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Algebra is the offer made by the devil
to the mathematician... All you need
to do, is give me your soul: give up
geometry.

Michael Atiyah

1 Abstract algebra

Problem 1 (Putnam 1972 A2). Let S be a set and let ∗ be a binary operation on S satisfying
the laws

x ∗ (x ∗ y) = y for all x, y in S,

(y ∗ x) ∗ x = y for all x, y in S.

Show that ∗ is commutative but not necessarily associative.

Problem 2 (Putnam 1972 B3). Let A and B be two elements in a group such that ABA =
BA2B, A3 = 1 and B2n−1 = 1 for some positive integer n. Prove B = 1.

Problem 3 (Putnam 2007 A5). Suppose that a finite group has exactly n elements of order p,
where p is a prime. Prove that either n = 0 or p divides n+ 1.

Problem 4 (Putnam 2011 A6). Let G be an abelian group with n elements, and let {g1 =
e, g2, . . . , gk} ( G be a (not necessarily minimal) set of distinct generators of G. A special
die, which randomly selects one of the elements g1, g2, . . . , gk with equal probability, is rolled m
times and the selected elements are multiplied to produce an element g ∈ G. Prove that there
exists a real number b ∈ (0, 1) such that

lim
m→∞

1

b2m

∑
x∈G

(
Prob(g = x)− 1

n

)2

is positive and finite.
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2 “Abstract algebra”

Problem 5 (Putnam 1990 B4). Let G be a finite group of order n generated by a and b. Prove
or disprove: there is a sequence

g1, g2, g3, . . . , g2n

such that

(a) every element of G occurs exactly twice, and

(b) gi+1 equals gia or gib for i = 1, 2, . . . , 2n. (Interpret g2n+1 as g1.)

Problem 6 (Putnam 2016 A5). Suppose that G is a finite group generated by the two elements
g and h, where the order of g is odd. Show that every element of G can be written in the form

gm1hn1gm2hn2 · · · gmrhnr

with 1 ≤ r ≤ |G| and mn, n1,m2, n2, . . . ,mr, nr ∈ {1,−1}. (Here |G| is the number of elements
of G.)

3 Problems

Problem 7 (Putnam 1977 B6). Let H be a subgroup with h elements in a group G. Suppose
that G has an element a such that for all x in H, (xa)3 = 1, the identity. In G, let P be the
subset of all products x1ax2a · · ·xna, with n a positive integer and the xi’s in H.

(a) Show that P is a finite set.

(b) Show that, in fact, P has no more than 3h2 elements.

Problem 8 (Putnam 1984 B3). Prove or disprove the following statement: If F is a finite set
with two or more elements, then there exists a binary operation ∗ on F such that for all x, y, z
in F ,

(i) x ∗ z = y ∗ z implies x = y (right cancellation holds), and

(ii) x ∗ (y ∗ z) 6= (x ∗ y) ∗ z (no case of associativity holds).

Problem 9 (Putnam 1987 B6). Let F be the field of p2 elements where p is an odd prime.
Suppose S is a set of (p2 − 1)/2 distinct nonzero elements of F with the property that for each
a 6= 0 in F , exactly one of a and −a is in S. Let N be the number of elements in the intersection
S ∩ {2a : a ∈ S}. Prove that N is even.

Problem 10 (Putnam 1989 B2). Let S be a nonempty set with an associative operation that
is left and right cancellative (xy = xz implies y = z, and yx = zx implies y = z). Assume that
for every a in S the set {an : n = 1, 2, 3, . . . } is finite. Must S be a group?

Problem 11 (Putnam 1992 B6). Let M be a set of real n× n matrices such that

(i) I ∈M, where I is the n× n identity matrix;

(ii) if A ∈M and B ∈M, then either AB ∈M or −AB ∈M, but not both;

(iii) if A ∈M and B ∈M, then either AB = BA or AB = −BA;
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(iv) if A ∈M and A /∈ I, there is at least one B ∈M such that AB = −BA.

Prove that M contains at most n2 matrices.

Problem 12 (Putnam 1996 A4). Let S be a set of ordered triples (a, b, c) of distinct elements
of a finite set A. Suppose that

(1) (a, b, c) ∈ S if and only if (b, c, a) ∈ S;

(2) (a, b, c) ∈ S if and only if (c, b, a) /∈ S [for a, b, c distinct];

(3) (a, b, c) and (c, d, a) are both in S if and only if (b, c, d) and (d, a, b) are both in S.

Prove that there exists a one-to-one function g from A to R such that g(a) < g(b) < g(c) implies
(a, b, c) ∈ S.

Problem 13 (Putnam 2008 A6). Prove that there exists a constant c > 0 such that in every
nontrivial finite group G there exists a sequence of length at most c ln |G| with the property
that each element of G equals the product of some subsequence. (The elements of G in the
sequence are not required to be distinct. A subsequence of a sequence is obtained by selecting
some of the terms, not necessarily consecutive, without reordering them; for example, 4, 4, 2 is
a subsequence of 2, 4, 6, 4, 2, but 2, 2, 4 is not.)

Problem 14 (Putnam 2009 A5). Is there a finite abelian group G such that the product of the
orders of all its elements is 22009?

Problem 15 (Putname 2010 A5). Let G be a group, with operation ∗. Suppose that

1. G is a subset of R3 (but ∗ need not be related to addition of vectors);

2. For each a,b ∈ G, either a×b = a ∗b or a×b = 0 (or both), where × is the usual cross
product in R3.

Prove that a× b = 0 for all a,b ∈ G.

Problem 16. Let R be a noncommutative ring with identity. Suppose that x, y are elements
of R such that 1− xy and 1− yx are invertible. (By the previous problem it suffice to assume
that only 1− xy is invertible, but this is irrelevant.) Show that

(1 + x)(1− yx)−1(1 + y) = (1 + y)(1− xy)−1(1 + x). (1)

This problem illustrates that “noncommutative high school algebra” is a lot harder than ordi-
nary (commutative) high school algebra.

Note. Formally we have

(1− yx)−1 = 1 + yx+ yxyx+ yxyxyx+ · · ·

and similarly for (1 − xy)−1. Thus both sides of (1) are formally equal to the sum of all
“alternating words” (products of x’s and y’s with no two x’s or y’s appearing consecutively).
This makes the identity (1) plausible, but our formal argument is not a proof.

Problem 17. Let G be a group of order 4n + 2, n ≥ 1. Prove that G is not a simple group,
i.e., G has a proper normal subgroup.
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Problem 18. Let R satisfy all the axioms of a ring except commutativity of addition. Show
that ax+ by = by + ax for all a, b, x, y ∈ R.

Problem 19. Let G denote the set of all infinite sequences (a1, a2, . . . ) of integers ai. We can
add elements of G coordinate-wise, i.e.,

(a1, a2, . . . ) + (b1, b2, . . . ) = (a1 + b1, a2 + b2, . . . ).

Let Z denote the set of integers. Suppose f : → Z is a function satisfying f(x+y) = f(x)+f(y)
for all x, y ∈ G. Let ei be the element of G with a 1 in position i and 0’s elsewhere.

(a) Suppose that f(ei) = 0 for all i. Show that f(x) = 0 for all x ∈ G.

(b) Show that f(ei) = 0 for all but finitely many i.

Problem 20. Let G be a finite group, and set f(G) = #{(u, v) ∈ G × G : uv = vu}. Find
a formula for f(G) in terms of the order of G and the number k(G) of conjugacy classes of G.
(Two elements x, y ∈ G are conjugate if y = axa−1 for some a ∈ G. Conjugacy is an equivalence
relation whose equivalence classes are called conjugacy classes.)

Problem 21 (difficult). Let n be an odd positive integer. Show that the number of ways
to write the identity permutation ι of 1, 2, . . . , n as a product uvw = ι of three n-cycles is
2(n− 1)!2/(n+ 1).

Problem 22. Let G be any finite group, and let w ∈ G. Find the number of pairs (u, v) ∈ G×G
satisfying w = uvu2vuv.

Problem 23. Show that the number of ways to write the cycle (1, 2, . . . , n) as a product of
n − 1 transpositions is nn−2. For instance, when n = 3 we have (multiplying permutations
left-to-right) three ways:

(1, 2, 3) = (1, 3)(2, 3) = (1, 2)(1, 3) = (2, 3)(1, 2).

Problem 24 (difficult). Let si = (i, i + 1) ∈ Sn, i.e., si is the permutation of 1, 2, . . . , n
that transposes i and i + 1 and fixes all other j. Let f(n) be the number of ways to write the
permutation n, n−1, . . . , 1 in the form si1si2 · · · sip , where p =

(
n
2

)
. For instance, 321 = s1s2s1 =

s2s1s2, so f(3) = 2. Moreover, f(4) = 16. Show that f(n) is the number of sequences a1, . . . , ap
of n− 1 1’s, n− 2 2’s, . . . , one n− 1, such that in any prefix a1, a2, . . . , ak, the number of i+ 1’s
does not exceed the number of i’s. For instance, when n = 3 there are the two sequences 112
and 121.

Note. An explicit formula is known for f(n), but this is irrelevant here.

Problem 25 (difficult). In the notation of the previous problem, show that∑
i1,i2,...,ip

i1i2 · · · ip = p!,

where the sum is over all sequences i1, . . . , ip for which n, n − 1, . . . , 1 = si1si2 · · · sip . For
instance, when n = 3 we get 1 · 2 · 1 + 2 · 1 · 2 = 3!.

Note. The only known proofs are algebraic. It would be interesting to give a combinatorial
proof.
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