , xn are real numbers then

n∑
i=1

n∑
j=1

min(ri, rj)xixj ≥ 0.

Problem A.4 (2006 B5). For each continuous function f : [0, 1] → R let I(f) =∫ 1
0 x

2f(x) dx and J(f) =
∫ 1
0 xf(x)2 dx. Find the maximum value of I(f) − J(f)

over all such functions f .

Problem A.5 (P+B 468). Compute

lim
n→∞

[
1√

4n2 − 12
+

1√
4n2 − 22

+ · · ·+ 1√
4n2 − n2

]
.

Problem A.6 (2017 A3). Let a and b be real numbers with a < b, and let f and g be

continuous functions from [a, b] to (0,∞) such that
∫ b
a f(x) dx =

∫ b
a g(x) dx but f 6= g.

For every positive integer n, define

In =

∫ b

a

(f(x))n+1

(g(x))n
dx.

Show that I1, I2, I3, . . . is an increasing sequence with limn→∞ In =∞.

Problem A.7 (2013 A3). Let a0, a1, . . . , an, x be real numbers, where 0 < x < 1,
satisfying

a0 +
a1

1 + x
+

a2
1 + x+ x2

+ · · ·+ an
1 + x+ x2 + · · ·+ xn

= 0.

Prove that for some 0 < y < 1 we have

a0 + a1y + a2y
2 + · · ·+ any

n = 0.

Problem A.8. Find

lim
n→∞

1

n

n∑
a=1

n∑
b=1

a

a2 + b2
.

Problem A.9 (1997 A3). Evaluate the following:∫ ∞
0

(
x− x3

2
+

x5

2 · 4
− x7

2 · 4 · 6
+ · · ·

) (
1 +

x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62
+ · · ·

)
dx.
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∑

and
∫

Problem A.10. Show that ∫ 1

0
x−x dx =

∑
n≥1

n−n.

Problem A.11 (2014 B2). Suppose that f is a function on the interval [1, 3] such that
−1 ≤ f(x) ≤ 1 for all x and

∫ 3
1 f(x) dx = 0. Determine the largest possible value of∫ 3

1

f(x)

x
dx.

Problem A.12 (P+B 472). Let f : R→ R be continuous and satisfy f(x) ≥ 1 for all x.
Suppose that

f(x)f(2x) . . . f(nx) ≤ 2018n2019

for every positive integer n and x ∈ R. Must f be constant?

Problem A.13 (Gaussian integral). Show that
∫∞
−∞ e

−x2 dx =
√
π.

Problem A.14. A rectangle in R2 is called great if either its width or height is an
integer. Prove that if a rectangle X can be dissected into great rectangles, then the
rectangle X is itself great.

Problem A.15 (PUMaC 2017). Compute∑
k≥0

2k

52k + 1
.

Problem A.16 (P+B 470). Determine the value of

lim
n→∞

[
21/n

n+ 1
+

22/n

n+ 1
2

+ · · ·+ 22/n

n+ 1
n

]
.

Problem A.17 (2013 B4). For any continuous function f : [0, 1]→ R let

µ(f) =

∫ 1

0
f(x) dx, Var(f) =

∫ 1

0
(f(x)− µ(f))2 dx, M(f) = max

0≤x≤1
|f(x)|.

Show that if f, g : [0, 1]→ R are continuous functions then

Var(fg) ≤ 2 Var(f)M(g)2 + 2 Var(g)M(f)2.

Problem A.18 (2013 B5). For m ≥ 3, a list of
(
m
3

)
real numbers aijk (where 1 ≤ i <

j < k ≤ m) is said to be area definite for Rn if the inequality∑
1≤i<j<k≤m

aijk ·Area(4AiAjAk) ≥ 0

holds for every choice of m points A1, . . . , Am in Rn. For example, the list of four numbers
a123 = a124 = a134 = 1, a234 = −1 is area definite for R2. Prove that if a list of

(
m
3

)
numbers is area definite for R2, then it is area definite for R3.

Problem A.19 (P+B §3.2). Prove that

lim
n→∞

(
n∏
k=0

(
n

k

)) 1
n(n+1)

=
√
e.
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∑

and
∫

Problem A.20 (2003 B6). Let f : [0, 1]→ R be continuous. Show that∫ 1

0

∫ 1

0
|f(x) + f(y)| dx dy ≥

∫ 1

0
|f(x)| dx.

Problem A.21 (2010 A6). Let f : R≥0 → R be a strictly decreasing continuous function
such that limx→∞ f(x) = 0. Prove that∫ ∞

0

f(x)− f(x+ 1)

f(x)
dx

diverges.

Problem A.22 (Russian box problem). A rectangular prism X is contained within a
rectangular prism Y .

(a) Is it possible the surface area of X exceeds that of Y ?

(b) Is it possible the sum of the 12 side lengths of X exceeds that of Y ?

Problem A.23. For a, b, c > 0 prove that

1

a
+

1

b
+

1

c
+

4

a+ b
+

4

b+ c
+

4

c+ a
≥ 12

3a+ b
+

12

3b+ c
+

12

3c+ a
.

Problem A.24 (2013 B6). Define a function w : Z→ Z as follows. For |a|, |b| ≤ 2, let
w(a, b) be as in the table shown; otherwise, let w(a, b) = 0.

b
w(a, b) −2 −1 0 1 2

−2 −1 −2 2 −2 −1
−1 −2 4 −4 4 −2

a 0 2 −4 12 −4 2
1 −2 4 −4 4 −2
2 −1 −2 2 −2 −1

For every finite nonempty subset S of Z× Z, prove that

A(S) :=
∑

(s,s′)∈S×S

w(s− s′) > 0.

Problem A.25 (2004 B5). Evaluate

lim
x→1−

∏
n≥0

(
1 + xn+1

1 + xn

)xn
.

Problem A.26 (2004 A6). Suppose that f : [0, 1]2 → R is continuous. Show that∫ 1

0

(∫ 1

0
f(x, y)dx

)2

dy +

∫ 1

0

(∫ 1

0
f(x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f(x, y) dx dy

)2

+

∫ 1

0

∫ 1

0
[f(x, y)]2 dx dy.

Problem A.27 (2015 B6). For each positive integer k, let A(k) be the number of odd

divisors of k in the interval
[
1,
√

2k
)

. Evaluate:

∞∑
k=1

(−1)k−1
A(k)

k
.
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