
Fall 2018 18.211 Combinatorial Analysis Prof. Y. Zhao

Practice Midterm 3

Time: 80 minutes.
5 problems worth 10 points each.
No electronic devices. You may bring two sheets of notes on letter-sized paper (total four sides

front and back) in your own handwriting. Typed, printed, or photocopied notes are forbidden.
You must provide justification in your solutions (not just answers). You may quote theorems and facts

proved in class, course textbook/notes, or homework, provided that you state the facts that you are using.

1. Determine whether each of the following statement is TRUE or FALSE, and provide a short justi-
fication or a counterexample (a correct answer without justification receives zero credit).

(a) If G is a connected planar graph, then any planar embedding of G always has the same number
of faces.
Solution. True By Euler’s formula, v−e+f = 2, and v and e are determined by the graph.

(b) If G is a connected d-regular graph with d ≥ 1, then its line graph L(G) contains an Eulerian
tour.
Solution. True L(G) is connected since G is connected, and every vertex of L(G) has degree
2(d− 1), which is even.

2. Does there exist a connected graph with a cut vertex whose edge set can be partitioned into perfect
matchings?

Solution. No. Let G be a graph with cut vertex v, and let C1, . . . , Ck (k ≥ 2) be components of
G− v. Let ui be a neighbor of v in Ci.

If C1 is odd, then vu2 cannot be contained in a perfect matching since it would give rise to a perfect
matching in C1, which has an odd number of vertices. Likewise, if C1 is even, then vu1 cannot be
contained in a perfect matching since it would give arise to a perfect matching in C1−u1, which has
an odd number of vertices. Therefore, not every edge of G can be contained in a perfect matching,
and in particular G cannot be partitioned into perfect matchings.

3. Let G be a bipartite graph with n vertices on both sides and minimum degree at least n/2. Prove
that G has a perfect matching.

Solution. Let A ∪ B be a vertex bipartition of G. We would like to check the condition in Hall’s
theorem. Let S ⊂ A be nonempty. Since every vertex has degree at least n/2, |N(S)| ≥ n/2. So
|N(S)| ≥ |S| whenever |S| ≤ n/2. So assume that |S| > n/2. Then every vertex in B, having
degree at least n/2, is adjacent to some vertex of S. Hence |N(S)| = |B| = n ≥ |S|. Thus by Hall’s
theorem G has a perfect matching.

4. Let k ≥ 1. Let G be a 2k-edge-connected graph. Let s1, . . . , sk, t1, . . . , tk be distinct vertices. Show
that there are edge disjoint paths P1, . . . , Pk such that each Pi starts at si and ends at ti.

Solution. Since G is 2k-edge-connected, every vertex has degree at least 2k (otherwise we can
disconnect a vertex by removing fewer than 2k edges), so there is another vertex v different from
s1, . . . , sk, t1, . . . , tk.

Let G′ be the graph obtained from G by adding a new vertex v and making it adjacent to all si’s
and ti’s. Then G′ is also 2k-edge-connected. By the edge-version of Menger’s theorem (Corollary
3.25 in the notes), there exist 2k edge-disjoint paths between u and v in G′. In other words, there
exist a collection of edge-disjoint paths Q1, . . . , Qk, Q

′
1, . . . , Q

′
k in G where Qi is v-si path and Q′

i is
a v-ti path. Let Pi = Qi ∪Q′

i. Then the Pi’s are the desired paths from si to ti.
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5. Prove that the union of k planar graphs is 6k-colorable.

Solution. Recall that every planar graph on n vertices has at most 3n − 6 edges (a corollary of
Euler’s formula), and hence average degree strictly less than 6. Hence a union of k planar graphs
has average degree less than 6k, and hence minimum degree less than 6k.

Every subgraph of a union of k planar graphs is still a union of k planar graphs. Hence every union
of k planar graphs is (6k − 1)-degenerate, and thus 6k-colorable (by greedy coloring, c.f., Theorem
7.19 in the notes).
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