
Fall 2018 18.211 Combinatorial Analysis Prof. Y. Zhao

Practice Midterm 2

Time: 80 minutes.
6 problems worth 10 points each.
No electronic devices. You may bring one sheet of notes on letter-sized paper (front and back)

in your own handwriting. Typed, printed, or photocopied notes are forbidden.
You must provide justification in your solutions (not just answers). You may quote theorems

and facts proved in class, course textbook/notes, or homework, provided that you state the facts
that you are using.

1. There are n soldiers standing in a line. We wish to do all of the following:

• Cut line in a number of places to divide the soldiers into at least two groups;

• Select a commander within each group;

• Select a captain among the commanders.

Let gn be the number of ways to do this. Determine the generating function for gn (you may
choose to give either the ordinary generating function or the exponential generating function.
You do not need to solve for gn. It is sufficient to write down a correct closed form expression
for the generating function; you do not need to simplify for this problem).

Solution. We solvefor the ordinary generating function G(x) =
∑

n≥0 gnx
n. By the com-

positional formula, one has G(x) = B(A(x)), where A(x) is the generating function for the
sequence

an = n for all n ≥ 0,

since this is the number of ways to select a commander in an n-person group, and B(x) is the
generating function for the sequence

bn =

{
n if n ≥ 2

0 if n = 0, 1
,

as this is the number of ways to select a captain when where are n groups with pre-chosen
commanders (we set bn = 0 to forbid having fewer than zero groups).

We have
A(x) =

∑
n≥0

anx
n =

∑
n≥0

nxn =
x

(1− x)2

(recall that we derived this formula in class by differentiating 1
1−x = 1 + x+ x2 + · · · ) and

B(x) =
∑
n≥0

bnx
n =

∑
n≥2

nxn =
x

(1− x)2
− x.

So the desired generating function is

G(x) =
∑
n≥0

gnx
n = B(A(x)) =

x
(1−x)2(

1− x
(1−x)2

)2 − x

(1− x)2
=

x(1− x)2

(1− 3x+ x2)2
− x

(1− x)2
.
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2. Let gn denote the number of label graphs on vertex set [n] with maximum degree at most 2,
at least two connected components, and no isolated vertices. Determine

∑
n≥0 gnx

n/n!.

Solution. Let G(x)
∑

n≥0 gnx
n/n!. Note that having maximum degree at most 2 is equivalent

to having all connected components be paths and cycles (why?). Applying the compositional
formula for exponential generating functions, we have G(x) = B(A(x)), where A is the expo-
nential generating function for the sequence an, with an being the number of labeled paths
and cycles on n labeled vertices, forbidding the possibility of an isolated vertex.

Note that there are (n− 1)!/2 ways to form a cycle for all n ≥ 3 (we need at least 3 vertices
to form a cycle, and note that the orientation of the cycle is not considered, hence dividing
by 2). Likewise, there are n!/2 ways to form a path on n ≥ 2 labeled vertices. Thus

an =


0 if n = 0, 1,

1 if n = 2
(n−1)!

2 + n!
2 if n ≥ 3.

Thus (here we use the familiar series − log(1− x) =
∑

n≥1
xn

n )

A(x) =
∑
n≥0

an
xn

n!
=
x2

2
+
∑
n≥3

xn

2n
+
∑
n≥3

xn

2

=
x2

2
+

1

2

(
− log(1− x)− x− x2

2

)
+

x3

2(1− x)

= −x
2
+
x2

4
+

x3

2(1− x)
− 1

2
log(1− x).

On the other hand, since we require at least two connected components, B(x) is the exponential
generating function for the sequence bn where b0 = b1 = 0 and bn = 1 for all n ≥ 2. So

B(x) =
∑
n≥0

bn
xn

n!
=
∑
n≥2

xn

n!
= ex − 1− x.

Thus

G(x) = B(A(x)) = exp

(
−x
2
+
x2

4
+

x3

2(1− x)
− 1

2
log(1− x)

)
− 1 +

x

2
− x2

4
− x3

2(1− x)
+

1

2
log(1− x)

=
exp

(
−x

2 + x2

4 + x3

2(1−x)

)
√
1− x

− 1 +
x

2
− x2

4
− x3

2(1− x)
+

1

2
log(1− x)

3. (a) Let p≤k(n) denote the number of partitions of n with at most k parts. Determine the
generating function

P≤k(x) =
∑
n≥0

p≤k(n)x
n.

(Your answer may contain at most one summation or product.)
Solution. This was done in lecture. By conjugating, we see that p≤k(n) also equals to
the number of partitions of n with all parts at most k, and thus

P≤k(x) =
∑
n≥0

p≤k(n)x
n =

k∏
j=1

1

1− xk
.
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(b) Let q(n) denote the number of self-conjugate partitions. Prove that∑
n≥0

q(n)xn =
∑
k≥0

xk
2
P≤k(x

2).

(Recall that a partition is self-conjugate if its Ferrers shape is is mirror-symmetric along
its main diagonal.)
Solution. Consider the largest top-left aligned square contained in the Ferrers shape of
a partition (this is called the Durfee square). E.g., for the partition (6, 6, 4, 3, 2, 2), the
largest such square has width 3.

Note that by removing the Durfee square, calling its width k, we obtain (to its right)
a partition λ with at most k parts, and also (below the Durfee square) the conjugate
of λ. This is gives a bijection between self-conjugate partitions and pairs (k, λ), where
k nonnegative integer, and λ is a partition with at most k parts (consider the partition
to the right of the Durfee square). Thus the generating function for the number of
self-conjugate partitions whose Durfee square has width k is

xk
2
∑
n≥0

p≤k(n)x
2n = xk

2
P≤k(x

2).

Summing over all nonnegative integers k yields the claimed result.

Remark 1. You should check that a modification of this argument also shows the identity∑
n≥0

p(n)xn =
∑
k≥0

xk
2
P≤k(x)

2.

Remark 2. We showed in lecture that the number of self-conjugate partitions of n equals
the number of partitions of n into distinct odd parts. Thus∑

n≥0

q(n)xn =
∏
k≥1

(1 + x2k−1).

4. Let T1 and T2 be two distinct spanning trees of G with T1 6= T2. Prove that there exist edges
e ∈ E(T1) \E(T2) and f ∈ E(T2) \E(T1) so that T1− e+ f and T2− f + e are both spanning
trees in G.

(Here Ti−e+f is the subgraph obtained from Ti by removing the edge e and adding the edge
f .)

Solution. Pick an arbitrary edge e = xy ∈ E(T1) \ E(T2) (such an edge must exist since
neither T1 is not contained in T2). Removing e from T1 disconnects T1 into exactly two
components, which we call Cx and Cy, where x ∈ Cx and y ∈ Cy. Consider the unique path
P in T2 from x to y. Since the path P starts in Cx and ends in Cy, P contains an edge
f with one endpoint in Cx and the other in Cy. In particular, f ∈ E(P ) ⊂ E(T2). Also,
f /∈ E(T1), since otherwise removing e from T1 would not have disconnected Cx from Cy. So
f ∈ E(T2) \ E(T1).
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We see that T1 − e + f is a spanning tree since adding f to T1 − e joins its two connected
components Cx and Cy.

Also, T2 − f + e is a spanning tree since T2 + e contains the cycle P + e, and so it remains
connected after removing f from the cycle.

(In both cases we are using that a connected graph with n vertices and n−1 edges is a tree.)

5. Let G be a connected graph with at least 3 vertices. Prove that there exist two distinct vertices
x, y in G such that G− x− y is connected and the distance between x and y is at most 2.

(Recall that the distance between a pair vertices is the length of the shortest path between
the two vertices, where the length of a path is the number of edges on the path. Here G− x
is the graph obtained from G by removing the vertex x along with all edges incident to x.)

Solution. Let P = v0v1 · · · vk be a path of maximum length in G (always a good thing to
try!). If G − v0 − v1 is connected, then choosing x = v0 and y = v1 works. So let us assume
that G− v0 − v1 is not connected. Since P is a longest path, it cannot be extended from v0,
and so all neighbors of v0 in G are contained in P . Since G− v0 − v1 is not connected, it has
some component C other than the one containing P − v0 − v1. Then C has a vertex adjacent
to v1 in G. If C has more than one vertex, then one could find a path in G longer than P by
rerouting P into C via v1. Thus C has only one vertex, and let y be this vertex and x = v0.
Then x and y have distance at most 2 (via v1), and their removal does not disconnect G.

 

6. Let k ≥ 2. Prove that every k-regular connected bipartite graph is 2-connected.

Solution. For contradiction, let G be a k-regular connected bipartite graph that is not 2-
connected. Thus G has a cut-vertex v. Let us label the bipartition of the vertex set of G
by A ∪ B, so that all edges of G have one vertex in A and the other vertex in B. We may
assume, without loss of generality, that v ∈ A. Since v is a cut vertex, its removal disconnects
the remaining vertices into two components. Let A = A1 ∪A2 ∪ {v} and B = B1 ∪B2, where
A1 ∪B1 form one component of G− v and A2 ∪B2 induce the other component.

All neighbors of v lie in B. Suppose that k1 neighbors of v lie in B1, where 0 < k1 < k, and
the remaining k2 = k− k1 neighbors lie in B2. We can calculate the number of edges between
A1 and B1 in two ways. By summing over degrees in A1, we see that there are |A1|k edges
between A1 and B1. On the other hand, by summing over degrees in B1 and subtracting the
k1 edges between k1 and B1, we see that there are exactly |B1|k − k1 edges between A1 and
B1. So |A1|k = |B1|k− k1, which is impossible since the LHS is divisible by k while the RHS
is not. This is a contradiction.

 

A B Ba As
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