PROBLEMS ON INEQUALITIES

1. Let a be a real number and n a positive integer, with a > 1. Show that

$$a^{n} - 1 \ge n \left(a^{\frac{n+1}{2}} - a^{\frac{n-1}{2}} \right).$$

2. Let $x_i > 0$ for $i = 1, 2, \dots, n$. Show that

$$(x_1 + x_2 + \dots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right) \ge n^2.$$

3. For p > 1 and a_1, a_2, \ldots, a_n positive, show that

$$\sum_{k=1}^{n} \left(\frac{a_1 + a_2 + \dots + a_k}{k} \right)^p < \left(\frac{p}{p-1} \right)^p \sum_{k=1}^{n} a_k^p.$$

4. If $a_n > 0$ for $n = 1, 2, \ldots$, show that

$$\sum_{n=1}^{\infty} \sqrt[n]{a_1 a_2 \cdots a_n} \le e \sum_{n=1}^{\infty} a_n,$$

provided that $\sum_{n=1}^{\infty} a_n$ converges.

5. Let $0 < x < \pi/2$. Show that

$$x - \sin x \le \frac{1}{6}x^3.$$

6. Show that

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2\sqrt{n+1} - 2.$$

7. Let

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \ldots, \frac{a_n}{b_n}$$

be n fractions with $b_i > 0$ for i = 1, 2, ..., n. Show that the fraction

$$\frac{a_1 + a_2 + \dots + a_n}{b_1 + b_2 + \dots + b_n}$$

is contained between the largest and smallest of these n fractions.

8. For $n = 1, 2, 3, \dots$ let

$$x_n = \frac{1000^n}{n!}.$$

Find the largest term of the sequence.

9. Suppose that a_1, a_2, \ldots, a_n with $n \geq 2$ are real numbers greater than -1, and all the numbers a_j have the same sign. Show that

$$(1+a_1)(1+a_2)\cdots(1+a_n) > 1+a_1+a_2+\cdots+a_n.$$

10. Show that

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}.$$

11. Prove Chebyshev's inequality: If $a_1 \leq a_2 \leq \cdots \leq a_n$ and $b_1 \leq b_2 \leq \cdots \leq b_n$, then

$$\left(\frac{1}{n}\sum_{k=1}^{n}a_k\right)\left(\frac{1}{n}\sum_{k=1}^{n}b_k\right) \le \frac{1}{n}\sum_{k=1}^{n}a_kb_k.$$

Generalize to more than two sets of increasing sequences.

12. Let n be a positive integer larger than 1, and let a > 0. Show that

$$\frac{1+a+a^2+\dots+a^n}{a+a^2+a^3+\dots+a^{n-1}} \ge \frac{n+1}{n-1}.$$

13. Show that if a > b > 0, then A < B, where

$$A = \frac{1 + a + \dots + a^{n-1}}{1 + a + \dots + a^n}, \quad B = \frac{1 + b + \dots + b^{n-1}}{1 + b + \dots + b^n}.$$

14. Let x > 0, and let n be a positive integer. Show that

$$\frac{x^n}{1 + x + x^2 + \dots + x^{2n}} \le \frac{1}{2n+1}.$$

15. Let a, b > 0, a + b = 1, and q > 0. Show that

$$\left(a + \frac{1}{a}\right)^q + \left(b + \frac{1}{b}\right)^q \ge \frac{5^q}{2^{q-1}}.$$

16. Let x, y > 0 with $x \neq y$, and let m and n be positive integers. Show that

$$x^m y^n + x^n y^m < x^{m+n} + y^{m+n}$$

17. Let x > 0 but $x \neq 1$, and let n be a positive integer. Show that

$$x^{2n-1} + x < x^{2n} + 1$$
.

18. Let a > b > 0, and let n be a positive integer greater than 1. Show that

$$\sqrt[n]{a} - \sqrt[n]{b} < \sqrt[n]{a-b}$$
.

19. Let a > b > 0, and let n be a positive integer greater than 1. Show that for $k \ge 0$,

$$\sqrt[n]{a^n + k^n} - \sqrt[n]{b^n + k^n} \le a - b.$$

20. Let $x \geq 0$, and let m and n be real numbers such that $m \geq n > 0$. Show that

$$(m+n)(1+x^m) \ge 2n\frac{1-x^{m+n}}{1-x^n}.$$

21. Let $a_i \geq 0$ for $1 \leq i \leq n$, and let $\sum_{i=1}^n a_i = 1$. Let $0 \leq x_i \leq 1$ for $1 \leq i \leq n$. Show that

$$\frac{a_1}{1+x_1} + \frac{a_2}{1+x_2} + \dots + \frac{a_n}{1+x_n} \le \frac{1}{1+x_1^{a_1}x_2^{a_2} \cdots x_n^{a_n}}.$$

22. If a_1, \ldots, a_{n+1} are positive real numbers with $a_1 = a_{n+1}$, show that

$$\sum_{i=1}^{n} \left(\frac{a_i}{a_{i+1}} \right)^n \ge \sum_{i=1}^{n} \frac{a_{i+1}}{a_i}.$$

23. Let $\{a_1, a_2, \ldots, a_n\}$ and $\{b_1, b_2, \ldots, b_n\}$ be two sets of real numbers with $b_1 \geq b_2 \geq \cdots \geq b_n \geq 0$. Put $s_k = a_1 + a_2 + \cdots + a_k$ for $k = 1, 2, \ldots, n$; and let M and m denote respectively the largest and smallest of the numbers s_1, s_2, \ldots, s_n . Show that

$$mb_1 \le \sum_{i=1}^n a_i b_i \le Mb_1.$$

24. Show that for any real numbers a_1, a_2, \ldots, a_n ,

$$\left(\sum_{i=1}^{n} \frac{a_i}{i}\right)^2 \le \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_i a_j}{i+j-1}.$$

25. Let f and g be real-valued functions defined on the set of real numbers. Show that there are numbers x and y such that $0 \le x \le 1$, $0 \le y \le 1$, and

$$|xy - f(x) - g(x)| \ge 1/4.$$

26. Let t > 0. Show that

$$t^{\alpha} - \alpha t < 1 - \alpha$$
, if $0 < \alpha < 1$

and

$$t^{\alpha} - \alpha t > 1 - \alpha$$
, if $\alpha > 1$.

27. Show that for any real number x and any positive integer n we have

$$\left| \sum_{k=1}^{n} \frac{\sin kx}{k} \right| \le 2\sqrt{\pi}.$$

28. Show that if x is larger than any of the numbers a_1, a_2, \ldots, a_n , then

$$\frac{1}{x-a_1} + \frac{1}{x-a_2} + \dots + \frac{1}{x-a_n} \ge \frac{n}{x-\frac{1}{n}(a_1 + a_2 + \dots + a_n)}.$$

29. Show that

$$\sqrt{\binom{n}{1}} + \sqrt{\binom{n}{2}} + \dots + \sqrt{\binom{n}{n}} \le \sqrt{n(2^n - 1)}.$$

30. Let y = f(x) be a continuous, strictly increasing function of x for $x \ge 0$, with f(0) = 0, and let f^{-1} denote the inverse function to f. If a and b are nonnegative constants, then show that

$$ab \le \int_0^a f(x)dx + \int_0^b f^{-1}(y)dy.$$

31. Show that for $t \ge 1$ and $s \ge 0$,

$$ts \le t \log t - t + e^s$$
.

32. Let $a_1/b_1, a_2/b_2, \ldots$, with each $b_i > 0$, be a strictly increasing sequence. Let

$$A_j = a_1 + a_2 + \dots + a_j$$
, and $B_j = b_1 + b_2 + \dots + b_j$.

Show that the sequence A_1/B_1 , A_2/B_2 , ... is also strictly increasing.

33. Let m, n be positive integers, and let a_1, a_2, \ldots, a_n be positive real numbers. For $i = 1, 2, 3 \ldots$ put $a_{n+i} = a_i$ and

$$b_i = a_{i+1} + a_{i+2} + \dots + a_{i+m}.$$

Show that

$$m^n a_1 a_2 \cdots a_n < b_1 b_2 \cdots b_n$$

except if all the a_i are equal.

34. Let a_1, a_2, \ldots, a_n be real numbers. Show that

$$\min_{i < j} (a_i - a_j)^2 \le M^2 \left(a_1^2 + \dots + a_n^2 \right),\,$$

where

$$M^2 = \frac{12}{n(n^2 - 1)}.$$

35. Let x and a be real numbers, and let n be a nonnegative integer. Show that

$$|x - a|^n |x + na| \le (x^2 + na^2)^{(n+1)/2}$$
.

36. Given an arbitrary finite set of n pairs of positive real numbers $\{(a_i, b_i) : i = 1, 2, ..., n\}$, show that

$$\prod_{i=1}^{n} (xa_i + (1-x)b_i) \le \max \left\{ \prod_{i=1}^{n} a_i, \prod_{i=1}^{n} b_i \right\},\,$$

for all $x \in [0,1]$. Equality is attained only at x = 0 or x = 1, and then if and only if

$$\left(\sum_{i=1}^{n} \frac{a_i - b_i}{a_i}\right) \left(\sum_{i=1}^{n} \frac{a_i - b_i}{b_i}\right) \ge 0.$$

- 37. Show that if m and n are positive integers, then the smallest of the numbers $\sqrt[n]{m}$ and $\sqrt[m]{n}$ cannot exceed $\sqrt[3]{3}$.
- 38. Show that if $a \ge 2$ and x > 0, then $a^x + a^{1/x} \le a^{x+1/x}$, with equality holding if and only if a = 2 and x = 1.
- 39. Show that if $x_i \ge 0$ for i = 1, 2, ..., n and $\sum_{i=1}^n \frac{1}{1+x_i} \le 1$, then $\sum_{i=1}^n 2^{-x_i} \le 1$.
- 40. Let $0 \le a_i < 1$ for $i = 1, 2, \ldots, n$, and put $\sum_{i=1}^n a_i = A$. Show that

$$\sum_{i=1}^{n} \frac{a_i}{1 - a_i} \ge \frac{nA}{n - A},$$

with equality if and only if all the a_i are equal.

41. Show that for $n \geq 2$,

$$\prod_{i=0}^{n} \binom{n}{i} \le \left(\frac{2^n - 2}{n - 1}\right)^{n-1}.$$

42. Let b_1, \ldots, b_n be any rearrangement of the positive numbers a_1, \ldots, a_n . Show that

$$\frac{a_1}{b_1} + \dots + \frac{a_n}{b_n} \ge n.$$

43. Given that $\sum_{i=1}^{n} b_i = b$ with each b_i a nonnegative number, show that

$$\sum_{j=1}^{n-1} b_j b_{j+1} \le \frac{b^2}{4}.$$

5

44. Let $n \ge 2$ and $0 < x_1 < x_2 < \cdots < x_n \le 1$. Show that

$$\frac{n\sum_{k=1}^{n} x_k}{\sum_{k=1}^{n} x_k + nx_1x_2\cdots x_n} \ge \sum_{k=1}^{n} \frac{1}{1+x_k}.$$

45. Let f be a continuous function on the interval [0,1] such that $0 < m \le f(x) \le M$ for all x in [0,1]. Show that

$$\left(\int_0^1 \frac{dx}{f(x)}\right) \left(\int_0^1 f(x)dx\right) \le \frac{(m+M)^2}{4mM}.$$

46. Let x > 0 and $x \neq 1$. Show that

$$\frac{\log x}{x - 1} \le \frac{1}{\sqrt{x}}$$

$$\frac{\log x}{x - 1} \le \frac{1 + x^{1/3}}{x + x^{1/3}}.$$

47. Let 0 < y < x. Show that

$$\frac{x+y}{2} > \frac{x-y}{\log x - \log y}.$$

48. Let x > 0. Show that

$$\frac{2}{2x+1} < \log \frac{x+1}{x} < \frac{1}{\sqrt{x^2+x}}.$$

49. Let $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Show that

$$n\left\{(1+n)^{1/n}-1\right\} < S_n < n\left\{1-(n+1)^{-1/n}-\frac{1}{n+1}\right\}.$$

50. Let x > 0 and y > 0. Show that

$$\frac{1 - e^{-x - y}}{(x + y)(1 - e^{-x})(1 - e^{-y})} - \frac{1}{xy} \le \frac{1}{12}.$$

51. Let a, b, c, d, e, and f be nonegative real numbers satisfying

$$a+b \le e$$
 and $c+d \le f$.

Show that

$$\sqrt{ac} + \sqrt{bd} < \sqrt{ef}$$
.

52. Show that for x > 0 and $x \neq 1$,

$$0 \le \frac{x \log x}{x^2 - 1} \le \frac{1}{2}.$$

53. Show that for x > 0,

$$x(2 + \cos x) > 3\sin x.$$

54. Show that for $0 < x < \pi/2$,

$$2\sin x + \tan x > 3x.$$

55. Let x > 0, $x \neq 1$, and suppose that n is a positive integer. Show that

$$x + \frac{1}{x^n} > 2n \frac{x-1}{x^n - 1}$$
.

56. Let a be a fixed real number such that $0 \le a < 1$, and let k be a positive integer satisfying the condition k > (3+a)/(1-a). Show that

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{nk-1} > 1 + a$$

for any positive integer n.

57. Let a and b denote real numbers, and let r satisfy $r \geq 0$. Show that

$$|a+b|^r \le c_r \left(|a|^r + |b|^r \right),$$

where $c_r = 1$ for $r \le 1$ and $c_r = 2^{r-1}$ for r > 1.

58. Let $0 < b \le a$. Show that

$$\frac{1}{8} \frac{(a-b)^2}{a} \le \frac{a+b}{2} - \sqrt{ab} \le \frac{1}{8} \frac{(a-b)^2}{b}.$$

59. Consider any sequence a_1, a_2, \ldots of real numbers. Show that

$$\sum_{n=1}^{\infty} a_n \le \frac{2}{\sqrt{3}} \sum_{n=1}^{\infty} \left(\frac{r_n}{n}\right)^{1/2},\tag{6}$$

where

$$r_n = \sum_{k=n}^{\infty} a_k^2.$$

(If the left-hand side of (6) is ∞ , then so is the right-hand side.)

60. Let a, b, and x be real numbers such that 0 < a < b and 0 < x < 1. Show that

$$\left(\frac{1-x^b}{1-x^{a+b}}\right)^b > \left(\frac{1-x^a}{1-x^{a+b}}\right)^a.$$

61. Let 0 < a < 1. Show that

$$\frac{2}{e} < a^{\frac{a}{1-a}} + a^{\frac{1}{1-a}} < 1.$$

62. Let $0 < x < 2\pi$. Show that

$$-\frac{1}{2}\tan\frac{x}{4} \le \sum_{k=1}^{n}\sin kx \le \frac{1}{2}\cot\frac{x}{4}.$$

63. Let $0 < a_k < 1$ for k = 1, 2, ..., n, with $a_1 + a_2 + \cdots + a_n < 1$. Show that

$$\frac{1}{1 - \sum_{k=1}^{n} a_k} > \prod_{k=1}^{n} (1 + a_k) > 1 + \sum_{k=1}^{n} a_k$$

and

$$\frac{1}{1 + \sum_{k=1}^{n} a_k} > \prod_{k=1}^{n} (1 - a_k) > 1 - \sum_{k=1}^{n} a_k$$

64. Show that

$$\frac{1}{(n-1)!} \int_{n}^{\infty} w(t)e^{-t}dt < \frac{1}{(e-1)^{n}},$$

where t is real, n is a positive integer, and

$$w(t) = (t-1)(t-2)\cdots(t-n+1).$$